New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DYN.tex in branches/2011/dev_NEMO_MERGE_2011/DOC/TexFiles/Chapters – NEMO

source: branches/2011/dev_NEMO_MERGE_2011/DOC/TexFiles/Chapters/Chap_DYN.tex @ 3116

Last change on this file since 3116 was 3116, checked in by cetlod, 12 years ago

dev_NEMO_MERGE_2011: add in changes dev_NOC_UKMO_MERGE developments

  • Property svn:executable set to *
File size: 69.7 KB
Line 
1% ================================================================
2% Chapter Ñ Ocean Dynamics (DYN)
3% ================================================================
4\chapter{Ocean Dynamics (DYN)}
5\label{DYN}
6\minitoc
7
8% add a figure for  dynvor ens, ene latices
9
10%\vspace{2.cm}
11$\ $\newline      %force an empty line
12
13Using the representation described in Chapter \ref{DOM}, several semi-discrete
14space forms of the dynamical equations are available depending on the vertical
15coordinate used and on the conservation properties of the vorticity term. In all
16the equations presented here, the masking has been omitted for simplicity.
17One must be aware that all the quantities are masked fields and that each time an
18average or difference operator is used, the resulting field is multiplied by a mask.
19
20The prognostic ocean dynamics equation can be summarized as follows:
21\begin{equation*}
22\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }
23                  {\text{COR} + \text{ADV}                       }
24         + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
25\end{equation*}
26NXT stands for next, referring to the time-stepping. The first group of terms on
27the rhs of this equation corresponds to the Coriolis and advection
28terms that are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG)
29and a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
30and advection part (COR+ADV) in the flux formulation. The terms following these
31are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient,
32and SPG, Surface Pressure Gradient); and contributions from lateral diffusion
33(LDF) and vertical diffusion (ZDF), which are added to the rhs in the \mdl{dynldf} 
34and \mdl{dynzdf} modules. The vertical diffusion term includes the surface and
35bottom stresses. The external forcings and parameterisations require complex
36inputs (surface wind stress calculation using bulk formulae, estimation of mixing
37coefficients) that are carried out in modules SBC, LDF and ZDF and are described
38in Chapters \ref{SBC}, \ref{LDF} and \ref{ZDF}, respectively.
39
40In the present chapter we also describe the diagnostic equations used to compute
41the horizontal divergence, curl of the velocities (\emph{divcur} module) and
42the vertical velocity (\emph{wzvmod} module).
43
44The different options available to the user are managed by namelist variables.
45For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
46where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
47If a CPP key is used for this term its name is \textbf{key\_ttt}. The corresponding
48code can be found in the \textit{dynttt\_xxx} module in the DYN directory, and it is
49usually computed in the \textit{dyn\_ttt\_xxx} subroutine.
50
51The user has the option of extracting and outputting each tendency term from the
523D momentum equations (\key{trddyn} defined), as described in
53Chap.\ref{MISC}.  Furthermore, the tendency terms associated with the 2D
54barotropic vorticity balance (when \key{trdvor} is defined) can be derived from the
553D terms.
56%%%
57\gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does
58MISC correspond to "extracting tendency terms" or "vorticity balance"?}
59
60$\ $\newline    % force a new ligne
61
62% ================================================================
63% Sea Surface Height evolution & Diagnostics variables
64% ================================================================
65\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
66\label{DYN_divcur_wzv}
67
68%--------------------------------------------------------------------------------------------------------------
69%           Horizontal divergence and relative vorticity
70%--------------------------------------------------------------------------------------------------------------
71\subsection   [Horizontal divergence and relative vorticity (\textit{divcur})]
72         {Horizontal divergence and relative vorticity (\mdl{divcur})}
73\label{DYN_divcur}
74
75The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows:
76\begin{equation} \label{Eq_divcur_cur}
77\zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta _{i+1/2} \left[ {e_{2v}\;v} \right]
78                          -\delta _{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
79\end{equation} 
80
81The horizontal divergence is defined at a $T$-point. It is given by:
82\begin{equation} \label{Eq_divcur_div}
83\chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
84      \left( {\delta _i \left[ {e_{2u}\,e_{3u}\,u} \right]
85             +\delta _j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
86\end{equation} 
87
88Note that although the vorticity has the same discrete expression in $z$-
89and $s$-coordinates, its physical meaning is not identical. $\zeta$ is a pseudo
90vorticity along $s$-surfaces (only pseudo because $(u,v)$ are still defined along
91geopotential surfaces, but are not necessarily defined at the same depth).
92
93The vorticity and divergence at the \textit{before} step are used in the computation
94of the horizontal diffusion of momentum. Note that because they have been
95calculated prior to the Asselin filtering of the \textit{before} velocities, the
96\textit{before} vorticity and divergence arrays must be included in the restart file
97to ensure perfect restartability. The vorticity and divergence at the \textit{now} 
98time step are used for the computation of the nonlinear advection and of the
99vertical velocity respectively.
100
101%--------------------------------------------------------------------------------------------------------------
102%           Sea Surface Height evolution
103%--------------------------------------------------------------------------------------------------------------
104\subsection   [Sea surface height evolution and vertical velocity (\textit{sshwzv})]
105         {Horizontal divergence and relative vorticity (\mdl{sshwzv})}
106\label{DYN_sshwzv}
107
108The sea surface height is given by :
109\begin{equation} \label{Eq_dynspg_ssh}
110\begin{aligned}
111\frac{\partial \eta }{\partial t}
112&\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{  \delta _i \left[ {e_{2u}\,e_{3u}\;u} \right]
113                                                                                  +\delta _j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right\} } 
114           -    \frac{\textit{emp}}{\rho _w }   \\
115&\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho _w }
116\end{aligned}
117\end{equation}
118where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
119expressed in Kg/m$^2$/s (which is equal to mm/s), and $\rho _w$=1,035~Kg/m$^3$ 
120is the reference density of sea water (Boussinesq approximation). If river runoff is
121expressed as a surface freshwater flux (see \S\ref{SBC}) then \textit{emp} can be
122written as the evaporation minus precipitation, minus the river runoff.
123The sea-surface height is evaluated using exactly the same time stepping scheme
124as the tracer equation \eqref{Eq_tra_nxt}:
125a leapfrog scheme in combination with an Asselin time filter, $i.e.$ the velocity appearing
126in \eqref{Eq_dynspg_ssh} is centred in time (\textit{now} velocity).
127This is of paramount importance. Replacing $T$ by the number $1$ in the tracer equation and summing
128over the water column must lead to the sea surface height equation otherwise tracer content
129will not be conserved \ref{Griffies_al_MWR01, LeclairMadec2009}.
130
131The vertical velocity is computed by an upward integration of the horizontal
132divergence starting at the bottom, taking into account the change of the thickness of the levels :
133\begin{equation} \label{Eq_wzv}
134\left\{   \begin{aligned}
135&\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }   \\
136&\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_
137                                         - \frac{1} {2 \rdt} \left\left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
138\end{aligned}   \right.
139\end{equation}
140
141In the case of a non-linear free surface (\key{vvl}), the top vertical velocity is $-\textit{emp}/\rho_w$,
142as changes in the divergence of the barotropic transport are absorbed into the change
143of the level thicknesses, re-orientated downward.
144\gmcomment{not sure of this...  to be modified with the change in emp setting}
145In the case of a linear free surface, the time derivative in \eqref{Eq_wzv} disappears.
146The upper boundary condition applies at a fixed level $z=0$. The top vertical velocity
147is thus equal to the divergence of the barotropic transport ($i.e.$ the first term in the
148right-hand-side of \eqref{Eq_dynspg_ssh}).
149
150Note also that whereas the vertical velocity has the same discrete
151expression in $z$- and $s$-coordinates, its physical meaning is not the same:
152in the second case, $w$ is the velocity normal to the $s$-surfaces.
