New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_DYN.tex in NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles – NEMO

source: NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_DYN.tex @ 14644

Last change on this file since 14644 was 14644, checked in by sparonuz, 3 years ago

Merge trunk -r14642:HEAD

File size: 87.0 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Ocean Dynamics (DYN)}
6\label{chap:DYN}
7
8\chaptertoc
9
10\paragraph{Changes record} ~\\
11
12{\footnotesize
13  \begin{tabularx}{\textwidth}{l||X|X}
14    Release & Author(s) & Modifications \\
15    \hline
16    {\em   4.0} & {\em ...} & {\em ...} \\
17    {\em   3.6} & {\em ...} & {\em ...} \\
18    {\em   3.4} & {\em ...} & {\em ...} \\
19    {\em <=3.4} & {\em ...} & {\em ...}
20  \end{tabularx}
21}
22
23\clearpage
24
25Using the representation described in \autoref{chap:DOM},
26several semi-discrete space forms of the dynamical equations are available depending on
27the vertical coordinate used and on the conservation properties of the vorticity term.
28In all the equations presented here, the masking has been omitted for simplicity.
29One must be aware that all the quantities are masked fields and
30that each time an average or difference operator is used, the resulting field is multiplied by a mask.
31
32The prognostic ocean dynamics equation can be summarized as follows:
33\[
34  \text{NXT} = \dbinom  {\text{VOR} + \text{KEG} + \text {ZAD} }
35  {\text{COR} + \text{ADV}                       }
36  + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
37\]
38NXT stands for next, referring to the time-stepping.
39The first group of terms on the rhs of this equation corresponds to the Coriolis and advection terms that
40are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG) and
41a vertical advection part (ZAD) in the vector invariant formulation,
42or a Coriolis and advection part (COR+ADV) in the flux formulation.
43The terms following these are the pressure gradient contributions
44(HPG, Hydrostatic Pressure Gradient, and SPG, Surface Pressure Gradient);
45and contributions from lateral diffusion (LDF) and vertical diffusion (ZDF),
46which are added to the rhs in the \mdl{dynldf} and \mdl{dynzdf} modules.
47The vertical diffusion term includes the surface and bottom stresses.
48The external forcings and parameterisations require complex inputs
49(surface wind stress calculation using bulk formulae, estimation of mixing coefficients)
50that are carried out in modules SBC, LDF and ZDF and are described in
51\autoref{chap:SBC}, \autoref{chap:LDF} and \autoref{chap:ZDF}, respectively.
52
53In the present chapter we also describe the diagnostic equations used to compute the horizontal divergence,
54curl of the velocities (\emph{divcur} module) and the vertical velocity (\emph{wzvmod} module).
55
56The different options available to the user are managed by namelist variables.
57For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
58where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
59%If a CPP key is used for this term its name is \key{ttt}.
60The corresponding code can be found in the \textit{dynttt\_xxx} module in the DYN directory,
61and it is usually computed in the \textit{dyn\_ttt\_xxx} subroutine.
62
63The user has the option of extracting and outputting each tendency term from the 3D momentum equations
64(\texttt{trddyn?} defined), as described in \autoref{chap:MISC}.
65Furthermore, the tendency terms associated with the 2D barotropic vorticity balance (when \texttt{trdvor?} is defined)
66can be derived from the 3D terms.
67\cmtgm{STEVEN: not quite sure I've got the sense of the last sentence.
68  Does MISC correspond to "extracting tendency terms" or "vorticity balance"?}
69
70%% =================================================================================================
71\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
72\label{sec:DYN_divcur_wzv}
73
74%% =================================================================================================
75\subsection[Horizontal divergence and relative vorticity (\textit{divcur.F90})]{Horizontal divergence and relative vorticity (\protect\mdl{divcur})}
76\label{subsec:DYN_divcur}
77
78The vorticity is defined at an $f$-point (\ie\ corner point) as follows:
79\begin{equation}
80  \label{eq:DYN_divcur_cur}
81  \zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta_{i+1/2} \left[ {e_{2v}\;v} \right]
82      -\delta_{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
83\end{equation}
84
85The horizontal divergence is defined at a $T$-point.
86It is given by:
87\[
88  % \label{eq:DYN_divcur_div}
89  \chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
90  \left( {\delta_i \left[ {e_{2u}\,e_{3u}\,u} \right]
91      +\delta_j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
92\]
93
94Note that although the vorticity has the same discrete expression in $z$- and $s$-coordinates,
95its physical meaning is not identical.
96$\zeta$ is a pseudo vorticity along $s$-surfaces
97(only pseudo because $(u,v)$ are still defined along geopotential surfaces,
98but are not necessarily defined at the same depth).
99
100The vorticity and divergence at the \textit{before} step are used in the computation of
101the horizontal diffusion of momentum.
102Note that because they have been calculated prior to the Asselin filtering of the \textit{before} velocities,
103the \textit{before} vorticity and divergence arrays must be included in the restart file to
104ensure perfect restartability.
105The vorticity and divergence at the \textit{now} time step are used for the computation of
106the nonlinear advection and of the vertical velocity respectively.
107
108%% =================================================================================================
109\subsection[Horizontal divergence and relative vorticity (\textit{sshwzv.F90})]{Horizontal divergence and relative vorticity (\protect\mdl{sshwzv})}
110\label{subsec:DYN_sshwzv}
111
112The sea surface height is given by:
113\begin{equation}
114  \label{eq:DYN_spg_ssh}
115  \begin{aligned}
116    \frac{\partial \eta }{\partial t}
117    &\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{  \delta_i \left[ {e_{2u}\,e_{3u}\;u} \right]
118        +\delta_j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right\} }
119    -    \frac{\textit{emp}}{\rho_w }   \\
120    &\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho_w }
121  \end{aligned}
122\end{equation}
123where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
124expressed in Kg/m$^2$/s (which is equal to mm/s),
125and $\rho_w$=1,035~Kg/m$^3$ is the reference density of sea water (Boussinesq approximation).
126If river runoff is expressed as a surface freshwater flux (see \autoref{chap:SBC}) then
127\textit{emp} can be written as the evaporation minus precipitation, minus the river runoff.
128The sea-surface height is evaluated using exactly the same time stepping scheme as
129the tracer equation \autoref{eq:TRA_nxt}:
130a leapfrog scheme in combination with an Asselin time filter,
131\ie\ the velocity appearing in \autoref{eq:DYN_spg_ssh} is centred in time (\textit{now} velocity).
132This is of paramount importance.
133Replacing $T$ by the number $1$ in the tracer equation and summing over the water column must lead to
134the sea surface height equation otherwise tracer content will not be conserved
135\citep{griffies.pacanowski.ea_MWR01, leclair.madec_OM09}.
136
137The vertical velocity is computed by an upward integration of the horizontal divergence starting at the bottom,
138taking into account the change of the thickness of the levels:
139\begin{equation}
140  \label{eq:DYN_wzv}
141  \left\{
142    \begin{aligned}
143      &\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }   \\
144      &\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_k
145      - \frac{1} {2 \rdt} \left\left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
146    \end{aligned}
147  \right.
148\end{equation}
149
150In the case of a non-linear free surface (\texttt{vvl?}), the top vertical velocity is $-\textit{emp}/\rho_w$,
151as changes in the divergence of the barotropic transport are absorbed into the change of the level thicknesses,
152re-orientated downward.
153\cmtgm{not sure of this...  to be modified with the change in emp setting}
154In the case of a linear free surface, the time derivative in \autoref{eq:DYN_wzv} disappears.
155The upper boundary condition applies at a fixed level $z=0$.
156The top vertical velocity is thus equal to the divergence of the barotropic transport
157(\ie\ the first term in the right-hand-side of \autoref{eq:DYN_spg_ssh}).
158
159Note also that whereas the vertical velocity has the same discrete expression in $z$- and $s$-coordinates,
160its physical meaning is not the same:
161in the second case, $w$ is the velocity normal to the $s$-surfaces.
162Note also that the $k$-axis is re-orientated downwards in the \fortran\ code compared to
163the indexing used in the semi-discrete equations such as \autoref{eq:DYN_wzv}
164(see \autoref{subsec:DOM_Num_Index_vertical}).
165
166%% =================================================================================================
167\section{Coriolis and advection: vector invariant form}
168\label{sec:DYN_adv_cor_vect}
169
170\begin{listing}
171  \nlst{namdyn_adv}
172  \caption{\forcode{&namdyn_adv}}
173  \label{lst:namdyn_adv}
174\end{listing}
175
176The vector invariant form of the momentum equations is the one most often used in
177applications of the \NEMO\ ocean model.
178The flux form option (see next section) has been present since version $2$.
179Options are defined through the \nam{dyn_adv}{dyn\_adv} namelist variables Coriolis and
180momentum advection terms are evaluated using a leapfrog scheme,
181\ie\ the velocity appearing in these expressions is centred in time (\textit{now} velocity).
182At the lateral boundaries either free slip, no slip or partial slip boundary conditions are applied following
183\autoref{chap:LBC}.
184
185%% =================================================================================================
186\subsection[Vorticity term (\textit{dynvor.F90})]{Vorticity term (\protect\mdl{dynvor})}
187\label{subsec:DYN_vor}
188
189\begin{listing}
190  \nlst{namdyn_vor}
191  \caption{\forcode{&namdyn_vor}}
192  \label{lst:namdyn_vor}
193\end{listing}
194
195Options are defined through the \nam{dyn_vor}{dyn\_vor} namelist variables.
196Four discretisations of the vorticity term (\texttt{ln\_dynvor\_xxx}\forcode{=.true.}) are available:
197conserving potential enstrophy of horizontally non-divergent flow (ENS scheme);
198conserving horizontal kinetic energy (ENE scheme);
199conserving potential enstrophy for the relative vorticity term and
200horizontal kinetic energy for the planetary vorticity term (MIX scheme);
201or conserving both the potential enstrophy of horizontally non-divergent flow and horizontal kinetic energy
202(EEN scheme) (see \autoref{subsec:INVARIANTS_vorEEN}).
203In the case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the consistency of
204vorticity term with analytical equations (\np[=.true.]{ln_dynvor_con}{ln\_dynvor\_con}).
205The vorticity terms are all computed in dedicated routines that can be found in the \mdl{dynvor} module.
206
207%                 enstrophy conserving scheme
208%% =================================================================================================
209\subsubsection[Enstrophy conserving scheme (\forcode{ln_dynvor_ens})]{Enstrophy conserving scheme (\protect\np{ln_dynvor_ens}{ln\_dynvor\_ens})}
210\label{subsec:DYN_vor_ens}
211
212In the enstrophy conserving case (ENS scheme),
213the discrete formulation of the vorticity term provides a global conservation of the enstrophy
214($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent flow (\ie\ $\chi$=$0$),
215but does not conserve the total kinetic energy.
216It is given by:
217\begin{equation}
218  \label{eq:DYN_vor_ens}
219  \left\{
220    \begin{aligned}
221      {+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i}
222      & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
223      {- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j}
224      & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j}
225    \end{aligned}
226  \right.
