New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_DIU.tex in NEMO/branches/2020/dev_14237_KERNEL-01_IMMERSE_SEAMOUNT/doc/latex/NEMO/subfiles – NEMO

source: NEMO/branches/2020/dev_14237_KERNEL-01_IMMERSE_SEAMOUNT/doc/latex/NEMO/subfiles/chap_DIU.tex @ 14328

Last change on this file since 14328 was 14328, checked in by ayoung, 3 years ago

Pulling changes from trunk from r14237 through to r14327 (current)

File size: 8.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Diurnal SST Models (DIU)}
6\label{chap:DIU}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{\textwidth}{l||X|X}
14    Release & Author(s) & Modifications \\
15    \hline
16    {\em   4.0} & {\em ...} & {\em ...} \\
17    {\em   3.6} & {\em ...} & {\em ...} \\
18    {\em   3.4} & {\em ...} & {\em ...} \\
19    {\em <=3.4} & {\em ...} & {\em ...}
20  \end{tabularx}
21}
22
23\clearpage
24
25Code to produce an estimate of the diurnal warming and cooling of the sea surface skin
26temperature (skin SST) is found in the DIU directory.
27The skin temperature can be split into three parts:
28\begin{itemize}
29\item A foundation SST which is free from diurnal warming.
30\item A warm layer, typically ~3\,m thick,
31  where heating from solar radiation can cause a warm stably stratified layer during the daytime
32\item A cool skin, a thin layer, approximately ~1\, mm thick,
33  where long wave cooling is dominant and cools the immediate ocean surface.
34\end{itemize}
35
36Models are provided for both the warm layer, \mdl{diurnal\_bulk}, and the cool skin, \mdl{cool\_skin}.
37Foundation SST is not considered as it can be obtained either from the main \NEMO\ model
38(\ie\ from the temperature of the top few model levels) or from some other source.
39It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature
40($\Delta T_{\mathrm{cs}}$ and $\Delta T_{\mathrm{wl}}$) and
41both must be added to a foundation SST to obtain the true skin temperature.
42
43Both the cool skin and warm layer models are controlled through the namelist \nam{diu}{diu}:
44
45\begin{listing}
46  \nlst{namdiu}
47  \caption{\forcode{&namdiu}}
48  \label{lst:namdiu}
49\end{listing}
50
51This namelist contains only two variables:
52\begin{description}
53\item [{\np{ln_diurnal}{ln\_diurnal}}] A logical switch for turning on/off both the cool skin and warm layer.
54\item [{\np{ln_diurnal_only}{ln\_diurnal\_only}}] A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of \NEMO.
55  \np{ln_diurnal_only}{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln_diurnal}{ln\_diurnal} is \forcode{.false.}.
56\end{description}
57
58Output for the diurnal model is through the variables `sst\_wl' (warm\_layer) and `sst\_cs' (cool skin).
59These are 2-D variables which will be included in the model output if they are specified in the iodef.xml file.
60
61Initialisation is through the restart file.
62Specifically the code will expect the presence of the 2-D variable ``Dsst'' to initialise the warm layer.
63The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable.
64
65%% =================================================================================================
66\section{Warm layer model}
67\label{sec:DIU_warm_layer_sec}
68
69The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter).
70This is a simple flux based model that is defined by the equations
71\begin{align}
72\frac{\partial{\Delta T_{\mathrm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p
73\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,}
74\label{eq:DIU_ecmwf1} \\
75L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:DIU_ecmwf2}
76\end{align}
77where $\Delta T_{\mathrm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal.
78In equation (\autoref{eq:DIU_ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water,
79$\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water,
80$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length.
81The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via
82$T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\mathrm{wl}}$,
83where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer.