153Note also that the $k$-axis is re-orientated downwards in the \textsc{fortran} code compared
154to the indexing used in the semi-discrete equations such as \eqref{Eq_wzv} 
155(see  \S\ref{DOM_Num_Index_vertical}).
156
157
158% ================================================================
159% Coriolis and Advection terms: vector invariant form
160% ================================================================
161\section{Coriolis and Advection: vector invariant form}
162\label{DYN_adv_cor_vect}
163%-----------------------------------------nam_dynadv----------------------------------------------------
164\namdisplay{namdyn_adv} 
165%-------------------------------------------------------------------------------------------------------------
166
167The vector invariant form of the momentum equations is the one most
168often used in applications of the \NEMO ocean model. The flux form option
169(see next section) has been present since version $2$.
170Coriolis and momentum advection terms are evaluated using a leapfrog
171scheme, $i.e.$ the velocity appearing in these expressions is centred in
172time (\textit{now} velocity).
173At the lateral boundaries either free slip, no slip or partial slip boundary
174conditions are applied following Chap.\ref{LBC}.
175
176% -------------------------------------------------------------------------------------------------------------
177%        Vorticity term
178% -------------------------------------------------------------------------------------------------------------
179\subsection   [Vorticity term (\textit{dynvor}) ]
180         {Vorticity term (\mdl{dynvor})}
181\label{DYN_vor}
182%------------------------------------------nam_dynvor----------------------------------------------------
183\namdisplay{namdyn_vor} 
184%-------------------------------------------------------------------------------------------------------------
185
186Four discretisations of the vorticity term (\textit{ln\_dynvor\_xxx}=true) are available:
187conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ;
188conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for
189the relative vorticity term and horizontal kinetic energy for the planetary vorticity
190term (MIX scheme) ; or conserving both the potential enstrophy of horizontally non-divergent
191flow and horizontal kinetic energy (EEN scheme) (see  Appendix~\ref{Apdx_C_vor_zad}). In the
192case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the
193consistency of vorticity term with analytical equations (\textit{ln\_dynvor\_con}=true).
194The vorticity terms are all computed in dedicated routines that can be found in
195the \mdl{dynvor} module.
196
197%-------------------------------------------------------------
198%                 enstrophy conserving scheme
199%-------------------------------------------------------------
200\subsubsection{Enstrophy conserving scheme (\np{ln\_dynvor\_ens}=true)}
201\label{DYN_vor_ens}
202
203In the enstrophy conserving case (ENS scheme), the discrete formulation of the
204vorticity term provides a global conservation of the enstrophy
205($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent
206flow ($i.e.$ $\chi$=$0$), but does not conserve the total kinetic energy. It is given by:
207\begin{equation} \label{Eq_dynvor_ens}
208\left\{ 
209\begin{aligned}
210{+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i} 
211                                & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
212{- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j} 
213                                & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j} 
214\end{aligned} 
215 \right.
216\end{equation} 
217
218%-------------------------------------------------------------
219%                 energy conserving scheme
220%-------------------------------------------------------------
221\subsubsection{Energy conserving scheme (\np{ln\_dynvor\_ene}=true)}
222\label{DYN_vor_ene}
223
224The kinetic energy conserving scheme (ENE scheme) conserves the global
225kinetic energy but not the global enstrophy. It is given by:
226\begin{equation} \label{Eq_dynvor_ene}
227\left\{   \begin{aligned}
228{+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
229                            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
230{- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
231                            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
232\end{aligned}    \right.
233\end{equation} 
234
235%-------------------------------------------------------------
236%                 mix energy/enstrophy conserving scheme
237%-------------------------------------------------------------
238\subsubsection{Mixed energy/enstrophy conserving scheme (\np{ln\_dynvor\_mix}=true) }
239\label{DYN_vor_mix}
240
241For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the
242two previous schemes is used. It consists of the ENS scheme (\ref{Eq_dynvor_ens})
243for the relative vorticity term, and of the ENE scheme (\ref{Eq_dynvor_ene}) applied
244to the planetary vorticity term.
245\begin{equation} \label{Eq_dynvor_mix}
246\left\{ {     \begin{aligned}
247 {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i} 
248 \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
249 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
250 \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
251{-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
252 \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
253 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
254 \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
255\end{aligned}     } \right.
256\end{equation} 
257
258%-------------------------------------------------------------
259%                 energy and enstrophy conserving scheme
260%-------------------------------------------------------------
261\subsubsection{Energy and enstrophy conserving scheme (\np{ln\_dynvor\_een}=true) }
262\label{DYN_vor_een}
263
264In both the ENS and ENE schemes, it is apparent that the combination of $i$ and $j$ 
265averages of the velocity allows for the presence of grid point oscillation structures
266that will be invisible to the operator. These structures are \textit{computational modes} 
267that will be at least partly damped by the momentum diffusion operator ($i.e.$ the
268subgrid-scale advection), but not by the resolved advection term. The ENS and ENE schemes
269therefore do not contribute to dump any grid point noise in the horizontal velocity field.
270Such noise would result in more noise in the vertical velocity field, an undesirable feature.
271This is a well-known characteristic of $C$-grid discretization where $u$ and $v$ are located
272at different grid points, a price worth paying to avoid a double averaging in the pressure
273gradient term as in the $B$-grid.
274\gmcomment{ To circumvent this, Adcroft (ADD REF HERE)
275Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....}
276
277A very nice solution to the problem of double averaging was proposed by \citet{Arakawa_Hsu_MWR90}.
278The idea is to get rid of the double averaging by considering triad combinations of vorticity.
279It is noteworthy that this solution is conceptually quite similar to the one proposed by
280\citep{Griffies_al_JPO98} for the discretization of the iso-neutral diffusion operator (see App.\ref{Apdx_C}).
281
282The \citet{Arakawa_Hsu_MWR90} vorticity advection scheme for a single layer is modified
283for spherical coordinates as described by \citet{Arakawa_Lamb_MWR81} to obtain the EEN scheme.
284First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point:
285\begin{equation} \label{Eq_pot_vor}
286q  = \frac{\zeta +f} {e_{3f} }
287\end{equation}
288where the relative vorticity is defined by (\ref{Eq_divcur_cur}), the Coriolis parameter
289is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is:
290\begin{equation} \label{Eq_een_e3f}
291e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2}
292\end{equation}
293
294%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
295\begin{figure}[!ht]    \begin{center}
296\includegraphics[width=0.70\textwidth]{./TexFiles/Figures/Fig_DYN_een_triad.pdf}
297\caption{ \label{Fig_DYN_een_triad} 
298Triads used in the energy and enstrophy conserving scheme (een) for
299$u$-component (upper panel) and $v$-component (lower panel).}
300\end{center}   \end{figure}
301%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
302
303Note that a key point in \eqref{Eq_een_e3f} is that the averaging in the \textbf{i}- and
304\textbf{j}- directions uses the masked vertical scale factor but is always divided by
305$4$, not by the sum of the masks at the four $T$-points. This preserves the continuity of
306$e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and
307extends by continuity the value of $e_{3f}$ into the land areas. This feature is essential for
308the $z$-coordinate with partial steps.
309
310Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as
311the following triad combinations of the neighbouring potential vorticities defined at f-points
312(Fig.~\ref{Fig_DYN_een_triad}):
313\begin{equation} \label{Q_triads}
314_i^j \mathbb{Q}^{i_p}_{j_p}
315= \frac{1}{12} \ \left(   q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p}  \right)
316\end{equation}
317where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$.
318
319Finally, the vorticity terms are represented as:
320\begin{equation} \label{Eq_dynvor_een}
321\left\{ {
322\begin{aligned}
323 +q\,e_3 \, v  &\equiv +\frac{1}{e_{1u} }   \sum_{\substack{i_p,\,k_p}} 
324                         {^{i+1/2-i_p}_j}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{1v}\,e_{3v} \;\right)^{i+1/2-i_p}_{j+j_p}   \\
325 - q\,e_3 \, u     &\equiv -\frac{1}{e_{2v} }    \sum_{\substack{i_p,\,k_p}} 
326                         {^i_{j+1/2-j_p}}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{2u}\,e_{3u} \;\right)^{i+i_p}_{j+1/2-j_p}   \\
327\end{aligned} 
328} \right.