227\end{equation}
228
229%                 energy conserving scheme
230%% =================================================================================================
231\subsubsection[Energy conserving scheme (\forcode{ln_dynvor_ene})]{Energy conserving scheme (\protect\np{ln_dynvor_ene}{ln\_dynvor\_ene})}
232\label{subsec:DYN_vor_ene}
233
234The kinetic energy conserving scheme (ENE scheme) conserves the global kinetic energy but not the global enstrophy.
235It is given by:
236\begin{equation}
237  \label{eq:DYN_vor_ene}
238  \left\{
239    \begin{aligned}
240      {+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
241            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
242      {- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
243            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
244    \end{aligned}
245  \right.
246\end{equation}
247
248%                 mix energy/enstrophy conserving scheme
249%% =================================================================================================
250\subsubsection[Mixed energy/enstrophy conserving scheme (\forcode{ln_dynvor_mix})]{Mixed energy/enstrophy conserving scheme (\protect\np{ln_dynvor_mix}{ln\_dynvor\_mix})}
251\label{subsec:DYN_vor_mix}
252
253For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the two previous schemes is used.
254It consists of the ENS scheme (\autoref{eq:DYN_vor_ens}) for the relative vorticity term,
255and of the ENE scheme (\autoref{eq:DYN_vor_ene}) applied to the planetary vorticity term.
256\[
257  % \label{eq:DYN_vor_mix}
258  \left\{ {
259      \begin{aligned}
260        {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i}
261          \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
262          \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
263              \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
264        {-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
265          \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
266          \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
267              \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
268      \end{aligned}
269    } \right.
270\]
271
272%                 energy and enstrophy conserving scheme
273%% =================================================================================================
274\subsubsection[Energy and enstrophy conserving scheme (\forcode{ln_dynvor_een})]{Energy and enstrophy conserving scheme (\protect\np{ln_dynvor_een}{ln\_dynvor\_een})}
275\label{subsec:DYN_vor_een}
276
277In both the ENS and ENE schemes,
278it is apparent that the combination of $i$ and $j$ averages of the velocity allows for
279the presence of grid point oscillation structures that will be invisible to the operator.
280These structures are \textit{computational modes} that will be at least partly damped by
281the momentum diffusion operator (\ie\ the subgrid-scale advection), but not by the resolved advection term.
282The ENS and ENE schemes therefore do not contribute to dump any grid point noise in the horizontal velocity field.
283Such noise would result in more noise in the vertical velocity field, an undesirable feature.
284This is a well-known characteristic of $C$-grid discretization where
285$u$ and $v$ are located at different grid points,
286a price worth paying to avoid a double averaging in the pressure gradient term as in the $B$-grid.
287\cmtgm{ To circumvent this, Adcroft (ADD REF HERE)
288Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....}
289
290A very nice solution to the problem of double averaging was proposed by \citet{arakawa.hsu_MWR90}.
291The idea is to get rid of the double averaging by considering triad combinations of vorticity.
292It is noteworthy that this solution is conceptually quite similar to the one proposed by
293\citep{griffies.gnanadesikan.ea_JPO98} for the discretization of the iso-neutral diffusion operator (see \autoref{apdx:INVARIANTS}).
294
295The \citet{arakawa.hsu_MWR90} vorticity advection scheme for a single layer is modified
296for spherical coordinates as described by \citet{arakawa.lamb_MWR81} to obtain the EEN scheme.
297First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point:
298\[
299  % \label{eq:DYN_pot_vor}
300  q  = \frac{\zeta +f} {e_{3f} }
301\]
302where the relative vorticity is defined by (\autoref{eq:DYN_divcur_cur}),
303the Coriolis parameter is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is:
304\begin{equation}
305  \label{eq:DYN_een_e3f}
306  e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2}
307\end{equation}
308
309\begin{figure}[!ht]
310  \centering
311  \includegraphics[width=0.66\textwidth]{DYN_een_triad}
312  \caption[Triads used in the energy and enstrophy conserving scheme (EEN)]{
313    Triads used in the energy and enstrophy conserving scheme (EEN) for
314    $u$-component (upper panel) and $v$-component (lower panel).}
315  \label{fig:DYN_een_triad}
316\end{figure}
317
318A key point in \autoref{eq:DYN_een_e3f} is how the averaging in the \textbf{i}- and \textbf{j}- directions is made.
319It uses the sum of masked t-point vertical scale factor divided either by the sum of the four t-point masks
320(\np[=1]{nn_een_e3f}{nn\_een\_e3f}), or just by $4$ (\np[=.true.]{nn_een_e3f}{nn\_een\_e3f}).
321The latter case preserves the continuity of $e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and
322extends by continuity the value of $e_{3f}$ into the land areas.
323This case introduces a sub-grid-scale topography at f-points
324(with a systematic reduction of $e_{3f}$ when a model level intercept the bathymetry)
325that tends to reinforce the topostrophy of the flow
326(\ie\ the tendency of the flow to follow the isobaths) \citep{penduff.le-sommer.ea_OS07}.
327
328Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as
329the following triad combinations of the neighbouring potential vorticities defined at f-points
330(\autoref{fig:DYN_een_triad}):
331\begin{equation}
332  \label{eq:DYN_Q_triads}
333  _i^j \mathbb{Q}^{i_p}_{j_p}
334  = \frac{1}{12} \ \left(   q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p}  \right)
335\end{equation}
336where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$.
337
338Finally, the vorticity terms are represented as:
339\begin{equation}
340  \label{eq:DYN_vor_een}
341  \left\{ {
342      \begin{aligned}
343        +q\,e_3 \, v    &\equiv +\frac{1}{e_{1u} }   \sum_{\substack{i_p,\,k_p}}
344        {^{i+1/2-i_p}_j}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{1v}\,e_{3v} \;\right)^{i+1/2-i_p}_{j+j_p}   \\
345        - q\,e_3 \, u     &\equiv -\frac{1}{e_{2v} }    \sum_{\substack{i_p,\,k_p}}
346        {^i_{j+1/2-j_p}}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{2u}\,e_{3u} \;\right)^{i+i_p}_{j+1/2-j_p}   \\
347      \end{aligned}
348    } \right.
349\end{equation}
350
351This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes.
352It conserves both total energy and potential enstrophy in the limit of horizontally nondivergent flow
353(\ie\ $\chi$=$0$) (see \autoref{subsec:INVARIANTS_vorEEN}).
354Applied to a realistic ocean configuration, it has been shown that it leads to a significant reduction of
355the noise in the vertical velocity field \citep{le-sommer.penduff.ea_OM09}.
356Furthermore, used in combination with a partial steps representation of bottom topography,
357it improves the interaction between current and topography,
358leading to a larger topostrophy of the flow \citep{barnier.madec.ea_OD06, penduff.le-sommer.ea_OS07}.
359
360%% =================================================================================================
361\subsection[Kinetic energy gradient term (\textit{dynkeg.F90})]{Kinetic energy gradient term (\protect\mdl{dynkeg})}
362\label{subsec:DYN_keg}
363
364As demonstrated in \autoref{apdx:INVARIANTS},
365there is a single discrete formulation of the kinetic energy gradient term that,
366together with the formulation chosen for the vertical advection (see below),
367conserves the total kinetic energy:
368\[
369  % \label{eq:DYN_keg}
370  \left\{
371    \begin{aligned}
372      -\frac{1}{2 \; e_{1u} }  & \ \delta_{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   \\
373      -\frac{1}{2 \; e_{2v} }  & \ \delta_{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]
374    \end{aligned}
375  \right.
376\]
377
378%% =================================================================================================
379\subsection[Vertical advection term (\textit{dynzad.F90})]{Vertical advection term (\protect\mdl{dynzad})}
380\label{subsec:DYN_zad}
381
382The discrete formulation of the vertical advection, t
383ogether with the formulation chosen for the gradient of kinetic energy (KE) term,
384conserves the total kinetic energy.
385Indeed, the change of KE due to the vertical advection is exactly balanced by
386the change of KE due to the gradient of KE (see \autoref{apdx:INVARIANTS}).
387\[
388  % \label{eq:DYN_zad}
389  \left\{
390    \begin{aligned}
391      -\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2\;\delta_{k+1/2} \left[ u \right]\  }^{\,k}  \\
392      -\frac{1} {e_{1v}\,e_{2v}\,e_{3v}}  &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2\;\delta_{k+1/2} \left[ u \right]\  }^{\,k}
393    \end{aligned}
394  \right.
395\]
396When \np[=.true.]{ln_dynzad_zts}{ln\_dynzad\_zts},
397a split-explicit time stepping with 5 sub-timesteps is used on the vertical advection term.
398This option can be useful when the value of the timestep is limited by vertical advection \citep{lemarie.debreu.ea_OM15}.
399Note that in this case,
400a similar split-explicit time stepping should be used on vertical advection of tracer to ensure a better stability,
401an option which is only available with a TVD scheme (see \np{ln_traadv_tvd_zts}{ln\_traadv\_tvd\_zts} in \autoref{subsec:TRA_adv_tvd}).
402
403%% =================================================================================================
404\section{Coriolis and advection: flux form}
405\label{sec:DYN_adv_cor_flux}
406
407Options are defined through the \nam{dyn_adv}{dyn\_adv} namelist variables.
408In the flux form (as in the vector invariant form),
409the Coriolis and momentum advection terms are evaluated using a leapfrog scheme,
410\ie\ the velocity appearing in their expressions is centred in time (\textit{now} velocity).
411At the lateral boundaries either free slip,
412no slip or partial slip boundary conditions are applied following \autoref{chap:LBC}.
413
414%% =================================================================================================
415\subsection[Coriolis plus curvature metric terms (\textit{dynvor.F90})]{Coriolis plus curvature metric terms (\protect\mdl{dynvor})}
416\label{subsec:DYN_cor_flux}
417
418In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis parameter has been modified to account for the "metric" term.
419This altered Coriolis parameter is thus discretised at $f$-points.
420It is given by:
421\begin{multline*}
422  % \label{eq:DYN_cor_metric}
423  f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i}  -  u\frac{\partial e_1 }{\partial j}} \right\\
424  \equiv   f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta_{i+1/2} \left[ {e_{2u} } \right]
425      -  \overline u ^{j+1/2}\delta_{j+1/2} \left[ {e_{1u} } \right]  }  \ \right)
426\end{multline*}
427
428Any of the (\autoref{eq:DYN_vor_ens}), (\autoref{eq:DYN_vor_ene}) and (\autoref{eq:DYN_vor_een}) schemes can be used to
429compute the product of the Coriolis parameter and the vorticity.
430However, the energy-conserving scheme (\autoref{eq:DYN_vor_een}) has exclusively been used to date.
431This term is evaluated using a leapfrog scheme, \ie\ the velocity is centred in time (\textit{now} velocity).