84The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$,
85which can be related to the 10\,m wind speed $u_{10}$ through
86the relationship $u^*_{w} = u_{10}\sqrt{\frac{C_d\rho_a}{\rho_w}}$, where $C_d$ is the drag coefficient,
87and $\rho_a$ is the density of air.
88The symbol $Q$ in equation (\autoref{eq:DIU_ecmwf1}) is the instantaneous total thermal energy flux into
89the diurnal layer, \ie
90\[
91  Q = Q_{\mathrm{sol}} + Q_{\mathrm{lw}} + Q_{\mathrm{h}}\mbox{,}
92  % \label{eq:DIU_e_flux_eqn}
93\]
94where $Q_{\mathrm{h}}$ is the sensible and latent heat flux, $Q_{\mathrm{lw}}$ is the long wave flux,
95and $Q_{\mathrm{sol}}$ is the solar flux absorbed within the diurnal warm layer.
96For $Q_{\mathrm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used.
97In equation \autoref{eq:DIU_ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$,
98where $L_a=0.3$\footnote{
99  This is a global average value, more accurately $L_a$ could be computed as $L_a=(u^*_{w}/u_s)^{\frac{1}{2}}$,
100  where $u_s$ is the stokes drift, but this is not currently done
101} is the turbulent Langmuir number and is a parametrization of the effect of waves.
102The function $\Phi\!\left(\frac{D_T}{L}\right)$ is the similarity function that
103parametrizes the stability of the water column and is given by:
104\begin{equation}
105\Phi(\zeta) = \left\{ \begin{array}{cc} 1 + \frac{5\zeta +
1064\zeta^2}{1+3\zeta+0.25\zeta^2} &(\zeta \ge 0) \\
107                                    (1 - 16\zeta)^{-\frac{1}{2}} & (\zeta < 0) \mbox{,}
108                                    \end{array} \right. \label{eq:DIU_stab_func_eqn}
109\end{equation}
110where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of (\autoref{eq:DIU_stab_func_eqn}),
111and thus of (\autoref{eq:DIU_ecmwf1}), is discontinuous at $\zeta=0$ (\ie\ $Q\rightarrow0$ in
112equation (\autoref{eq:DIU_ecmwf2})).
113
114The two terms on the right hand side of (\autoref{eq:DIU_ecmwf1}) represent different processes.
115The first term is simply the diabatic heating or cooling of the diurnal warm layer due to
116thermal energy fluxes into and out of the layer.
117The second term parametrizes turbulent fluxes of heat out of the diurnal warm layer due to wind induced mixing.
118In practice the second term acts as a relaxation on the temperature.
119
120%% =================================================================================================
121\section{Cool skin model}
122\label{sec:DIU_cool_skin_sec}
123
124The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$.
125As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\mathrm{cs}}$ becomes
126\[
127  % \label{eq:DIU_sunders_eqn}
128  \Delta T_{\mathrm{cs}}=\frac{Q_{\mathrm{ns}}\delta}{k_t} \mbox{,}
129\]
130where $Q_{\mathrm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and
131$k_t$ is the thermal conductivity of sea water.
132$\delta$ is the thickness of the skin layer and is given by
133\begin{equation}
134\label{eq:DIU_sunders_thick_eqn}
135\delta=\frac{\lambda \mu}{u^*_{w}} \mbox{,}
136\end{equation}
137where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of proportionality which
138\citet{saunders_JAS67} suggested varied between 5 and 10.
139
140The value of $\lambda$ used in equation (\autoref{eq:DIU_sunders_thick_eqn}) is that of \citet{artale.iudicone.ea_JGR02},
141which is shown in \citet{tu.tsuang_GRL05} to outperform a number of other parametrisations at
142both low and high wind speeds.
143Specifically,
144\[
145  % \label{eq:DIU_artale_lambda_eqn}
146  \lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,}
147\]
148where $h=10$\,m is a reference depth and
149$\gamma$ is a dimensionless function of wind speed $u$:
150\[
151  % \label{eq:DIU_artale_gamma_eqn}
152  \gamma =
153  \begin{cases}
154    0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\
155    1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\
156    6\mbox{,} & u \ge 10\,\mbox{ms}^{-1} \\
157  \end{cases}
158\]
159
160\subinc{\input{../../global/epilogue}}
161
162\end{document}
Note: See TracBrowser for help on using the repository browser.