329\end{equation} 
330
331This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes.
332It conserves both total energy and potential enstrophy in the limit of horizontally
333nondivergent flow ($i.e.$ $\chi$=$0$) (see  Appendix~\ref{Apdx_C_vor_zad}).
334Applied to a realistic ocean configuration, it has been shown that it leads to a significant
335reduction of the noise in the vertical velocity field \citep{Le_Sommer_al_OM09}.
336Furthermore, used in combination with a partial steps representation of bottom topography,
337it improves the interaction between current and topography, leading to a larger
338topostrophy of the flow  \citep{Barnier_al_OD06, Penduff_al_OS07}.
339
340%--------------------------------------------------------------------------------------------------------------
341%           Kinetic Energy Gradient term
342%--------------------------------------------------------------------------------------------------------------
343\subsection   [Kinetic Energy Gradient term (\textit{dynkeg})]
344         {Kinetic Energy Gradient term (\mdl{dynkeg})}
345\label{DYN_keg}
346
347As demonstrated in Appendix~\ref{Apdx_C}, there is a single discrete formulation
348of the kinetic energy gradient term that, together with the formulation chosen for
349the vertical advection (see below), conserves the total kinetic energy:
350\begin{equation} \label{Eq_dynkeg}
351\left\{ \begin{aligned}
352 -\frac{1}{2 \; e_{1u} }  & \ \delta _{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   \\
353 -\frac{1}{2 \; e_{2v} }  & \ \delta _{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   
354\end{aligned} \right.
355\end{equation} 
356
357%--------------------------------------------------------------------------------------------------------------
358%           Vertical advection term
359%--------------------------------------------------------------------------------------------------------------
360\subsection   [Vertical advection term (\textit{dynzad}) ]
361         {Vertical advection term (\mdl{dynzad}) }
362\label{DYN_zad}
363
364The discrete formulation of the vertical advection, together with the formulation
365chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
366energy. Indeed, the change of KE due to the vertical advection is exactly
367balanced by the change of KE due to the gradient of KE (see Appendix~\ref{Apdx_C}).
368\begin{equation} \label{Eq_dynzad}
369\left\{     \begin{aligned}
370-\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k}  \\
371-\frac{1} {e_{1v}\,e_{2v}\,e_{3v}}  &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k} 
372\end{aligned}         \right.
373\end{equation} 
374
375% ================================================================
376% Coriolis and Advection : flux form
377% ================================================================
378\section{Coriolis and Advection: flux form}
379\label{DYN_adv_cor_flux}
380%------------------------------------------nam_dynadv----------------------------------------------------
381\namdisplay{namdyn_adv} 
382%-------------------------------------------------------------------------------------------------------------
383
384In the flux form (as in the vector invariant form), the Coriolis and momentum
385advection terms are evaluated using a leapfrog scheme, $i.e.$ the velocity
386appearing in their expressions is centred in time (\textit{now} velocity). At the
387lateral boundaries either free slip, no slip or partial slip boundary conditions
388are applied following Chap.\ref{LBC}.
389
390
391%--------------------------------------------------------------------------------------------------------------
392%           Coriolis plus curvature metric terms
393%--------------------------------------------------------------------------------------------------------------
394\subsection   [Coriolis plus curvature metric terms (\textit{dynvor}) ]
395         {Coriolis plus curvature metric terms (\mdl{dynvor}) }
396\label{DYN_cor_flux}
397
398In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
399parameter has been modified to account for the "metric" term. This altered
400Coriolis parameter is thus discretised at $f$-points. It is given by:
401\begin{multline} \label{Eq_dyncor_metric}
402f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i}  -  u\frac{\partial e_1 }{\partial j}} \right\\
403   \equiv   f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta _{i+1/2} \left[ {e_{2u} } \right] 
404                                                                 -  \overline u ^{j+1/2}\delta _{j+1/2} \left[ {e_{1u} } \right]  }  \ \right)
405\end{multline} 
406
407Any of the (\ref{Eq_dynvor_ens}), (\ref{Eq_dynvor_ene}) and (\ref{Eq_dynvor_een})
408schemes can be used to compute the product of the Coriolis parameter and the
409vorticity. However, the energy-conserving scheme  (\ref{Eq_dynvor_een}) has
410exclusively been used to date. This term is evaluated using a leapfrog scheme,
411$i.e.$ the velocity is centred in time (\textit{now} velocity).
412
413%--------------------------------------------------------------------------------------------------------------
414%           Flux form Advection term
415%--------------------------------------------------------------------------------------------------------------
416\subsection   [Flux form Advection term (\textit{dynadv}) ]
417         {Flux form Advection term (\mdl{dynadv}) }
418\label{DYN_adv_flux}
419
420The discrete expression of the advection term is given by :
421\begin{equation} \label{Eq_dynadv}
422\left\{ 
423\begin{aligned}
424\frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 
425\left(      \delta _{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i       }  \ u_t      \right]   
426          + \delta _{j       } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2}  \ u_f      \right] \right\ \;   \\
427\left.   + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2}  \ u_{uw} \right] \right)   \\
428\\
429\frac{1}{e_{1v}\,e_{2v}\,e_{3v}} 
430\left(     \delta _{i       } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f       \right] 
431         + \delta _{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i       } \ v_t       \right] \right\ \, \, \\
432\left.  + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw}  \right] \right) \\
433\end{aligned}
434\right.
435\end{equation}
436
437Two advection schemes are available: a $2^{nd}$ order centered finite
438difference scheme, CEN2, or a $3^{rd}$ order upstream biased scheme, UBS.
439The latter is described in \citet{Shchepetkin_McWilliams_OM05}. The schemes are
440selected using the namelist logicals \np{ln\_dynadv\_cen2} and \np{ln\_dynadv\_ubs}.
441In flux form, the schemes differ by the choice of a space and time interpolation to
442define the value of $u$ and $v$ at the centre of each face of $u$- and $v$-cells,
443$i.e.$ at the $T$-, $f$-, and $uw$-points for $u$ and at the $f$-, $T$- and
444$vw$-points for $v$.
445
446%-------------------------------------------------------------
447%                 2nd order centred scheme
448%-------------------------------------------------------------
449\subsubsection{$2^{nd}$ order centred scheme (cen2) (\np{ln\_dynadv\_cen2}=true)}
450\label{DYN_adv_cen2}
451
452In the centered $2^{nd}$ order formulation, the velocity is evaluated as the
453mean of the two neighbouring points :
454\begin{equation} \label{Eq_dynadv_cen2}
455\left\{     \begin{aligned}
456 u_T^{cen2} &=\overline u^{i }       \quad &  u_F^{cen2} &=\overline u^{j+1/2}  \quad &  u_{uw}^{cen2} &=\overline u^{k+1/2}   \\
457 v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j      \quad &  v_{vw}^{cen2} &=\overline v ^{k+1/2}  \\
458\end{aligned}      \right.
459\end{equation} 
460
461The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
462($i.e.$ it may create false extrema). It is therefore notoriously noisy and must be
463used in conjunction with an explicit diffusion operator to produce a sensible solution.
464The associated time-stepping is performed using a leapfrog scheme in conjunction
465with an Asselin time-filter, so $u$ and $v$ are the \emph{now} velocities.