432
433%% =================================================================================================
434\subsection[Flux form advection term (\textit{dynadv.F90})]{Flux form advection term (\protect\mdl{dynadv})}
435\label{subsec:DYN_adv_flux}
436
437The discrete expression of the advection term is given by:
438\[
439  % \label{eq:DYN_adv}
440  \left\{
441    \begin{aligned}
442      \frac{1}{e_{1u}\,e_{2u}\,e_{3u}}
443      \left(      \delta_{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i       }  \ u_t      \right]
444        + \delta_{j       } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2\ u_f      \right] \right\ \;   \\
445      \left.   + \delta_{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2\ u_{uw} \right] \right)   \\
446      \\
447      \frac{1}{e_{1v}\,e_{2v}\,e_{3v}}
448      \left(     \delta_{i       } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f       \right]
449        + \delta_{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i       } \ v_t       \right] \right\ \, \, \\
450      \left+ \delta_{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw}  \right] \right) \\
451    \end{aligned}
452  \right.
453\]
454
455Two advection schemes are available:
456a $2^{nd}$ order centered finite difference scheme, CEN2,
457or a $3^{rd}$ order upstream biased scheme, UBS.
458The latter is described in \citet{shchepetkin.mcwilliams_OM05}.
459The schemes are selected using the namelist logicals \np{ln_dynadv_cen2}{ln\_dynadv\_cen2} and \np{ln_dynadv_ubs}{ln\_dynadv\_ubs}.
460In flux form, the schemes differ by the choice of a space and time interpolation to define the value of
461$u$ and $v$ at the centre of each face of $u$- and $v$-cells, \ie\ at the $T$-, $f$-,
462and $uw$-points for $u$ and at the $f$-, $T$- and $vw$-points for $v$.
463
464%                 2nd order centred scheme
465%% =================================================================================================
466\subsubsection[CEN2: $2^{nd}$ order centred scheme (\forcode{ln_dynadv_cen2})]{CEN2: $2^{nd}$ order centred scheme (\protect\np{ln_dynadv_cen2}{ln\_dynadv\_cen2})}
467\label{subsec:DYN_adv_cen2}
468
469In the centered $2^{nd}$ order formulation, the velocity is evaluated as the mean of the two neighbouring points:
470\begin{equation}
471  \label{eq:DYN_adv_cen2}
472  \left\{
473    \begin{aligned}
474      u_T^{cen2} &=\overline u^{i }       \quad &  u_F^{cen2} &=\overline u^{j+1/2}  \quad &  u_{uw}^{cen2} &=\overline u^{k+1/2}   \\
475      v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j    \quad &  v_{vw}^{cen2} &=\overline v ^{k+1/2}  \\
476    \end{aligned}
477  \right.
478\end{equation}
479
480The scheme is non diffusive (\ie\ conserves the kinetic energy) but dispersive (\ie\ it may create false extrema).
481It is therefore notoriously noisy and must be used in conjunction with an explicit diffusion operator to
482produce a sensible solution.
483The associated time-stepping is performed using a leapfrog scheme in conjunction with an Asselin time-filter,
484so $u$ and $v$ are the \emph{now} velocities.
485
486%                 UBS scheme
487%% =================================================================================================
488\subsubsection[UBS: Upstream Biased Scheme (\forcode{ln_dynadv_ubs})]{UBS: Upstream Biased Scheme (\protect\np{ln_dynadv_ubs}{ln\_dynadv\_ubs})}
489\label{subsec:DYN_adv_ubs}
490
491The UBS advection scheme is an upstream biased third order scheme based on
492an upstream-biased parabolic interpolation.
493For example, the evaluation of $u_T^{ubs} $ is done as follows:
494\begin{equation}
495  \label{eq:DYN_adv_ubs}
496  u_T^{ubs} =\overline u ^i-\;\frac{1}{6}
497  \begin{cases}
498    u"_{i-1/2}&   \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  \geqslant 0$ }    \\
499    u"_{i+1/2}&   \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  < 0$ }
500  \end{cases}
501\end{equation}
502where $u"_{i+1/2} =\delta_{i+1/2} \left[ {\delta_i \left[ u \right]} \right]$.
503This results in a dissipatively dominant (\ie\ hyper-diffusive) truncation error
504\citep{shchepetkin.mcwilliams_OM05}.
505The overall performance of the advection scheme is similar to that reported in \citet{farrow.stevens_JPO95}.
506It is a relatively good compromise between accuracy and smoothness.
507It is not a \emph{positive} scheme, meaning that false extrema are permitted.
508But the amplitudes of the false extrema are significantly reduced over those in the centred second order method.
509As the scheme already includes a diffusion component, it can be used without explicit lateral diffusion on momentum
510(\ie\ \np[=]{ln_dynldf_lap}{ln\_dynldf\_lap}\np[=.false.]{ln_dynldf_bilap}{ln\_dynldf\_bilap}),
511and it is recommended to do so.
512
513The UBS scheme is not used in all directions.
514In the vertical, the centred $2^{nd}$ order evaluation of the advection is preferred, \ie\ $u_{uw}^{ubs}$ and
515$u_{vw}^{ubs}$ in \autoref{eq:DYN_adv_cen2} are used.
516UBS is diffusive and is associated with vertical mixing of momentum. \cmtgm{ gm  pursue the
517sentence:Since vertical mixing of momentum is a source term of the TKE equation...  }
518
519For stability reasons, the first term in (\autoref{eq:DYN_adv_ubs}),
520which corresponds to a second order centred scheme, is evaluated using the \textit{now} velocity (centred in time),
521while the second term, which is the diffusion part of the scheme,
522is evaluated using the \textit{before} velocity (forward in time).
523This is discussed by \citet{webb.de-cuevas.ea_JAOT98} in the context of the Quick advection scheme.
524
525Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics) schemes only differ by
526one coefficient.
527Replacing $1/6$ by $1/8$ in (\autoref{eq:DYN_adv_ubs}) leads to the QUICK advection scheme \citep{webb.de-cuevas.ea_JAOT98}.
528This option is not available through a namelist parameter, since the $1/6$ coefficient is hard coded.
529Nevertheless it is quite easy to make the substitution in the \mdl{dynadv\_ubs} module and obtain a QUICK scheme.
530
531Note also that in the current version of \mdl{dynadv\_ubs},
532there is also the possibility of using a $4^{th}$ order evaluation of the advective velocity as in ROMS.
533This is an error and should be suppressed soon.
534\cmtgm{action :  this have to be done}
535
536%% =================================================================================================
537\section[Hydrostatic pressure gradient (\textit{dynhpg.F90})]{Hydrostatic pressure gradient (\protect\mdl{dynhpg})}
538\label{sec:DYN_hpg}
539
540\begin{listing}
541  \nlst{namdyn_hpg}
542  \caption{\forcode{&namdyn_hpg}}
543  \label{lst:namdyn_hpg}
544\end{listing}
545
546Options are defined through the \nam{dyn_hpg}{dyn\_hpg} namelist variables.
547The key distinction between the different algorithms used for
548the hydrostatic pressure gradient is the vertical coordinate used,
549since HPG is a \emph{horizontal} pressure gradient, \ie\ computed along geopotential surfaces.
550As a result, any tilt of the surface of the computational levels will require a specific treatment to
551compute the hydrostatic pressure gradient.
552
553The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
554\ie\ the density appearing in its expression is centred in time (\emph{now} $\rho$),
555or a semi-implcit scheme.
556At the lateral boundaries either free slip, no slip or partial slip boundary conditions are applied.
557
558%% =================================================================================================
559\subsection[Full step $Z$-coordinate (\forcode{ln_dynhpg_zco})]{Full step $Z$-coordinate (\protect\np{ln_dynhpg_zco}{ln\_dynhpg\_zco})}
560\label{subsec:DYN_hpg_zco}
561
562The hydrostatic pressure can be obtained by integrating the hydrostatic equation vertically from the surface.
563However, the pressure is large at great depth while its horizontal gradient is several orders of magnitude smaller.
564This may lead to large truncation errors in the pressure gradient terms.
565Thus, the two horizontal components of the hydrostatic pressure gradient are computed directly as follows:
566
567for $k=km$ (surface layer, $jk=1$ in the code)
568\begin{equation}
569  \label{eq:DYN_hpg_zco_surf}
570  \left\{
571    \begin{aligned}
572      \left. \delta_{i+1/2} \left[  p^h          \right] \right|_{k=km}
573      &= \frac{1}{2} g \   \left. \delta_{i+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
574      \left. \delta_{j+1/2} \left[  p^h          \right] \right|_{k=km}
575      &= \frac{1}{2} g \   \left. \delta_{j+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
576    \end{aligned}
577  \right.
578\end{equation}
579
580for $1<k<km$ (interior layer)
581\begin{equation}
582  \label{eq:DYN_hpg_zco}
583  \left\{
584    \begin{aligned}
585      \left. \delta_{i+1/2} \left[  p^h          \right] \right|_{k}
586      &=             \left. \delta_{i+1/2} \left[  p^h          \right] \right|_{k-1}
587      +    \frac{1}{2}\;g\;   \left. \delta_{i+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
588      \left. \delta_{j+1/2} \left[  p^h          \right] \right|_{k}
589      &=                \left. \delta_{j+1/2} \left[  p^h          \right] \right|_{k-1}
590      +    \frac{1}{2}\;g\;   \left. \delta_{j+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
591    \end{aligned}
592  \right.
593\end{equation}
594
595Note that the $1/2$ factor in (\autoref{eq:DYN_hpg_zco_surf}) is adequate because of the definition of $e_{3w}$ as
596the vertical derivative of the scale factor at the surface level ($z=0$).
597Note also that in case of variable volume level (\texttt{vvl?} defined),
598the surface pressure gradient is included in \autoref{eq:DYN_hpg_zco_surf} and
599\autoref{eq:DYN_hpg_zco} through the space and time variations of the vertical scale factor $e_{3w}$.
600
601%% =================================================================================================
602\subsection[Partial step $Z$-coordinate (\forcode{ln_dynhpg_zps})]{Partial step $Z$-coordinate (\protect\np{ln_dynhpg_zps}{ln\_dynhpg\_zps})}
603\label{subsec:DYN_hpg_zps}
604
605With partial bottom cells, tracers in horizontally adjacent cells generally live at different depths.
606Before taking horizontal gradients between these tracer points,
607a linear interpolation is used to approximate the deeper tracer as if
608it actually lived at the depth of the shallower tracer point.
609
610Apart from this modification,
611the horizontal hydrostatic pressure gradient evaluated in the $z$-coordinate with partial step is exactly as in
612the pure $z$-coordinate case.
613As explained in detail in section \autoref{sec:TRA_zpshde},
614the nonlinearity of pressure effects in the equation of state is such that
615it is better to interpolate temperature and salinity vertically before computing the density.
616Horizontal gradients of temperature and salinity are needed for the TRA modules,
617which is the reason why the horizontal gradients of density at the deepest model level are computed in
618module \mdl{zpsdhe} located in the TRA directory and described in \autoref{sec:TRA_zpshde}.
619
620%% =================================================================================================
621\subsection{$S$- and $Z$-$S$-coordinates}
622\label{subsec:DYN_hpg_sco}
623
624Pressure gradient formulations in an $s$-coordinate have been the subject of a vast number of papers
625(\eg, \citet{song_MWR98, shchepetkin.mcwilliams_OM05}).
626A number of different pressure gradient options are coded but the ROMS-like,
627density Jacobian with cubic polynomial method is currently disabled whilst known bugs are under investigation.