466
467%-------------------------------------------------------------
468%                 UBS scheme
469%-------------------------------------------------------------
470\subsubsection{Upstream Biased Scheme (UBS) (\np{ln\_dynadv\_ubs}=true)}
471\label{DYN_adv_ubs}
472
473The UBS advection scheme is an upstream biased third order scheme based on
474an upstream-biased parabolic interpolation. For example, the evaluation of
475$u_T^{ubs} $ is done as follows:
476\begin{equation} \label{Eq_dynadv_ubs}
477u_T^{ubs} =\overline u ^i-\;\frac{1}{6}   \begin{cases}
478      u"_{i-1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  \geqslant 0$ }    \\
479      u"_{i+1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  < 0$ }
480\end{cases}
481\end{equation}
482where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta _i \left[ u \right]} \right]$. This results
483in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error \citep{Shchepetkin_McWilliams_OM05}.
484The overall performance of the advection scheme is similar to that reported in
485\citet{Farrow1995}. It is a relatively good compromise between accuracy and
486smoothness. It is not a \emph{positive} scheme, meaning that false extrema are
487permitted. But the amplitudes of the false extrema are significantly reduced over
488those in the centred second order method. As the scheme already includes
489a diffusion component, it can be used without explicit  lateral diffusion on momentum
490($i.e.$ \np{ln\_dynldf\_lap}=\np{ln\_dynldf\_bilap}=false), and it is recommended to do so.
491
492The UBS scheme is not used in all directions. In the vertical, the centred $2^{nd}$ 
493order evaluation of the advection is preferred, $i.e.$ $u_{uw}^{ubs}$ and
494$u_{vw}^{ubs}$ in \eqref{Eq_dynadv_cen2} are used. UBS is diffusive and is
495associated with vertical mixing of momentum. \gmcomment{ gm  pursue the
496sentence:Since vertical mixing of momentum is a source term of the TKE equation...  }
497
498For stability reasons,  the first term in (\ref{Eq_dynadv_ubs}), which corresponds
499to a second order centred scheme, is evaluated using the \textit{now} velocity
500(centred in time), while the second term, which is the diffusion part of the scheme,
501is evaluated using the \textit{before} velocity (forward in time). This is discussed
502by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme.
503
504Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
505schemes only differ by one coefficient. Replacing $1/6$ by $1/8$ in
506(\ref{Eq_dynadv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
507This option is not available through a namelist parameter, since the $1/6$ coefficient
508is hard coded. Nevertheless it is quite easy to make the substitution in the
509\mdl{dynadv\_ubs} module and obtain a QUICK scheme.
510
511Note also that in the current version of \mdl{dynadv\_ubs}, there is also the
512possibility of using a $4^{th}$ order evaluation of the advective velocity as in
513ROMS. This is an error and should be suppressed soon.
514%%%
515\gmcomment{action :  this have to be done}
516%%%
517
518% ================================================================
519%           Hydrostatic pressure gradient term
520% ================================================================
521\section  [Hydrostatic pressure gradient (\textit{dynhpg})]
522      {Hydrostatic pressure gradient (\mdl{dynhpg})}
523\label{DYN_hpg}
524%------------------------------------------nam_dynhpg---------------------------------------------------
525\namdisplay{namdyn_hpg} 
526%-------------------------------------------------------------------------------------------------------------
527
528The key distinction between the different algorithms used for the hydrostatic
529pressure gradient is the vertical coordinate used, since HPG is a \emph{horizontal} 
530pressure gradient, $i.e.$ computed along geopotential surfaces. As a result, any
531tilt of the surface of the computational levels will require a specific treatment to
532compute the hydrostatic pressure gradient.
533
534The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
535$i.e.$ the density appearing in its expression is centred in time (\emph{now} $\rho$), or
536a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial slip
537boundary conditions are applied.
538
539%--------------------------------------------------------------------------------------------------------------
540%           z-coordinate with full step
541%--------------------------------------------------------------------------------------------------------------
542\subsection   [$z$-coordinate with full step (\np{ln\_dynhpg\_zco}) ]
543         {$z$-coordinate with full step (\np{ln\_dynhpg\_zco}=true)}
544\label{DYN_hpg_zco}
545
546The hydrostatic pressure can be obtained by integrating the hydrostatic equation
547vertically from the surface. However, the pressure is large at great depth while its
548horizontal gradient is several orders of magnitude smaller. This may lead to large
549truncation errors in the pressure gradient terms. Thus, the two horizontal components
550of the hydrostatic pressure gradient are computed directly as follows:
551
552for $k=km$ (surface layer, $jk=1$ in the code)
553\begin{equation} \label{Eq_dynhpg_zco_surf}
554\left\{ \begin{aligned}
555               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k=km} 
556&= \frac{1}{2} g \   \left. \delta _{i+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
557                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k=km} 
558&= \frac{1}{2} g \   \left. \delta _{j+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
559\end{aligned} \right.
560\end{equation} 
561
562for $1<k<km$ (interior layer)
563\begin{equation} \label{Eq_dynhpg_zco}
564\left\{ \begin{aligned}
565               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k} 
566&=             \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k-1} 
567+    \frac{1}{2}\;g\;   \left. \delta _{i+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
568                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k} 
569&=                \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k-1} 
570+    \frac{1}{2}\;g\;   \left. \delta _{j+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
571\end{aligned} \right.
572\end{equation} 
573
574Note that the $1/2$ factor in (\ref{Eq_dynhpg_zco_surf}) is adequate because of
575the definition of $e_{3w}$ as the vertical derivative of the scale factor at the surface
576level ($z=0$). Note also that in case of variable volume level (\key{vvl} defined), the
577surface pressure gradient is included in \eqref{Eq_dynhpg_zco_surf} and \eqref{Eq_dynhpg_zco} 
578through the space and time variations of the vertical scale factor $e_{3w}$.
579
580%--------------------------------------------------------------------------------------------------------------
581%           z-coordinate with partial step
582%--------------------------------------------------------------------------------------------------------------
583\subsection   [$z$-coordinate with partial step (\np{ln\_dynhpg\_zps})]
584         {$z$-coordinate with partial step (\np{ln\_dynhpg\_zps}=true)}
585\label{DYN_hpg_zps}
586
587With partial bottom cells, tracers in horizontally adjacent cells generally live at
588different depths. Before taking horizontal gradients between these tracer points,
589a linear interpolation is used to approximate the deeper tracer as if it actually lived
590at the depth of the shallower tracer point.
591
592Apart from this modification, the horizontal hydrostatic pressure gradient evaluated
593in the $z$-coordinate with partial step is exactly as in the pure $z$-coordinate case.
594As explained in detail in section \S\ref{TRA_zpshde}, the nonlinearity of pressure
595effects in the equation of state is such that it is better to interpolate temperature and
596salinity vertically before computing the density. Horizontal gradients of temperature
597and salinity are needed for the TRA modules, which is the reason why the horizontal
598gradients of density at the deepest model level are computed in module \mdl{zpsdhe} 
599located in the TRA directory and described in \S\ref{TRA_zpshde}.
600
601%--------------------------------------------------------------------------------------------------------------
602%           s- and s-z-coordinates
603%--------------------------------------------------------------------------------------------------------------
604\subsection{$s$- and $z$-$s$-coordinates}
605\label{DYN_hpg_sco}
606
607Pressure gradient formulations in an $s$-coordinate have been the subject of a vast
608number of papers ($e.g.$, \citet{Song1998, Shchepetkin_McWilliams_OM05}).
609A number of different pressure gradient options are coded, but they are not yet fully
610documented or tested.
611
612$\bullet$ Traditional coding (see for example \citet{Madec_al_JPO96}: (\np{ln\_dynhpg\_sco}=true)
613\begin{equation} \label{Eq_dynhpg_sco}
614\left\{ \begin{aligned}
615 - \frac{1}                   {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  p^h  \right] 
616+ \frac{g\; \overline {\rho}^{i+1/2}}  {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  z_t   \right]    \\
617 - \frac{1}                   {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  p^h  \right] 
618+ \frac{g\; \overline {\rho}^{j+1/2}}  {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  z_t   \right]    \\
619\end{aligned} \right.
620\end{equation} 
621
622Where the first term is the pressure gradient along coordinates, computed as in
623\eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of
624the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point
625($e_{3w}$).
626
627$\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{Shchepetkin_McWilliams_OM05} 
628(\np{ln\_dynhpg\_djc}=true)
629
630$\bullet$ Pressure Jacobian scheme (prj) \citep{Thiem_Berntsen_OM06} (\np{ln\_dynhpg\_prj}=true)
631
632Note that expression \eqref{Eq_dynhpg_sco} is commonly used when the variable volume
633formulation is activated (\key{vvl}) because in that case, even with a flat bottom,
634the coordinate surfaces are not horizontal but follow the free surface
635\citep{Levier2007}. Only the pressure jacobian scheme (\np{ln\_dynhpg\_prj}=true) is available as an
636alternative to the default \np{ln\_dynhpg\_sco}=true when \key{vvl} is active.  The pressure Jacobian scheme uses
637a constrained cubic spline to reconstruct the density profile across the water column. This method
638maintains the monotonicity between the density nodes and is of a higher order than the linear
639interpolation method. The pressure can be calculated by analytical integration of the density profile and
640a pressure Jacobian method is used to solve the horizontal pressure gradient. This method should
641provide a more accurate calculation of the horizontal pressure gradient than the standard scheme.
642
643%--------------------------------------------------------------------------------------------------------------
644%           Time-scheme
645%--------------------------------------------------------------------------------------------------------------
646\subsection   [Time-scheme (\np{ln\_dynhpg\_imp}) ]
647         {Time-scheme (\np{ln\_dynhpg\_imp}= true/false)}
648\label{DYN_hpg_imp}
649
650The default time differencing scheme used for the horizontal pressure gradient is
651a leapfrog scheme and therefore the density used in all discrete expressions given
652above is the  \textit{now} density, computed from the \textit{now} temperature and
653salinity. In some specific cases (usually high resolution simulations over an ocean
654domain which includes weakly stratified regions) the physical phenomenon that
655controls the time-step is internal gravity waves (IGWs). A semi-implicit scheme for
656doubling the stability limit associated with IGWs can be used \citep{Brown_Campana_MWR78,
657Maltrud1998}. It involves the evaluation of the hydrostatic pressure gradient as an
658average over the three time levels $t-\rdt$, $t$, and $t+\rdt$ ($i.e.$ 
659\textit{before}\textit{now} and  \textit{after} time-steps), rather than at the central
660time level $t$ only, as in the standard leapfrog scheme.
661
662$\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}=true):
663
664\begin{equation} \label{Eq_dynhpg_lf}
665\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
666   -\frac{1}{\rho _o \,e_{1u} }\delta _{i+1/2} \left[ {p_h^t } \right]
667\end{equation}
668
669$\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}=true):
670\begin{equation} \label{Eq_dynhpg_imp}
671\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
672   -\frac{1}{4\,\rho _o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt}  \right]
673\end{equation}
674
675The semi-implicit time scheme \eqref{Eq_dynhpg_imp} is made possible without
676significant additional computation since the density can be updated to time level
677$t+\rdt$ before computing the horizontal hydrostatic pressure gradient. It can
678be easily shown that the stability limit associated with the hydrostatic pressure
679gradient doubles using \eqref{Eq_dynhpg_imp} compared to that using the
680standard leapfrog scheme \eqref{Eq_dynhpg_lf}. Note that \eqref{Eq_dynhpg_imp} 
681is equivalent to applying a time filter to the pressure gradient to eliminate high
682frequency IGWs. Obviously, when using \eqref{Eq_dynhpg_imp}, the doubling of
683the time-step is achievable only if no other factors control the time-step, such as
684the stability limits associated with advection or diffusion.
685
686In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}=true.
687In this case, we choose to apply the time filter to temperature and salinity used in
688the equation of state, instead of applying it to the hydrostatic pressure or to the
689density, so that no additional storage array has to be defined. The density used to
690compute the hydrostatic pressure gradient (whatever the formulation) is evaluated
691as follows:
692\begin{equation} \label{Eq_rho_flt}
693   \rho^t = \rho( \widetilde{T},\widetilde {S},z_t)
694 \quad     \text{with}  \quad 
695   \widetilde{X} = 1 / 4 \left(  X^{t+\rdt} +2 \,X^t + X^{t-\rdt}  \right)
696\end{equation}
697
698Note that in the semi-implicit case, it is necessary to save the filtered density, an
699extra three-dimensional field, in the restart file to restart the model with exact
700reproducibility. This option is controlled by  \np{nn\_dynhpg\_rst}, a namelist parameter.
701
702% ================================================================
703% Surface Pressure Gradient
704% ================================================================
705\section  [Surface pressure gradient (\textit{dynspg}) ]
706      {Surface pressure gradient (\mdl{dynspg})}
707\label{DYN_spg}
708%-----------------------------------------nam_dynspg----------------------------------------------------
709\namdisplay{namdyn_spg} 
710%------------------------------------------------------------------------------------------------------------
711
712$\ $\newline      %force an empty line
713
714%%%
715The surface pressure gradient term is related to the representation of the free surface (\S\ref{PE_hor_pg}). The main distinction is between the fixed volume case (linear free surface) and the variable volume case (nonlinear free surface, \key{vvl} is defined). In the linear free surface case (\S\ref{PE_free_surface}) the vertical scale factors $e_{3}$ are fixed in time, while they are time-dependent in the nonlinear case (\S\ref{PE_free_surface}). With both linear and nonlinear free surface, external gravity waves are allowed in the equations, which imposes a very small time step when an explicit time stepping is used. Two methods are proposed to allow a longer time step for the three-dimensional equations: the filtered free surface, which is a modification of the continuous equations (see \eqref{Eq_PE_flt}), and the split-explicit free surface described below. The extra term introduced in the filtered method is calculated implicitly, so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
716
717%%%
718
719
720The form of the surface pressure gradient term depends on how the user wants to handle
721the fast external gravity waves that are a solution of the analytical equation (\S\ref{PE_hor_pg}).
722Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx):
723an explicit formulation which requires a small time step ;
724a filtered free surface formulation which allows a larger time step by adding a filtering
725term into the momentum equation ;
726and a split-explicit free surface formulation, described below, which also allows a larger time step.
727
728The extra term introduced in the filtered method is calculated
729implicitly, so that a solver is used to compute it. As a consequence the update of the $next$ 
730velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
731
732
733
734%--------------------------------------------------------------------------------------------------------------
735% Explicit free surface formulation
736%--------------------------------------------------------------------------------------------------------------
737\subsection{Explicit free surface (\key{dynspg\_exp})}
738\label{DYN_spg_exp}
739
740In the explicit free surface formulation (\key{dynspg\_exp} defined), the model time step
741is chosen to be small enough to resolve the external gravity waves (typically a few tens of seconds).
742The surface pressure gradient, evaluated using a leap-frog scheme ($i.e.$ centered in time),
743is thus simply given by :
744\begin{equation} \label{Eq_dynspg_exp}
745\left\{ \begin{aligned}
746 - \frac{1}{e_{1u}\,\rho_o} \;   \delta _{i+1/2} \left[  \,\rho \,\eta\,  \right]   \\
747 - \frac{1}{e_{2v}\,\rho_o} \;   \delta _{j+1/2} \left[  \,\rho \,\eta\,  \right] 
748\end{aligned} \right.
749\end{equation} 
750
751Note that in the non-linear free surface case ($i.e.$ \key{vvl} defined), the surface pressure
752gradient is already included in the momentum tendency  through the level thickness variation
753allowed in the computation of the hydrostatic pressure gradient. Thus, nothing is done in the \mdl{dynspg\_exp} module.