628
629$\bullet$ Traditional coding (see for example \citet{madec.delecluse.ea_JPO96}: (\np[=.true.]{ln_dynhpg_sco}{ln\_dynhpg\_sco})
630\begin{equation}
631  \label{eq:DYN_hpg_sco}
632  \left\{
633    \begin{aligned}
634      - \frac{1}                 {\rho_o \, e_{1u}} \;   \delta_{i+1/2} \left[  p^h  \right]
635      + \frac{g\; \overline {\rho}^{i+1/2}}  {\rho_o \, e_{1u}} \;   \delta_{i+1/2} \left[  z_t   \right]    \\
636      - \frac{1}                 {\rho_o \, e_{2v}} \;   \delta_{j+1/2} \left[  p^h  \right]
637      + \frac{g\; \overline {\rho}^{j+1/2}}  {\rho_o \, e_{2v}} \;   \delta_{j+1/2} \left[  z_t   \right]    \\
638    \end{aligned}
639  \right.
640\end{equation}
641
642Where the first term is the pressure gradient along coordinates,
643computed as in \autoref{eq:DYN_hpg_zco_surf} - \autoref{eq:DYN_hpg_zco},
644and $z_T$ is the depth of the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point
645($e_{3w}$).
646
647$\bullet$ Traditional coding with adaptation for ice shelf cavities (\np[=.true.]{ln_dynhpg_isf}{ln\_dynhpg\_isf}).
648This scheme need the activation of ice shelf cavities (\np[=.true.]{ln_isfcav}{ln\_isfcav}).
649
650$\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np[=.true.]{ln_dynhpg_prj}{ln\_dynhpg\_prj})
651
652$\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{shchepetkin.mcwilliams_OM05}
653(\np[=.true.]{ln_dynhpg_djc}{ln\_dynhpg\_djc}) (currently disabled; under development)
654
655Note that expression \autoref{eq:DYN_hpg_sco} is commonly used when the variable volume formulation is activated
656(\texttt{vvl?}) because in that case, even with a flat bottom,
657the coordinate surfaces are not horizontal but follow the free surface \citep{levier.treguier.ea_trpt07}.
658The pressure jacobian scheme (\np[=.true.]{ln_dynhpg_prj}{ln\_dynhpg\_prj}) is available as
659an improved option to \np[=.true.]{ln_dynhpg_sco}{ln\_dynhpg\_sco} when \texttt{vvl?} is active.
660The pressure Jacobian scheme uses a constrained cubic spline to
661reconstruct the density profile across the water column.
662This method maintains the monotonicity between the density nodes.
663The pressure can be calculated by analytical integration of the density profile and
664a pressure Jacobian method is used to solve the horizontal pressure gradient.
665This method can provide a more accurate calculation of the horizontal pressure gradient than the standard scheme.
666
667%% =================================================================================================
668\subsection{Ice shelf cavity}
669\label{subsec:DYN_hpg_isf}
670
671Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient due to the ice shelf load and
672the pressure gradient due to the ocean load (\np[=.true.]{ln_dynhpg_isf}{ln\_dynhpg\_isf}).\\
673
674The main hypothesis to compute the ice shelf load is that the ice shelf is in an isostatic equilibrium.
675The top pressure is computed integrating from surface to the base of the ice shelf a reference density profile
676(prescribed as density of a water at 34.4 PSU and -1.9\deg{C}) and
677corresponds to the water replaced by the ice shelf.
678This top pressure is constant over time.
679A detailed description of this method is described in \citet{losch_JGR08}.\\
680
681The pressure gradient due to ocean load is computed using the expression \autoref{eq:DYN_hpg_sco} described in
682\autoref{subsec:DYN_hpg_sco}.
683
684%% =================================================================================================
685\subsection[Time-scheme (\forcode{ln_dynhpg_imp})]{Time-scheme (\protect\np{ln_dynhpg_imp}{ln\_dynhpg\_imp})}
686\label{subsec:DYN_hpg_imp}
687
688The default time differencing scheme used for the horizontal pressure gradient is a leapfrog scheme and
689therefore the density used in all discrete expressions given above is the  \textit{now} density,
690computed from the \textit{now} temperature and salinity.
691In some specific cases
692(usually high resolution simulations over an ocean domain which includes weakly stratified regions)
693the physical phenomenon that controls the time-step is internal gravity waves (IGWs).
694A semi-implicit scheme for doubling the stability limit associated with IGWs can be used
695\citep{brown.campana_MWR78, maltrud.smith.ea_JGR98}.
696It involves the evaluation of the hydrostatic pressure gradient as
697an average over the three time levels $t-\rdt$, $t$, and $t+\rdt$
698(\ie\ \textit{before}, \textit{now} and  \textit{after} time-steps),
699rather than at the central time level $t$ only, as in the standard leapfrog scheme.
700
701$\bullet$ leapfrog scheme (\np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}):
702
703\begin{equation}
704  \label{eq:DYN_hpg_lf}
705  \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
706  -\frac{1}{\rho_o \,e_{1u} }\delta_{i+1/2} \left[ {p_h^t } \right]
707\end{equation}
708
709$\bullet$ semi-implicit scheme (\np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}):
710\begin{equation}
711  \label{eq:DYN_hpg_imp}
712  \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
713  -\frac{1}{4\,\rho_o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt}  \right]
714\end{equation}
715
716The semi-implicit time scheme \autoref{eq:DYN_hpg_imp} is made possible without
717significant additional computation since the density can be updated to time level $t+\rdt$ before
718computing the horizontal hydrostatic pressure gradient.
719It can be easily shown that the stability limit associated with the hydrostatic pressure gradient doubles using
720\autoref{eq:DYN_hpg_imp} compared to that using the standard leapfrog scheme \autoref{eq:DYN_hpg_lf}.
721Note that \autoref{eq:DYN_hpg_imp} is equivalent to applying a time filter to the pressure gradient to
722eliminate high frequency IGWs.
723Obviously, when using \autoref{eq:DYN_hpg_imp},
724the doubling of the time-step is achievable only if no other factors control the time-step,
725such as the stability limits associated with advection or diffusion.
726
727In practice, the semi-implicit scheme is used when \np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}.
728In this case, we choose to apply the time filter to temperature and salinity used in the equation of state,
729instead of applying it to the hydrostatic pressure or to the density,
730so that no additional storage array has to be defined.
731The density used to compute the hydrostatic pressure gradient (whatever the formulation) is evaluated as follows:
732\[
733  % \label{eq:DYN_rho_flt}
734  \rho^t = \rho( \widetilde{T},\widetilde {S},z_t)
735  \quad    \text{with}  \quad
736  \widetilde{X} = 1 / 4 \left(  X^{t+\rdt} +2 \,X^t + X^{t-\rdt\right)
737\]
738
739Note that in the semi-implicit case, it is necessary to save the filtered density,
740an extra three-dimensional field, in the restart file to restart the model with exact reproducibility.
741This option is controlled by  \np{nn_dynhpg_rst}{nn\_dynhpg\_rst}, a namelist parameter.
742
743%% =================================================================================================
744\section[Surface pressure gradient (\textit{dynspg.F90})]{Surface pressure gradient (\protect\mdl{dynspg})}
745\label{sec:DYN_spg}
746
747\begin{listing}
748  \nlst{namdyn_spg}
749  \caption{\forcode{&namdyn_spg}}
750  \label{lst:namdyn_spg}
751\end{listing}
752
753Options are defined through the \nam{dyn_spg}{dyn\_spg} namelist variables.
754The surface pressure gradient term is related to the representation of the free surface (\autoref{sec:MB_hor_pg}).
755The main distinction is between the fixed volume case (linear free surface) and
756the variable volume case (nonlinear free surface, \texttt{vvl?} is defined).
757In the linear free surface case (\autoref{subsec:MB_free_surface})
758the vertical scale factors $e_{3}$ are fixed in time,
759while they are time-dependent in the nonlinear case (\autoref{subsec:MB_free_surface}).
760With both linear and nonlinear free surface, external gravity waves are allowed in the equations,
761which imposes a very small time step when an explicit time stepping is used.
762Two methods are proposed to allow a longer time step for the three-dimensional equations:
763the filtered free surface, which is a modification of the continuous equations \iffalse (see \autoref{eq:MB_flt?}) \fi
764and the split-explicit free surface described below.
765The extra term introduced in the filtered method is calculated implicitly,
766so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
767
768The form of the surface pressure gradient term depends on how the user wants to
769handle the fast external gravity waves that are a solution of the analytical equation (\autoref{sec:MB_hor_pg}).
770Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx):
771an explicit formulation which requires a small time step;
772a filtered free surface formulation which allows a larger time step by
773adding a filtering term into the momentum equation;
774and a split-explicit free surface formulation, described below, which also allows a larger time step.
775
776The extra term introduced in the filtered method is calculated implicitly, so that a solver is used to compute it.
777As a consequence the update of the $next$ velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
778
779%% =================================================================================================
780\subsection[Explicit free surface (\forcode{ln_dynspg_exp})]{Explicit free surface (\protect\np{ln_dynspg_exp}{ln\_dynspg\_exp})}
781\label{subsec:DYN_spg_exp}
782
783In the explicit free surface formulation (\np{ln_dynspg_exp}{ln\_dynspg\_exp} set to true),
784the model time step is chosen to be small enough to resolve the external gravity waves
785(typically a few tens of seconds).
786The surface pressure gradient, evaluated using a leap-frog scheme (\ie\ centered in time),
787is thus simply given by :
788\begin{equation}
789  \label{eq:DYN_spg_exp}
790  \left\{
791    \begin{aligned}
792      - \frac{1}{e_{1u}\,\rho_o} \; \delta_{i+1/2} \left[  \,\rho \,\eta\,  \right]    \\
793      - \frac{1}{e_{2v}\,\rho_o} \; \delta_{j+1/2} \left[  \,\rho \,\eta\,  \right]
794    \end{aligned}
795  \right.
796\end{equation}
797
798Note that in the non-linear free surface case (\ie\ \texttt{vvl?} defined),
799the surface pressure gradient is already included in the momentum tendency through
800the level thickness variation allowed in the computation of the hydrostatic pressure gradient.
801Thus, nothing is done in the \mdl{dynspg\_exp} module.
802
803%% =================================================================================================
804\subsection[Split-explicit free surface (\forcode{ln_dynspg_ts})]{Split-explicit free surface (\protect\np{ln_dynspg_ts}{ln\_dynspg\_ts})}
805\label{subsec:DYN_spg_ts}
806%\nlst{namsplit}
807
808The split-explicit free surface formulation used in \NEMO\ (\np{ln_dynspg_ts}{ln\_dynspg\_ts} set to true),
809also called the time-splitting formulation, follows the one proposed by \citet{shchepetkin.mcwilliams_OM05}.
810The general idea is to solve the free surface equation and the associated barotropic velocity equations with
811a smaller time step than $\rdt$, the time step used for the three dimensional prognostic variables
812(\autoref{fig:DYN_spg_ts}).
813The size of the small time step, $\rdt_e$ (the external mode or barotropic time step) is provided through
814the \np{nn_baro}{nn\_baro} namelist parameter as: $\rdt_e = \rdt / nn\_baro$.