754
755%--------------------------------------------------------------------------------------------------------------
756% Split-explict free surface formulation
757%--------------------------------------------------------------------------------------------------------------
758\subsection{Split-Explicit free surface (\key{dynspg\_ts})}
759\label{DYN_spg_ts}
760
761The split-explicit free surface formulation used in \NEMO (\key{dynspg\_ts} defined),
762also called the time-splitting formulation, follows the one
763proposed by \citet{Griffies_Bk04}. The general idea is to solve the free surface
764equation and the associated barotropic velocity equations with a smaller time
765step than $\rdt$, the time step used for the three dimensional prognostic
766variables (Fig.~\ref{Fig_DYN_dynspg_ts}).
767The size of the small time step, $\rdt_e$ (the external mode or barotropic time step)
768 is provided through the \np{nn\_baro} namelist parameter as:
769$\rdt_e = \rdt / nn\_baro$.
770 
771
772%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
773\begin{figure}[!t]    \begin{center}
774\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_DYN_dynspg_ts.pdf}
775\caption{  \label{Fig_DYN_dynspg_ts}
776Schematic of the split-explicit time stepping scheme for the external
777and internal modes. Time increases to the right.
778Internal mode time steps (which are also the model time steps) are denoted
779by $t-\rdt$, $t, t+\rdt$, and $t+2\rdt$.
780The curved line represents a leap-frog time step, and the smaller time
781steps $N \rdt_e=\frac{3}{2}\rdt$ are denoted by the zig-zag line.
782The vertically integrated forcing \textbf{M}(t) computed at the model time step $t$ 
783represents the interaction between the external and internal motions.
784While keeping \textbf{M} and freshwater forcing field fixed, a leap-frog
785integration carries the external mode variables (surface height and vertically
786integrated velocity) from $t$ to $t+\frac{3}{2} \rdt$ using N external time
787steps of length $\rdt_e$. Time averaging the external fields over the
788$\frac{2}{3}N+1$ time steps (endpoints included) centers the vertically integrated
789velocity and the sea surface height at the model timestep $t+\rdt$.
790These averaged values are used to update \textbf{M}(t) with both the surface
791pressure gradient and the Coriolis force, therefore providing the $t+\rdt$
792velocity.  The model time stepping scheme can then be achieved by a baroclinic
793leap-frog time step that carries the surface height from $t-\rdt$ to $t+\rdt$}
794\end{center}    \end{figure}
795%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
796
797The split-explicit formulation has a damping effect on external gravity waves,
798which is weaker damping than that for the filtered free surface but still significant, as
799shown by \citet{Levier2007} in the case of an analytical barotropic Kelvin wave.
800
801%>>>>>===============
802\gmcomment{               %%% copy from griffies Book
803
804\textbf{title: Time stepping the barotropic system }
805
806Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$. Hence,
807we can update the surface height and vertically integrated velocity with a leap-frog
808scheme using the small barotropic time step $\rdt$. We have
809
810\begin{equation} \label{DYN_spg_ts_eta}
811\eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
812   = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
813\end{equation}
814\begin{multline} \label{DYN_spg_ts_u}
815\textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
816   = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
817   - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
818\end{multline}
819\
820
821In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with the barotropic time steps. The $\tau$ time label on $\eta^{(b)}$ 
822and $U^{(b)}$ denotes the baroclinic time at which the vertically integrated forcing $\textbf{M}(\tau)$ (note that this forcing includes the surface freshwater forcing), the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over a single cycle. This is also the time
823that sets the barotropic time steps via
824\begin{equation} \label{DYN_spg_ts_t}
825t_n=\tau+n\rdt   
826\end{equation}
827with $n$ an integer. The density scaled surface pressure is evaluated via
828\begin{equation} \label{DYN_spg_ts_ps}
829p_s^{(b)}(\tau,t_{n}) = \begin{cases}
830   g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_&      \text{non-linear case} \\
831   g \;\eta_s^{(b)}(\tau,t_{n}&      \text{linear case} 
832   \end{cases}
833\end{equation}
834To get started, we assume the following initial conditions
835\begin{equation} \label{DYN_spg_ts_eta}
836\begin{split}
837\eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}
838\\
839\eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} 
840\end{split}
841\end{equation}
842with
843\begin{equation} \label{DYN_spg_ts_etaF}
844 \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n})
845\end{equation}
846the time averaged surface height taken from the previous barotropic cycle. Likewise,
847\begin{equation} \label{DYN_spg_ts_u}
848\textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)}   \\
849\\
850\textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}   
851\end{equation}
852with
853\begin{equation} \label{DYN_spg_ts_u}
854 \overline{\textbf{U}^{(b)}(\tau)} 
855   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n})
856\end{equation}
857the time averaged vertically integrated transport. Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
858
859Upon reaching $t_{n=N} = \tau + 2\rdt \tau$ , the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at baroclinic time $\tau + \rdt \tau$ 
860\begin{equation} \label{DYN_spg_ts_u}
861\textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} 
862   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
863\end{equation}
864The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using the following form
865
866\begin{equation} \label{DYN_spg_ts_ssh}
867\eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] 
868\end{equation}
869
870 The use of this "big-leap-frog" scheme for the surface height ensures compatibility between the mass/volume budgets and the tracer budgets. More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
871 
872In general, some form of time filter is needed to maintain integrity of the surface
873height field due to the leap-frog splitting mode in equation \ref{DYN_spg_ts_ssh}. We
874have tried various forms of such filtering, with the following method discussed in
875\cite{Griffies_al_MWR01} chosen due to its stability and reasonably good maintenance of
876tracer conservation properties (see Section ??)
877
878\begin{equation} \label{DYN_spg_ts_sshf}
879\eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
880\end{equation}
881Another approach tried was
882
883\begin{equation} \label{DYN_spg_ts_sshf2}
884\eta^{F}(\tau-\Delta) = \eta(\tau)
885   + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt)
886                + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right]
887\end{equation}
888
889which is useful since it isolates all the time filtering aspects into the term multiplied
890by $\alpha$. This isolation allows for an easy check that tracer conservation is exact when
891eliminating tracer and surface height time filtering (see Section ?? for more complete discussion). However, in the general case with a non-zero $\alpha$, the filter \ref{DYN_spg_ts_sshf} was found to be more conservative, and so is recommended.
892
893}            %%end gm comment (copy of griffies book)
894
895%>>>>>===============
896
897
898%--------------------------------------------------------------------------------------------------------------
899% Filtered free surface formulation
900%--------------------------------------------------------------------------------------------------------------
901\subsection{Filtered free surface (\key{dynspg\_flt})}
902\label{DYN_spg_fltp}
903
904The filtered formulation follows the \citet{Roullet_Madec_JGR00} implementation.
905The extra term introduced in the equations (see \S\ref{PE_free_surface}) is solved implicitly.
906The elliptic solvers available in the code are documented in \S\ref{MISC}.
907
908%% gm %%======>>>>   given here the discrete eqs provided to the solver
909\gmcomment{               %%% copy from chap-model basics
910\begin{equation} \label{Eq_spg_flt}
911\frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}}
912- g \nabla \left( \tilde{\rho} \ \eta \right)
913- g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)
914\end{equation}
915where $T_c$, is a parameter with dimensions of time which characterizes the force,
916$\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$ 
917represents the collected contributions of the Coriolis, hydrostatic pressure gradient,
918non-linear and viscous terms in \eqref{Eq_PE_dyn}.
919}   %end gmcomment
920
921Note that in the linear free surface formulation (\key{vvl} not defined), the ocean depth
922is time-independent and so is the matrix to be inverted. It is computed once and for all and applies to all ocean time steps.
923
924% ================================================================
925% Lateral diffusion term
926% ================================================================
927\section  [Lateral diffusion term (\textit{dynldf})]
928      {Lateral diffusion term (\mdl{dynldf})}
929\label{DYN_ldf}
930%------------------------------------------nam_dynldf----------------------------------------------------
931\namdisplay{namdyn_ldf} 
932%-------------------------------------------------------------------------------------------------------------
933
934The options available for lateral diffusion are to use either laplacian
935(rotated or not) or biharmonic operators. The coefficients may be constant
936or spatially variable; the description of the coefficients is found in the chapter
937on lateral physics (Chap.\ref{LDF}). The lateral diffusion of momentum is
938evaluated using a forward scheme, $i.e.$ the velocity appearing in its expression
939is the \textit{before} velocity in time, except for the pure vertical component
940that appears when a tensor of rotation is used. This latter term is solved
941implicitly together with the vertical diffusion term (see \S\ref{DOM_nxt})
942
943At the lateral boundaries either free slip, no slip or partial slip boundary
944conditions are applied according to the user's choice (see Chap.\ref{LBC}).
945
946% ================================================================
947\subsection   [Iso-level laplacian operator (\np{ln\_dynldf\_lap}) ]
948         {Iso-level laplacian operator (\np{ln\_dynldf\_lap}=true)}
949\label{DYN_ldf_lap}
950
951For lateral iso-level diffusion, the discrete operator is:
952\begin{equation} \label{Eq_dynldf_lap}
953\left\{ \begin{aligned}
954 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta _{i+1/2} \left[ {A_T^{lm} 
955\;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta _j \left[
956{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
957\\
958 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta _{j+1/2} \left[ {A_T^{lm} 
959\;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta _i \left[
960{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
961\end{aligned} \right.
962\end{equation} 
963
964As explained in \S\ref{PE_ldf}, this formulation (as the gradient of a divergence
965and curl of the vorticity) preserves symmetry and ensures a complete
966separation between the vorticity and divergence parts of the momentum diffusion.
967
968%--------------------------------------------------------------------------------------------------------------
969%           Rotated laplacian operator
970%--------------------------------------------------------------------------------------------------------------
971\subsection   [Rotated laplacian operator (\np{ln\_dynldf\_iso}) ]
972         {Rotated laplacian operator (\np{ln\_dynldf\_iso}=true)}
973\label{DYN_ldf_iso}
974
975A rotation of the lateral momentum diffusion operator is needed in several cases:
976for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}=true) and for
977either iso-neutral (\np{ln\_dynldf\_iso}=true) or geopotential
978(\np{ln\_dynldf\_hor}=true) diffusion in the $s$-coordinate. In the partial step
979case, coordinates are horizontal except at the deepest level and no
980rotation is performed when \np{ln\_dynldf\_hor}=true. The diffusion operator
981is defined simply as the divergence of down gradient momentum fluxes on each
982momentum component. It must be emphasized that this formulation ignores
983constraints on the stress tensor such as symmetry. The resulting discrete
984representation is:
985\begin{equation} \label{Eq_dyn_ldf_iso}
986\begin{split}
987 D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\
988&  \left\{\quad  {\delta _{i+1/2} \left[ {A_T^{lm}  \left(
989    {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta _{i}[u]
990   -e_{2t} \; r_{1t} \,\overline{\overline {\delta _{k+1/2}[u]}}^{\,i,\,k}}
991 \right)} \right]}   \right.
992\\ 
993& \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} 
994}\,\delta _{j+1/2} [u] - e_{1f}\, r_{2f} 
995\,\overline{\overline {\delta _{k+1/2} [u]}} ^{\,j+1/2,\,k}} 
996\right)} \right]
997\\ 
998&\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline 
999{\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} } 
1000\right.} \right.
1001\\ 
1002&  \ \qquad \qquad \qquad \quad\
1003- e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2}
1004\\ 
1005& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1006+\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2} 
1007\right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} 
1008\\
1009\\
1010 D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} }    \\
1011&  \left\{\quad  {\delta _{i+1/2} \left[ {A_f^{lm}  \left(
1012    {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta _{i+1/2}[v]
1013   -e_{2f} \; r_{1f} \,\overline{\overline {\delta _{k+1/2}[v]}}^{\,i+1/2,\,k}}
1014 \right)} \right]}   \right.
1015\\ 
1016& \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} 
1017}\,\delta _{j} [v] - e_{1t}\, r_{2t} 
1018\,\overline{\overline {\delta _{k+1/2} [v]}} ^{\,j,\,k}} 
1019\right)} \right]
1020\\ 
1021& \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline 
1022{\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right.
1023\\
1024&  \ \qquad \qquad \qquad \quad\
1025- e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2}
1026\\ 
1027& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1028+\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2} 
1029\right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\} 
1030 \end{split}
1031\end{equation}
1032where $r_1$ and $r_2$ are the slopes between the surface along which the
1033diffusion operator acts and the surface of computation ($z$- or $s$-surfaces).
1034The way these slopes are evaluated is given in the lateral physics chapter
1035(Chap.\ref{LDF}).
1036
1037%--------------------------------------------------------------------------------------------------------------
1038%           Iso-level bilaplacian operator
1039%--------------------------------------------------------------------------------------------------------------
1040\subsection   [Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap})]
1041         {Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap}=true)}
1042\label{DYN_ldf_bilap}
1043
1044The lateral fourth order operator formulation on momentum is obtained by
1045applying \eqref{Eq_dynldf_lap} twice. It requires an additional assumption on
1046boundary conditions: the first derivative term normal to the coast depends on
1047the free or no-slip lateral boundary conditions chosen, while the third
1048derivative terms normal to the coast are set to zero (see Chap.\ref{LBC}).
1049%%%
1050\gmcomment{add a remark on the the change in the position of the coefficient}
1051%%%
1052
1053% ================================================================
1054%           Vertical diffusion term
1055% ================================================================
1056\section  [Vertical diffusion term (\mdl{dynzdf})]
1057      {Vertical diffusion term (\mdl{dynzdf})}
1058\label{DYN_zdf}
1059%----------------------------------------------namzdf------------------------------------------------------
1060\namdisplay{namzdf} 
1061%-------------------------------------------------------------------------------------------------------------
1062
1063The large vertical diffusion coefficient found in the surface mixed layer together
1064with high vertical resolution implies that in the case of explicit time stepping there
1065would be too restrictive a constraint on the time step. Two time stepping schemes
1066can be used for the vertical diffusion term : $(a)$ a forward time differencing
1067scheme (\np{ln\_zdfexp}=true) using a time splitting technique
1068(\np{nn\_zdfexp} $>$ 1) or $(b)$ a backward (or implicit) time differencing scheme
1069(\np{ln\_zdfexp}=false) (see \S\ref{DOM_nxt}). Note that namelist variables
1070\np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics.
1071
1072The formulation of the vertical subgrid scale physics is the same whatever
1073the vertical coordinate is. The vertical diffusion operators given by
1074\eqref{Eq_PE_zdf} take the following semi-discrete space form:
1075\begin{equation} \label{Eq_dynzdf}
1076\left\{   \begin{aligned}
1077D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta _k \left[ \frac{A_{uw}^{vm} }{e_{3uw} }
1078                              \ \delta _{k+1/2} [\,u\,]         \right]     \\
1079\\
1080D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta _k \left[ \frac{A_{vw}^{vm} }{e_{3vw} }
1081                              \ \delta _{k+1/2} [\,v\,]         \right]
1082\end{aligned}   \right.
1083\end{equation} 
1084where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and
1085diffusivity coefficients. The way these coefficients are evaluated
1086depends on the vertical physics used (see \S\ref{ZDF}).