815This parameter can be optionally defined automatically (\np[=.true.]{ln_bt_nn_auto}{ln\_bt\_nn\_auto}) considering that
816the stability of the barotropic system is essentially controled by external waves propagation.
817Maximum Courant number is in that case time independent, and easily computed online from the input bathymetry.
818Therefore, $\rdt_e$ is adjusted so that the Maximum allowed Courant number is smaller than \np{rn_bt_cmax}{rn\_bt\_cmax}.
819
820The barotropic mode solves the following equations:
821% \begin{subequations}
822%  \label{eq:DYN_BT}
823\begin{equation}
824  \label{eq:DYN_BT_dyn}
825  \frac{\partial {\mathrm \overline{{\mathbf U}}_h} }{\partial t}=
826  -f\;{\mathrm {\mathbf k}}\times {\mathrm \overline{{\mathbf U}}_h}
827  -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \mathrm {\overline{{\mathbf U}}_h} + \mathrm {\overline{\mathbf G}}
828\end{equation}
829\[
830  % \label{eq:DYN_BT_ssh}
831  \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\mathrm{\mathbf \overline{U}}}_h \,} \right]+P-E
832\]
833% \end{subequations}
834where $\mathrm {\overline{\mathbf G}}$ is a forcing term held constant, containing coupling term between modes,
835surface atmospheric forcing as well as slowly varying barotropic terms not explicitly computed to gain efficiency.
836The third term on the right hand side of \autoref{eq:DYN_BT_dyn} represents the bottom stress
837(see section \autoref{sec:ZDF_drg}), explicitly accounted for at each barotropic iteration.
838Temporal discretization of the system above follows a three-time step Generalized Forward Backward algorithm
839detailed in \citet{shchepetkin.mcwilliams_OM05}.
840AB3-AM4 coefficients used in \NEMO\ follow the second-order accurate,
841"multi-purpose" stability compromise as defined in \citet{shchepetkin.mcwilliams_ibk09}
842(see their figure 12, lower left).
843
844\begin{figure}[!t]
845  \centering
846  \includegraphics[width=0.66\textwidth]{DYN_dynspg_ts}
847  \caption[Split-explicit time stepping scheme for the external and internal modes]{
848    Schematic of the split-explicit time stepping scheme for the external and internal modes.
849    Time increases to the right.
850    In this particular exemple,
851    a boxcar averaging window over \np{nn_baro}{nn\_baro} barotropic time steps is used
852    (\np[=1]{nn_bt_flt}{nn\_bt\_flt}) and \np[=5]{nn_baro}{nn\_baro}.
853    Internal mode time steps (which are also the model time steps) are denoted by
854    $t-\rdt$, $t$ and $t+\rdt$.
855    Variables with $k$ superscript refer to instantaneous barotropic variables,
856    $< >$ and $<< >>$ operator refer to time filtered variables using respectively primary
857    (red vertical bars) and secondary weights (blue vertical bars).
858    The former are used to obtain time filtered quantities at $t+\rdt$ while
859    the latter are used to obtain time averaged transports to advect tracers.
860    a) Forward time integration:
861    \protect\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}\protect\np[=.true.]{ln_bt_av}{ln\_bt\_av}.
862    b) Centred time integration:
863    \protect\np[=.false.]{ln_bt_fw}{ln\_bt\_fw}, \protect\np[=.true.]{ln_bt_av}{ln\_bt\_av}.
864    c) Forward time integration with no time filtering (POM-like scheme):
865    \protect\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}\protect\np[=.false.]{ln_bt_av}{ln\_bt\_av}.}
866  \label{fig:DYN_spg_ts}
867\end{figure}
868
869In the default case (\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}),
870the external mode is integrated between \textit{now} and \textit{after} baroclinic time-steps
871(\autoref{fig:DYN_spg_ts}a).
872To avoid aliasing of fast barotropic motions into three dimensional equations,
873time filtering is eventually applied on barotropic quantities (\np[=.true.]{ln_bt_av}{ln\_bt\_av}).
874In that case, the integration is extended slightly beyond \textit{after} time step to
875provide time filtered quantities.
876These are used for the subsequent initialization of the barotropic mode in the following baroclinic step.
877Since external mode equations written at baroclinic time steps finally follow a forward time stepping scheme,
878asselin filtering is not applied to barotropic quantities.\\
879Alternatively, one can choose to integrate barotropic equations starting from \textit{before} time step
880(\np[=.false.]{ln_bt_fw}{ln\_bt\_fw}).
881Although more computationaly expensive ( \np{nn_baro}{nn\_baro} additional iterations are indeed necessary),
882the baroclinic to barotropic forcing term given at \textit{now} time step become centred in
883the middle of the integration window.
884It can easily be shown that this property removes part of splitting errors between modes,
885which increases the overall numerical robustness.
886%references to Patrick Marsaleix' work here. Also work done by SHOM group.
887
888
889As far as tracer conservation is concerned,
890barotropic velocities used to advect tracers must also be updated at \textit{now} time step.
891This implies to change the traditional order of computations in \NEMO:
892most of momentum trends (including the barotropic mode calculation) updated first, tracers' after.
893This \textit{de facto} makes semi-implicit hydrostatic pressure gradient
894(see section \autoref{subsec:DYN_hpg_imp})
895and time splitting not compatible.
896Advective barotropic velocities are obtained by using a secondary set of filtering weights,
897uniquely defined from the filter coefficients used for the time averaging (\citet{shchepetkin.mcwilliams_OM05}).
898Consistency between the time averaged continuity equation and the time stepping of tracers is here the key to
899obtain exact conservation.
900
901
902One can eventually choose to feedback instantaneous values by not using any time filter
903(\np[=.false.]{ln_bt_av}{ln\_bt\_av}).
904In that case, external mode equations are continuous in time,
905\ie\ they are not re-initialized when starting a new sub-stepping sequence.
906This is the method used so far in the POM model, the stability being maintained by
907refreshing at (almost) each barotropic time step advection and horizontal diffusion terms.
908Since the latter terms have not been added in \NEMO\ for computational efficiency,
909removing time filtering is not recommended except for debugging purposes.
910This may be used for instance to appreciate the damping effect of the standard formulation on
911external gravity waves in idealized or weakly non-linear cases.
912Although the damping is lower than for the filtered free surface,
913it is still significant as shown by \citet{levier.treguier.ea_trpt07} in the case of an analytical barotropic Kelvin wave.
914
915\cmtgm{               %%% copy from griffies Book
916
917\textbf{title: Time stepping the barotropic system }
918
919Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$.
920Hence, we can update the surface height and vertically integrated velocity with a leap-frog scheme using
921the small barotropic time step $\rdt$.
922We have
923
924\[
925  % \label{eq:DYN_spg_ts_eta}
926  \eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
927  = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right]
928\]
929\begin{multline*}
930  % \label{eq:DYN_spg_ts_u}
931  \textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
932  = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
933    - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
934\end{multline*}
935\
936
937In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with
938the barotropic time steps.
939The $\tau$ time label on $\eta^{(b)}$ and $U^{(b)}$ denotes the baroclinic time at which
940the vertically integrated forcing $\textbf{M}(\tau)$
941(note that this forcing includes the surface freshwater forcing),
942the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$,
943and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over
944a single cycle.
945This is also the time that sets the barotropic time steps via
946\[
947  % \label{eq:DYN_spg_ts_t}
948  t_n=\tau+n\rdt
949\]
950with $n$ an integer.
951The density scaled surface pressure is evaluated via
952\[
953  % \label{eq:DYN_spg_ts_ps}
954  p_s^{(b)}(\tau,t_{n}) =
955  \begin{cases}
956    g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_o  &      \text{non-linear case} \\
957    g \;\eta_s^{(b)}(\tau,t_{n})  &      \text{linear case}
958  \end{cases}
959\]
960To get started, we assume the following initial conditions
961\[
962  % \label{eq:DYN_spg_ts_eta}
963  \begin{split}
964    \eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}    \\
965    \eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}
966  \end{split}
967\]
968with
969\[
970  % \label{eq:DYN_spg_ts_etaF}
971  \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n})
972\]
973the time averaged surface height taken from the previous barotropic cycle.
974Likewise,
975\[
976  % \label{eq:DYN_spg_ts_u}
977  \textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)} \\ \\
978  \textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}
979\]
980with
981\[
982  % \label{eq:DYN_spg_ts_u}
983  \overline{\textbf{U}^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n})
984\]
985the time averaged vertically integrated transport.
986Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
987
988Upon reaching $t_{n=N} = \tau + 2\rdt \tau$ ,
989the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at
990baroclinic time $\tau + \rdt \tau$
991\[
992  % \label{eq:DYN_spg_ts_u}
993  \textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
994\]
995The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using
996the following form
997
998\begin{equation}
999  \label{eq:DYN_spg_ts_ssh}
1000  \eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right]
1001\end{equation}
1002
1003The use of this "big-leap-frog" scheme for the surface height ensures compatibility between
1004the mass/volume budgets and the tracer budgets.
1005More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
1006
1007In general, some form of time filter is needed to maintain integrity of the surface height field due to
1008the leap-frog splitting mode in equation \autoref{eq:DYN_spg_ts_ssh}.
1009We have tried various forms of such filtering,
1010with the following method discussed in \cite{griffies.pacanowski.ea_MWR01} chosen due to
1011its stability and reasonably good maintenance of tracer conservation properties (see ??).
1012
1013\begin{equation}
1014  \label{eq:DYN_spg_ts_sshf}
1015  \eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)}
1016\end{equation}
1017Another approach tried was
1018
1019\[
1020  % \label{eq:DYN_spg_ts_sshf2}
1021  \eta^{F}(\tau-\Delta) = \eta(\tau)
1022  + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt)
1023    + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right]
1024\]
1025
1026which is useful since it isolates all the time filtering aspects into the term multiplied by $\alpha$.
1027This isolation allows for an easy check that tracer conservation is exact when
1028eliminating tracer and surface height time filtering (see ?? for more complete discussion).
1029However, in the general case with a non-zero $\alpha$,
1030the filter \autoref{eq:DYN_spg_ts_sshf} was found to be more conservative, and so is recommended.
1031
1032}            %%end gm comment (copy of griffies book)
1033
1034%% =================================================================================================
1035\subsection{Filtered free surface (\forcode{dynspg_flt?})}
1036\label{subsec:DYN_spg_fltp}
1037
1038The filtered formulation follows the \citet{roullet.madec_JGR00} implementation.
1039The extra term introduced in the equations (see \autoref{subsec:MB_free_surface}) is solved implicitly.
1040The elliptic solvers available in the code are documented in \autoref{chap:MISC}.
1041
1042%% gm %%======>>>>   given here the discrete eqs provided to the solver
1043\cmtgm{               %%% copy from chap-model basics
1044  \[
1045    % \label{eq:DYN_spg_flt}
1046    \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= {\mathrm {\mathbf M}}
1047    - g \nabla \left( \tilde{\rho} \ \eta \right)
1048    - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)
1049  \]
1050  where $T_c$, is a parameter with dimensions of time which characterizes the force,
1051  $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density,
1052  and $\mathrm {\mathbf M}$ represents the collected contributions of the Coriolis, hydrostatic pressure gradient,
1053  non-linear and viscous terms in \autoref{eq:MB_dyn}.