1087
1088The surface boundary condition on momentum is the stress exerted by
1089the wind. At the surface, the momentum fluxes are prescribed as the boundary
1090condition on the vertical turbulent momentum fluxes,
1091\begin{equation} \label{Eq_dynzdf_sbc}
1092\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1}
1093    = \frac{1}{\rho _o} \binom{\tau _u}{\tau _v }
1094\end{equation}
1095where $\left( \tau _u ,\tau _v \right)$ are the two components of the wind stress
1096vector in the (\textbf{i},\textbf{j}) coordinate system. The high mixing coefficients
1097in the surface mixed layer ensure that the surface wind stress is distributed in
1098the vertical over the mixed layer depth. If the vertical mixing coefficient
1099is small (when no mixed layer scheme is used) the surface stress enters only
1100the top model level, as a body force. The surface wind stress is calculated
1101in the surface module routines (SBC, see Chap.\ref{SBC})
1102
1103The turbulent flux of momentum at the bottom of the ocean is specified through
1104a bottom friction parameterisation (see \S\ref{ZDF_bfr})
1105
1106% ================================================================
1107% External Forcing
1108% ================================================================
1109\section{External Forcings}
1110\label{DYN_forcing}
1111
1112Besides the surface and bottom stresses (see the above section) which are
1113introduced as boundary conditions on the vertical mixing, two other forcings
1114enter the dynamical equations.
1115
1116One is the effect of atmospheric pressure on the ocean dynamics.
1117Another forcing term is the tidal potential.
1118Both of which will be introduced into the reference version soon.
1119
1120\gmcomment{atmospheric pressure is there!!!!    include its description }
1121
1122% ================================================================
1123% Time evolution term
1124% ================================================================
1125\section  [Time evolution term (\textit{dynnxt})]
1126      {Time evolution term (\mdl{dynnxt})}
1127\label{DYN_nxt}
1128
1129%----------------------------------------------namdom----------------------------------------------------
1130\namdisplay{namdom} 
1131%-------------------------------------------------------------------------------------------------------------
1132
1133The general framework for dynamics time stepping is a leap-frog scheme,
1134$i.e.$ a three level centred time scheme associated with an Asselin time filter
1135(cf. Chap.\ref{STP}). The scheme is applied to the velocity, except when using
1136the flux form of momentum advection (cf. \S\ref{DYN_adv_cor_flux}) in the variable
1137volume case (\key{vvl} defined), where it has to be applied to the thickness
1138weighted velocity (see \S\ref{Apdx_A_momentum}
1139
1140$\bullet$ vector invariant form or linear free surface (\np{ln\_dynhpg\_vec}=true ; \key{vvl} not defined):
1141\begin{equation} \label{Eq_dynnxt_vec}
1142\left\{   \begin{aligned}
1143&u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt  \ \text{RHS}_u^t     \\
1144&u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right]
1145\end{aligned}   \right.
1146\end{equation} 
1147
1148$\bullet$ flux form and nonlinear free surface (\np{ln\_dynhpg\_vec}=false ; \key{vvl} defined):
1149\begin{equation} \label{Eq_dynnxt_flux}
1150\left\{   \begin{aligned}
1151&\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t     \\
1152&\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t
1153  +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right]
1154\end{aligned}   \right.
1155\end{equation} 
1156where RHS is the right hand side of the momentum equation, the subscript $f$ 
1157denotes filtered values and $\gamma$ is the Asselin coefficient. $\gamma$ is
1158initialized as \np{nn\_atfp} (namelist parameter). Its default value is \np{nn\_atfp} = $10^{-3}$.
1159In both cases, the modified Asselin filter is not applied since perfect conservation
1160is not an issue for the momentum equations.
1161
1162Note that with the filtered free surface, the update of the \textit{after} velocities
1163is done in the \mdl{dynsp\_flt} module, and only array swapping
1164and Asselin filtering is done in \mdl{dynnxt}.
1165
1166% ================================================================
1167% Neptune effect
1168% ================================================================
1169\section  [Neptune effect (\textit{dynnept})]
1170                {Neptune effect (\mdl{dynnept})}
1171\label{DYN_nept}
1172
1173The "Neptune effect" (thus named in \citep{HollowayOM86}) is a
1174parameterisation of the potentially large effect of topographic form stress
1175(caused by eddies) in driving the ocean circulation. Originally developed for
1176low-resolution models, in which it was applied via a Laplacian (second-order)
1177diffusion-like term in the momentum equation, it can also be applied in eddy
1178permitting or resolving models, in which a more scale-selective bilaplacian
1179(fourth-order) implementation is preferred. This mechanism has a
1180significant effect on boundary currents (including undercurrents), and the
1181upwelling of deep water near continental shelves.
1182
1183The theoretical basis for the method can be found in
1184\citep{HollowayJPO92}, including the explanation of why form stress is not
1185necessarily a drag force, but may actually drive the flow.
1186\citep{HollowayJPO94} demonstrate the effects of the parameterisation in
1187the GFDL-MOM model, at a horizontal resolution of about 1.8 degrees.
1188\citep{HollowayOM08} demonstrate the biharmonic version of the
1189parameterisation in a global run of the POP model, with an average horizontal
1190grid spacing of about 32km.
1191
1192The NEMO implementation is a simplified form of that supplied by
1193Greg Holloway, the testing of which was described in \citep{HollowayJGR09}.
1194The major simplification is that a time invariant Neptune velocity
1195field is assumed.  This is computed only once, during start-up, and
1196made available to the rest of the code via a module.  Vertical
1197diffusive terms are also ignored, and the model topography itself
1198is used, rather than a separate topographic dataset as in
1199\citep{HollowayOM08}.  This implementation is only in the iso-level
1200formulation, as is the case anyway for the bilaplacian operator.
1201
1202The velocity field is derived from a transport stream function given by:
1203
1204\begin{equation} \label{Eq_dynnept_sf}
1205\psi = -fL^2H
1206\end{equation}
1207
1208where $L$ is a latitude-dependant length scale given by:
1209
1210\begin{equation} \label{Eq_dynnept_ls}
1211L = l_1 + (l_2 -l_1)\left ( {1 + \cos 2\phi \over 2 } \right )
1212\end{equation}
1213
1214where $\phi$ is latitude and $l_1$ and $l_2$ are polar and equatorial length scales respectively.
1215Neptune velocity components, $u^*$, $v^*$ are derived from the stremfunction as:
1216
1217\begin{equation} \label{Eq_dynnept_vel}
1218u^* = -{1\over H} {\partial \psi \over \partial y}\ \ \  ,\ \ \ v^* = {1\over H} {\partial \psi \over \partial x}
1219\end{equation}
1220
1221\smallskip
1222%----------------------------------------------namdom----------------------------------------------------
1223\namdisplay{namdyn_nept}
1224%--------------------------------------------------------------------------------------------------------
1225\smallskip
1226
1227The Neptune effect is enabled when \np{ln\_neptsimp}=true (default=false).
1228\np{ln\_smooth\_neptvel} controls whether a scale-selective smoothing is applied
1229to the Neptune effect flow field (default=false) (this smoothing method is as
1230used by Holloway).  \np{rn\_tslse} and \np{rn\_tslsp} are the equatorial and
1231polar values respectively of the length-scale parameter $L$ used in determining
1232the Neptune stream function \eqref{Eq_dynnept_sf} and \eqref{Eq_dynnept_ls}.
1233Values at intermediate latitudes are given by a cosine fit, mimicking the
1234variation of the deformation radius with latitude.  The default values of 12km
1235and 3km are those given in \citep{HollowayJPO94}, appropriate for a coarse
1236resolution model. The finer resolution study of \citep{HollowayOM08} increased
1237the values of L by a factor of $\sqrt 2$ to 17km and 4.2km, thus doubling the
1238stream function for a given topography.
1239
1240The simple formulation for ($u^*$, $v^*$) can give unacceptably large velocities
1241in shallow water, and \citep{HollowayOM08} add an offset to the depth in the
1242denominator to control this problem. In this implementation we offer instead (at
1243the suggestion of G. Madec) the option of ramping down the Neptune flow field to
1244zero over a finite depth range. The switch \np{ln\_neptramp} activates this
1245option (default=false), in which case velocities at depths greater than
1246\np{rn\_htrmax} are unaltered, but ramp down linearly with depth to zero at a
1247depth of \np{rn\_htrmin} (and shallower).
1248
1249% ================================================================
Note: See TracBrowser for help on using the repository browser.