1054}   %end cmtgm
1055
1056Note that in the linear free surface formulation (\texttt{vvl?} not defined),
1057the ocean depth is time-independent and so is the matrix to be inverted.
1058It is computed once and for all and applies to all ocean time steps.
1059
1060%% =================================================================================================
1061\section[Lateral diffusion term and operators (\textit{dynldf.F90})]{Lateral diffusion term and operators (\protect\mdl{dynldf})}
1062\label{sec:DYN_ldf}
1063
1064\begin{listing}
1065  \nlst{namdyn_ldf}
1066  \caption{\forcode{&namdyn_ldf}}
1067  \label{lst:namdyn_ldf}
1068\end{listing}
1069
1070Options are defined through the \nam{dyn_ldf}{dyn\_ldf} namelist variables.
1071The options available for lateral diffusion are to use either laplacian (rotated or not) or biharmonic operators.
1072The coefficients may be constant or spatially variable;
1073the description of the coefficients is found in the chapter on lateral physics (\autoref{chap:LDF}).
1074The lateral diffusion of momentum is evaluated using a forward scheme,
1075\ie\ the velocity appearing in its expression is the \textit{before} velocity in time,
1076except for the pure vertical component that appears when a tensor of rotation is used.
1077This latter term is solved implicitly together with the vertical diffusion term (see \autoref{chap:TD}).
1078
1079At the lateral boundaries either free slip,
1080no slip or partial slip boundary conditions are applied according to the user's choice (see \autoref{chap:LBC}).
1081
1082\cmtgm{
1083  Hyperviscous operators are frequently used in the simulation of turbulent flows to
1084  control the dissipation of unresolved small scale features.
1085  Their primary role is to provide strong dissipation at the smallest scale supported by
1086  the grid while minimizing the impact on the larger scale features.
1087  Hyperviscous operators are thus designed to be more scale selective than the traditional,
1088  physically motivated Laplace operator.
1089  In finite difference methods,
1090  the biharmonic operator is frequently the method of choice to achieve this scale selective dissipation since
1091  its damping time (\ie\ its spin down time) scale like $\lambda^{-4}$ for disturbances of wavelength $\lambda$
1092  (so that short waves damped more rapidelly than long ones),
1093  whereas the Laplace operator damping time scales only like $\lambda^{-2}$.
1094}
1095
1096%% =================================================================================================
1097\subsection[Iso-level laplacian (\forcode{ln_dynldf_lap})]{Iso-level laplacian operator (\protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})}
1098\label{subsec:DYN_ldf_lap}
1099
1100For lateral iso-level diffusion, the discrete operator is:
1101\begin{equation}
1102  \label{eq:DYN_ldf_lap}
1103  \left\{
1104    \begin{aligned}
1105      D_u^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm}
1106          \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta_j \left[
1107        {A_f^{lm} \;e_{3f} \zeta } \right] \\ \\
1108      D_v^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm}
1109          \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta_i \left[
1110        {A_f^{lm} \;e_{3f} \zeta } \right]
1111    \end{aligned}
1112  \right.
1113\end{equation}
1114
1115As explained in \autoref{subsec:MB_ldf},
1116this formulation (as the gradient of a divergence and curl of the vorticity) preserves symmetry and
1117ensures a complete separation between the vorticity and divergence parts of the momentum diffusion.
1118
1119%% =================================================================================================
1120\subsection[Rotated laplacian (\forcode{ln_dynldf_iso})]{Rotated laplacian operator (\protect\np{ln_dynldf_iso}{ln\_dynldf\_iso})}
1121\label{subsec:DYN_ldf_iso}
1122
1123A rotation of the lateral momentum diffusion operator is needed in several cases:
1124for iso-neutral diffusion in the $z$-coordinate (\np[=.true.]{ln_dynldf_iso}{ln\_dynldf\_iso}) and
1125for either iso-neutral (\np[=.true.]{ln_dynldf_iso}{ln\_dynldf\_iso}) or
1126geopotential (\np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}) diffusion in the $s$-coordinate.
1127In the partial step case, coordinates are horizontal except at the deepest level and
1128no rotation is performed when \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}.
1129The diffusion operator is defined simply as the divergence of down gradient momentum fluxes on
1130each momentum component.
1131It must be emphasized that this formulation ignores constraints on the stress tensor such as symmetry.
1132The resulting discrete representation is:
1133\begin{equation}
1134  \label{eq:DYN_ldf_iso}
1135  \begin{split}
1136    D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\
1137    &  \left\{\quad  {\delta_{i+1/2} \left[ {A_T^{lm}  \left(
1138              {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta_{i}[u]
1139                -e_{2t} \; r_{1t} \,\overline{\overline {\delta_{k+1/2}[u]}}^{\,i,\,k}}
1140            \right)} \right]}    \right. \\
1141    & \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f}
1142            }\,\delta_{j+1/2} [u] - e_{1f}\, r_{2f}
1143            \,\overline{\overline {\delta_{k+1/2} [u]}} ^{\,j+1/2,\,k}}
1144        \right)} \right] \\
1145    &\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline
1146              {\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} }
1147        \right.} \right. \\
1148    &  \ \qquad \qquad \qquad \quad\
1149    - e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2} \\
1150    & \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1151                +\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2}
1152                \right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} \\ \\
1153    D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} } \\
1154    &  \left\{\quad  {\delta_{i+1/2} \left[ {A_f^{lm}  \left(
1155              {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta_{i+1/2}[v]
1156                -e_{2f} \; r_{1f} \,\overline{\overline {\delta_{k+1/2}[v]}}^{\,i+1/2,\,k}}
1157            \right)} \right]}    \right. \\
1158    & \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t}
1159            }\,\delta_{j} [v] - e_{1t}\, r_{2t}
1160            \,\overline{\overline {\delta_{k+1/2} [v]}} ^{\,j,\,k}}
1161        \right)} \right] \\
1162    & \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline
1163              {\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right. \\
1164    &  \ \qquad \qquad \qquad \quad\
1165    - e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2} \\
1166    & \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1167                +\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2}
1168                \right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\}
1169  \end{split}
1170\end{equation}
1171where $r_1$ and $r_2$ are the slopes between the surface along which the diffusion operator acts and
1172the surface of computation ($z$- or $s$-surfaces).
1173The way these slopes are evaluated is given in the lateral physics chapter (\autoref{chap:LDF}).
1174
1175%% =================================================================================================
1176\subsection[Iso-level bilaplacian (\forcode{ln_dynldf_bilap})]{Iso-level bilaplacian operator (\protect\np{ln_dynldf_bilap}{ln\_dynldf\_bilap})}
1177\label{subsec:DYN_ldf_bilap}
1178
1179The lateral fourth order operator formulation on momentum is obtained by applying \autoref{eq:DYN_ldf_lap} twice.
1180It requires an additional assumption on boundary conditions:
1181the first derivative term normal to the coast depends on the free or no-slip lateral boundary conditions chosen,
1182while the third derivative terms normal to the coast are set to zero (see \autoref{chap:LBC}).
1183\cmtgm{add a remark on the the change in the position of the coefficient}
1184
1185%% =================================================================================================
1186\section[Vertical diffusion term (\textit{dynzdf.F90})]{Vertical diffusion term (\protect\mdl{dynzdf})}
1187\label{sec:DYN_zdf}
1188
1189Options are defined through the \nam{zdf}{zdf} namelist variables.
1190The large vertical diffusion coefficient found in the surface mixed layer together with high vertical resolution implies that in the case of explicit time stepping there would be too restrictive a constraint on the time step.
1191Two time stepping schemes can be used for the vertical diffusion term:
1192$(a)$ a forward time differencing scheme
1193(\np[=.true.]{ln_zdfexp}{ln\_zdfexp}) using a time splitting technique (\np{nn_zdfexp}{nn\_zdfexp} $>$ 1) or
1194$(b)$ a backward (or implicit) time differencing scheme (\np[=.false.]{ln_zdfexp}{ln\_zdfexp})
1195(see \autoref{chap:TD}).
1196Note that namelist variables \np{ln_zdfexp}{ln\_zdfexp} and \np{nn_zdfexp}{nn\_zdfexp} apply to both tracers and dynamics.
1197
1198The formulation of the vertical subgrid scale physics is the same whatever the vertical coordinate is.
1199The vertical diffusion operators given by \autoref{eq:MB_zdf} take the following semi-discrete space form:
1200\[
1201  % \label{eq:DYN_zdf}
1202  \left\{
1203    \begin{aligned}
1204      D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta_k \left[ \frac{A_{uw}^{vm} }{e_{3uw} }
1205        \ \delta_{k+1/2} [\,u\,]         \right]     \\
1206      \\
1207      D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta_k \left[ \frac{A_{vw}^{vm} }{e_{3vw} }
1208        \ \delta_{k+1/2} [\,v\,]         \right]
1209    \end{aligned}
1210  \right.
1211\]
1212where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and diffusivity coefficients.
1213The way these coefficients are evaluated depends on the vertical physics used (see \autoref{chap:ZDF}).
1214
1215The surface boundary condition on momentum is the stress exerted by the wind.
1216At the surface, the momentum fluxes are prescribed as the boundary condition on
1217the vertical turbulent momentum fluxes,
1218\begin{equation}
1219  \label{eq:DYN_zdf_sbc}
1220  \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1}
1221  = \frac{1}{\rho_o} \binom{\tau_u}{\tau_v }
1222\end{equation}
1223where $\left( \tau_u ,\tau_v \right)$ are the two components of the wind stress vector in
1224the (\textbf{i},\textbf{j}) coordinate system.
1225The high mixing coefficients in the surface mixed layer ensure that the surface wind stress is distributed in
1226the vertical over the mixed layer depth.
1227If the vertical mixing coefficient is small (when no mixed layer scheme is used)
1228the surface stress enters only the top model level, as a body force.
1229The surface wind stress is calculated in the surface module routines (SBC, see \autoref{chap:SBC}).
1230
1231The turbulent flux of momentum at the bottom of the ocean is specified through a bottom friction parameterisation
1232(see \autoref{sec:ZDF_drg})
1233
1234%% =================================================================================================
1235\section{External forcings}
1236\label{sec:DYN_forcing}
1237
1238Besides the surface and bottom stresses (see the above section)
1239which are introduced as boundary conditions on the vertical mixing,
1240three other forcings may enter the dynamical equations by affecting the surface pressure gradient.
1241
1242(1) When \np[=.true.]{ln_apr_dyn}{ln\_apr\_dyn} (see \autoref{sec:SBC_apr}),
1243the atmospheric pressure is taken into account when computing the surface pressure gradient.
1244
1245(2) When \np[=.true.]{ln_tide_pot}{ln\_tide\_pot} and \np[=.true.]{ln_tide}{ln\_tide} (see \autoref{sec:SBC_TDE}),
1246the tidal potential is taken into account when computing the surface pressure gradient.
1247
1248(3) When \np[=2]{nn_ice_embd}{nn\_ice\_embd} and LIM or CICE is used
1249(\ie\ when the sea-ice is embedded in the ocean),
1250the snow-ice mass is taken into account when computing the surface pressure gradient.
1251
1252\cmtgm{ missing : the lateral boundary condition !!!   another external forcing
1253 }
1254
1255%% =================================================================================================
1256\section{Wetting and drying }
1257\label{sec:DYN_wetdry}
1258
1259There are two main options for wetting and drying code (wd):
1260(a) an iterative limiter (il) and (b) a directional limiter (dl).
1261The directional limiter is based on the scheme developed by \cite{warner.defne.ea_CG13} for RO
1262MS
1263which was in turn based on ideas developed for POM by \cite{oey_OM06}. The iterative
1264limiter is a new scheme.  The iterative limiter is activated by setting $\mathrm{ln\_wd\_il} = \mathrm{.true.}$
1265and $\mathrm{ln\_wd\_dl} = \mathrm{.false.}$. The directional limiter is activated
1266by setting $\mathrm{ln\_wd\_dl} = \mathrm{.true.}$ and $\mathrm{ln\_wd\_il} = \mathrm{.false.}$.
1267
1268\begin{listing}
1269  \nlst{namwad}
1270  \caption{\forcode{&namwad}}
1271  \label{lst:namwad}
1272\end{listing}
1273
1274The following terminology is used. The depth of the topography (positive downwards)
1275at each $(i,j)$ point is the quantity stored in array $\mathrm{ht\_wd}$ in the \NEMO\ code.
1276The height of the free surface (positive upwards) is denoted by $ \mathrm{ssh}$. Given the sign
1277conventions used, the water depth, $h$, is the height of the free surface plus the depth of the
1278topography (i.e. $\mathrm{ssh} + \mathrm{ht\_wd}$).
1279
1280Both wd schemes take all points in the domain below a land elevation of $\mathrm{rn\_wdld}$ to be
1281covered by water. They require the topography specified with a model
1282configuration to have negative depths at points where the land is higher than the
1283topography's reference sea-level. The vertical grid in \NEMO\ is normally computed relative to an
1284initial state with zero sea surface height elevation.
1285The user can choose to compute the vertical grid and heights in the model relative to
1286a non-zero reference height for the free surface. This choice affects the calculation of the metrics and depths
1287(i.e. the $\mathrm{e3t\_0, ht\_0}$ etc. arrays).
1288
1289Points where the water depth is less than $\mathrm{rn\_wdmin1}$ are interpreted as ``dry''.
1290$\mathrm{rn\_wdmin1}$ is usually chosen to be of order $0.05$m but extreme topographies
1291with very steep slopes require larger values for normal choices of time-step. Surface fluxes
1292are also switched off for dry cells to prevent freezing, boiling etc. of very thin water layers.
1293The fluxes are tappered down using a $\mathrm{tanh}$ weighting function
1294to no flux as the dry limit $\mathrm{rn\_wdmin1}$ is approached. Even wet cells can be very shallow.
1295The depth at which to start tapering is controlled by the user by setting $\mathrm{rn\_wd\_sbcdep}$.
1296The fraction $(<1)$ of sufrace fluxes to use at this depth is set by $\mathrm{rn\_wd\_sbcfra}$.
1297
1298Both versions of the code have been tested in six test cases provided in the WAD\_TEST\_CASES configuration
1299and in ``realistic'' configurations covering parts of the north-west European shelf.
1300All these configurations have used pure sigma coordinates. It is expected that
1301the wetting and drying code will work in domains with more general s-coordinates provided
1302the coordinates are pure sigma in the region where wetting and drying actually occurs.
1303
1304The next sub-section descrbies the directional limiter and the following sub-section the iterative limiter.
1305The final sub-section covers some additional considerations that are relevant to both schemes.
1306
1307%   Iterative limiters
1308%% =================================================================================================
1309\subsection[Directional limiter (\textit{wet\_dry.F90})]{Directional limiter (\mdl{wet\_dry})}
1310\label{subsec:DYN_wd_directional_limiter}
1311
1312The principal idea of the directional limiter is that
1313water should not be allowed to flow out of a dry tracer cell (i.e. one whose water depth is less than \np{rn_wdmin1}{rn\_wdmin1}).
1314
1315All the changes associated with this option are made to the barotropic solver for the non-linear
1316free surface code within dynspg\_ts.
1317On each barotropic sub-step the scheme determines the direction of the flow across each face of all the tracer cells
1318and sets the flux across the face to zero when the flux is from a dry tracer cell. This prevents cells
1319whose depth is rn\_wdmin1 or less from drying out further. The scheme does not force $h$ (the water depth) at tracer cells
1320to be at least the minimum depth and hence is able to conserve mass / volume.
1321
1322The flux across each $u$-face of a tracer cell is multiplied by a factor zuwdmask (an array which depends on ji and jj).
1323If the user sets \np[=.false.]{ln_wd_dl_ramp}{ln\_wd\_dl\_ramp} then zuwdmask is 1 when the
1324flux is from a cell with water depth greater than \np{rn_wdmin1}{rn\_wdmin1} and 0 otherwise. If the user sets
1325\np[=.true.]{ln_wd_dl_ramp}{ln\_wd\_dl\_ramp} the flux across the face is ramped down as the water depth decreases
1326from 2 * \np{rn_wdmin1}{rn\_wdmin1} to \np{rn_wdmin1}{rn\_wdmin1}. The use of this ramp reduced grid-scale noise in idealised test cases.
1327
1328At the point where the flux across a $u$-face is multiplied by zuwdmask , we have chosen
1329also to multiply the corresponding velocity on the ``now'' step at that face by zuwdmask. We could have
1330chosen not to do that and to allow fairly large velocities to occur in these ``dry'' cells.
1331The rationale for setting the velocity to zero is that it is the momentum equations that are being solved
1332and the total momentum of the upstream cell (treating it as a finite volume) should be considered
1333to be its depth times its velocity. This depth is considered to be zero at ``dry'' $u$-points consistent with its
1334treatment in the calculation of the flux of mass across the cell face.
1335
1336\cite{warner.defne.ea_CG13} state that in their scheme the velocity masks at the cell faces for the baroclinic
1337timesteps are set to 0 or 1 depending on whether the average of the masks over the barotropic sub-steps is respectively less than
1338or greater than 0.5. That scheme does not conserve tracers in integrations started from constant tracer
1339fields (tracers independent of $x$, $y$ and $z$). Our scheme conserves constant tracers because
1340the velocities used at the tracer cell faces on the baroclinic timesteps are carefully calculated by dynspg\_ts
1341to equal their mean value during the barotropic steps. If the user sets \np[=.true.]{ln_wd_dl_bc}{ln\_wd\_dl\_bc}, the
1342baroclinic velocities are also multiplied by a suitably weighted average of zuwdmask.
1343
1344%   Iterative limiters
1345
1346%% =================================================================================================
1347\subsection[Iterative limiter (\textit{wet\_dry.F90})]{Iterative limiter (\mdl{wet\_dry})}
1348\label{subsec:DYN_wd_iterative_limiter}
1349
1350%% =================================================================================================
1351\subsubsection[Iterative flux limiter (\textit{wet\_dry.F90})]{Iterative flux limiter (\mdl{wet\_dry})}
1352\label{subsec:DYN_wd_il_spg_limiter}
1353
1354The iterative limiter modifies the fluxes across the faces of cells that are either already ``dry''
1355or may become dry within the next time-step using an iterative method.
1356
1357The flux limiter for the barotropic flow (devised by Hedong Liu) can be understood as follows:
1358
1359The continuity equation for the total water depth in a column
1360\begin{equation}
1361  \label{eq:DYN_wd_continuity}
1362  \frac{\partial h}{\partial t} + \mathbf{\nabla.}(h\mathbf{u}) = 0 .
1363\end{equation}
1364can be written in discrete form  as
1365
1366\begin{align}
1367  \label{eq:DYN_wd_continuity_2}
1368  \frac{e_1 e_2}{\Delta t} ( h_{i,j}(t_{n+1}) - h_{i,j}(t_e) )
1369  &= - ( \mathrm{flxu}_{i+1,j} - \mathrm{flxu}_{i,j}  + \mathrm{flxv}_{i,j+1} - \mathrm{flxv}_{i,j} ) \\
1370  &= \mathrm{zzflx}_{i,j} .
1371\end{align}
1372
1373In the above $h$ is the depth of the water in the column at point $(i,j)$,
1374$\mathrm{flxu}_{i+1,j}$ is the flux out of the ``eastern'' face of the cell and
1375$\mathrm{flxv}_{i,j+1}$ the flux out of the ``northern'' face of the cell; $t_{n+1}$ is
1376the new timestep, $t_e$ is the old timestep (either $t_b$ or $t_n$) and $ \Delta t =
1377t_{n+1} - t_e$; $e_1 e_2$ is the area of the tracer cells centred at $(i,j)$ and
1378$\mathrm{zzflx}$ is the sum of the fluxes through all the faces.
1379
1380The flux limiter splits the flux $\mathrm{zzflx}$ into fluxes that are out of the cell
1381(zzflxp) and fluxes that are into the cell (zzflxn).  Clearly
1382
1383\begin{equation}
1384  \label{eq:DYN_wd_zzflx_p_n_1}
1385  \mathrm{zzflx}_{i,j} = \mathrm{zzflxp}_{i,j} + \mathrm{zzflxn}_{i,j} .
1386\end{equation}
1387
1388The flux limiter iteratively adjusts the fluxes $\mathrm{flxu}$ and $\mathrm{flxv}$ until
1389none of the cells will ``dry out''. To be precise the fluxes are limited until none of the
1390cells has water depth less than $\mathrm{rn\_wdmin1}$ on step $n+1$.
1391
1392Let the fluxes on the $m$th iteration step be denoted by $\mathrm{flxu}^{(m)}$ and
1393$\mathrm{flxv}^{(m)}$.  Then the adjustment is achieved by seeking a set of coefficients,
1394$\mathrm{zcoef}_{i,j}^{(m)}$ such that:
1395
1396\begin{equation}
1397  \label{eq:DYN_wd_continuity_coef}
1398  \begin{split}
1399    \mathrm{zzflxp}^{(m)}_{i,j} =& \mathrm{zcoef}_{i,j}^{(m)} \mathrm{zzflxp}^{(0)}_{i,j} \\
1400    \mathrm{zzflxn}^{(m)}_{i,j} =& \mathrm{zcoef}_{i,j}^{(m)} \mathrm{zzflxn}^{(0)}_{i,j}
1401  \end{split}
1402\end{equation}
1403
1404where the coefficients are $1.0$ generally but can vary between $0.0$ and $1.0$ around
1405cells that would otherwise dry.
1406
1407The iteration is initialised by setting
1408
1409\begin{equation}
1410  \label{eq:DYN_wd_zzflx_initial}
1411  \mathrm{zzflxp^{(0)}}_{i,j} = \mathrm{zzflxp}_{i,j} , \quad  \mathrm{zzflxn^{(0)}}_{i,j} = \mathrm{zzflxn}_{i,j} .
1412\end{equation}
1413
1414The fluxes out of cell $(i,j)$ are updated at the $m+1$th iteration if the depth of the
1415cell on timestep $t_e$, namely $h_{i,j}(t_e)$, is less than the total flux out of the cell
1416times the timestep divided by the cell area. Using (\autoref{eq:DYN_wd_continuity_2}) this
1417condition is
1418
1419\begin{equation}
1420  \label{eq:DYN_wd_continuity_if}
1421  h_{i,j}(t_e)  - \mathrm{rn\_wdmin1} <  \frac{\Delta t}{e_1 e_2} ( \mathrm{zzflxp}^{(m)}_{i,j} + \mathrm{zzflxn}^{(m)}_{i,j} ) .
1422\end{equation}
1423
1424Rearranging (\autoref{eq:DYN_wd_continuity_if}) we can obtain an expression for the maximum
1425outward flux that can be allowed and still maintain the minimum wet depth:
1426
1427\begin{equation}
1428  \label{eq:DYN_wd_max_flux}
1429  \begin{split}
1430    \mathrm{zzflxp}^{(m+1)}_{i,j} = \Big[ (h_{i,j}(t_e) & - \mathrm{rn\_wdmin1} - \mathrm{rn\_wdmin2})  \frac{e_1 e_2}{\Delta t} \phantom{]} \\
1431    \phantom{[} & -  \mathrm{zzflxn}^{(m)}_{i,j} \Big]
1432  \end{split}
1433\end{equation}
1434
1435Note a small tolerance ($\mathrm{rn\_wdmin2}$) has been introduced here {\itshape [Q: Why is
1436this necessary/desirable?]}. Substituting from (\autoref{eq:DYN_wd_continuity_coef}) gives an
1437expression for the coefficient needed to multiply the outward flux at this cell in order
1438to avoid drying.
1439
1440\begin{equation}
1441  \label{eq:DYN_wd_continuity_nxtcoef}
1442  \begin{split}
1443    \mathrm{zcoef}^{(m+1)}_{i,j} = \Big[ (h_{i,j}(t_e) & - \mathrm{rn\_wdmin1} - \mathrm{rn\_wdmin2})  \frac{e_1 e_2}{\Delta t} \phantom{]} \\
1444    \phantom{[} & -  \mathrm{zzflxn}^{(m)}_{i,j} \Big] \frac{1}{ \mathrm{zzflxp}^{(0)}_{i,j} }
1445  \end{split}
1446\end{equation}
1447
1448Only the outward flux components are altered but, of course, outward fluxes from one cell
1449are inward fluxes to adjacent cells and the balance in these cells may need subsequent
1450adjustment; hence the iterative nature of this scheme.  Note, for example, that the flux
1451across the ``eastern'' face of the $(i,j)$th cell is only updated at the $m+1$th iteration
1452if that flux at the $m$th iteration is out of the $(i,j)$th cell. If that is the case then
1453the flux across that face is into the $(i+1,j)$ cell and that flux will not be updated by
1454the calculation for the $(i+1,j)$th cell. In this sense the updates to the fluxes across
1455the faces of the cells do not ``compete'' (they do not over-write each other) and one
1456would expect the scheme to converge relatively quickly. The scheme is flux based so
1457conserves mass. It also conserves constant tracers for the same reason that the
1458directional limiter does.
1459
1460%      Surface pressure gradients
1461%% =================================================================================================
1462\subsubsection[Modification of surface pressure gradients (\textit{dynhpg.F90})]{Modification of surface pressure gradients (\mdl{dynhpg})}
1463\label{subsec:DYN_wd_il_spg}
1464
1465At ``dry'' points the water depth is usually close to $\mathrm{rn\_wdmin1}$. If the
1466topography is sloping at these points the sea-surface will have a similar slope and there
1467will hence be very large horizontal pressure gradients at these points. The WAD modifies
1468the magnitude but not the sign of the surface pressure gradients (zhpi and zhpj) at such
1469points by mulitplying them by positive factors (zcpx and zcpy respectively) that lie
1470between $0$ and $1$.
1471
1472We describe how the scheme works for the ``eastward'' pressure gradient, zhpi, calculated
1473at the $(i,j)$th $u$-point. The scheme uses the ht\_wd depths and surface heights at the
1474neighbouring $(i+1,j)$ and $(i,j)$ tracer points.  zcpx is calculated using two logicals
1475variables, $\mathrm{ll\_tmp1}$ and $\mathrm{ll\_tmp2}$ which are evaluated for each grid
1476column.  The three possible combinations are illustrated in \autoref{fig:DYN_WAD_dynhpg}.
1477
1478\begin{figure}[!ht]
1479  \centering
1480  \includegraphics[width=0.66\textwidth]{DYN_WAD_dynhpg}
1481  \caption[Combinations controlling the limiting of the horizontal pressure gradient in
1482  wetting and drying regimes]{
1483    Three possible combinations of the logical variables controlling the
1484    limiting of the horizontal pressure gradient in wetting and drying regimes}
1485  \label{fig:DYN_WAD_dynhpg}
1486\end{figure}
1487
1488The first logical, $\mathrm{ll\_tmp1}$, is set to true if and only if the water depth at
1489both neighbouring points is greater than $\mathrm{rn\_wdmin1} + \mathrm{rn\_wdmin2}$ and
1490the minimum height of the sea surface at the two points is greater than the maximum height
1491of the topography at the two points:
1492
1493\begin{equation}
1494  \label{eq:DYN_ll_tmp1}
1495  \begin{split}
1496    \mathrm{ll\_tmp1}  = & \mathrm{MIN(sshn(ji,jj), sshn(ji+1,jj))} > \\
1497                     & \quad \mathrm{MAX(-ht\_wd(ji,jj), -ht\_wd(ji+1,jj))\  .and.} \\
1498                     & \mathrm{MAX(sshn(ji,jj) + ht\_wd(ji,jj),} \\
1499                     & \mathrm{\phantom{MAX(}sshn(ji+1,jj) + ht\_wd(ji+1,jj))} >\\
1500                     & \quad\quad\mathrm{rn\_wdmin1 + rn\_wdmin2 }
1501  \end{split}
1502\end{equation}
1503
1504The second logical, $\mathrm{ll\_tmp2}$, is set to true if and only if the maximum height
1505of the sea surface at the two points is greater than the maximum height of the topography
1506at the two points plus $\mathrm{rn\_wdmin1} + \mathrm{rn\_wdmin2}$
1507
1508\begin{equation}
1509  \label{eq:DYN_ll_tmp2}
1510  \begin{split}
1511    \mathrm{ ll\_tmp2 } = & \mathrm{( ABS( sshn(ji,jj) - sshn(ji+1,jj) ) > 1.E-12 )\ .AND.}\\
1512    & \mathrm{( MAX(sshn(ji,jj), sshn(ji+1,jj)) > } \\
1513    & \mathrm{\phantom{(} MAX(-ht\_wd(ji,jj), -ht\_wd(ji+1,jj)) + rn\_wdmin1 + rn\_wdmin2}) .
1514  \end{split}
1515\end{equation}
1516
1517If $\mathrm{ll\_tmp1}$ is true then the surface pressure gradient, zhpi at the $(i,j)$
1518point is unmodified. If both logicals are false zhpi is set to zero.
1519
1520If $\mathrm{ll\_tmp1}$ is true and $\mathrm{ll\_tmp2}$ is false then the surface pressure
1521gradient is multiplied through by zcpx which is the absolute value of the difference in
1522the water depths at the two points divided by the difference in the surface heights at the
1523two points. Thus the sign of the sea surface height gradient is retained but the magnitude
1524of the pressure force is determined by the difference in water depths rather than the
1525difference in surface height between the two points. Note that dividing by the difference
1526between the sea surface heights can be problematic if the heights approach parity. An
1527additional condition is applied to $\mathrm{ ll\_tmp2 }$ to ensure it is .false. in such
1528conditions.
1529
1530%% =================================================================================================
1531\subsubsection[Additional considerations (\textit{usrdef\_zgr.F90})]{Additional considerations (\mdl{usrdef\_zgr})}
1532\label{subsec:DYN_WAD_additional}
1533
1534In the very shallow water where wetting and drying occurs the parametrisation of
1535bottom drag is clearly very important. In order to promote stability
1536it is sometimes useful to calculate the bottom drag using an implicit time-stepping approach.
1537
1538Suitable specifcation of the surface heat flux in wetting and drying domains in forced and
1539coupled simulations needs further consideration. In order to prevent freezing or boiling
1540in uncoupled integrations the net surface heat fluxes need to be appropriately limited.
1541
1542%      The WAD test cases
1543%% =================================================================================================
1544\subsection[The WAD test cases (\textit{usrdef\_zgr.F90})]{The WAD test cases (\mdl{usrdef\_zgr})}
1545\label{subsec:DYN_WAD_test_cases}
1546
1547See the WAD tests MY\_DOC documention for details of the WAD test cases.
1548
1549%% =================================================================================================
1550\section[Time evolution term (\textit{dynnxt.F90})]{Time evolution term (\protect\mdl{dynnxt})}
1551\label{sec:DYN_nxt}
1552
1553Options are defined through the \nam{dom}{dom} namelist variables.
1554The general framework for dynamics time stepping is a leap-frog scheme,
1555\ie\ a three level centred time scheme associated with an Asselin time filter (cf. \autoref{chap:TD}).
1556The scheme is applied to the velocity, except when
1557using the flux form of momentum advection (cf. \autoref{sec:DYN_adv_cor_flux})
1558in the variable volume case (\texttt{vvl?} defined),
1559where it has to be applied to the thickness weighted velocity (see \autoref{sec:SCOORD_momentum})
1560
1561$\bullet$ vector invariant form or linear free surface
1562(\np[=.true.]{ln_dynhpg_vec}{ln\_dynhpg\_vec} ; \texttt{vvl?} not defined):
1563\[
1564  % \label{eq:DYN_nxt_vec}
1565  \left\{
1566    \begin{aligned}
1567      &u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt  \ \text{RHS}_u^t     \\
1568      &u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right]
1569    \end{aligned}
1570  \right.
1571\]
1572
1573$\bullet$ flux form and nonlinear free surface
1574(\np[=.false.]{ln_dynhpg_vec}{ln\_dynhpg\_vec} ; \texttt{vvl?} defined):
1575\[
1576  % \label{eq:DYN_nxt_flux}
1577  \left\{
1578    \begin{aligned}
1579      &\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t     \\
1580      &\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t
1581      +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right]
1582    \end{aligned}
1583  \right.
1584\]
1585where RHS is the right hand side of the momentum equation,
1586the subscript $f$ denotes filtered values and $\gamma$ is the Asselin coefficient.
1587$\gamma$ is initialized as \np{nn_atfp}{nn\_atfp} (namelist parameter).
1588Its default value is \np[=10.e-3]{nn_atfp}{nn\_atfp}.
1589In both cases, the modified Asselin filter is not applied since perfect conservation is not an issue for
1590the momentum equations.
1591
1592Note that with the filtered free surface,
1593the update of the \textit{after} velocities is done in the \mdl{dynsp\_flt} module,
1594and only array swapping and Asselin filtering is done in \mdl{dynnxt}.
1595
1596\subinc{\input{../../global/epilogue}}
1597
1598\end{document}
Note: See TracBrowser for help on using the repository browser.