New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DOM.tex in branches/2017/dev_CNRS_2017/DOC/TexFiles/Chapters – NEMO

source: branches/2017/dev_CNRS_2017/DOC/TexFiles/Chapters/Chap_DOM.tex @ 8938

Last change on this file since 8938 was 8938, checked in by flavoni, 7 years ago

update DOC: Configurations & Domain

File size: 55.6 KB
Line 
1\documentclass[NEMO_book]{subfiles}
2\begin{document}
3% ================================================================
4% Chapter 2 ——— Space and Time Domain (DOM)
5% ================================================================
6\chapter{Space Domain (DOM) }
7\label{DOM}
8\minitoc
9
10% Missing things:
11%  - istate: description of the initial state   ==> this has to be put elsewhere..
12%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
13%                  should be put outside of DOM routine (better with TRC staff and off-line
14%                  tracers)
15%  -geo2ocean:  how to switch from geographic to mesh coordinate
16%     - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
17
18
19\newpage
20$\ $\newline    % force a new line
21
22Having defined the continuous equations in Chap.~\ref{PE} and chosen a time
23discretization Chap.~\ref{STP}, we need to choose a discretization on a grid,
24and numerical algorithms. In the present chapter, we provide a general description
25of the staggered grid used in \NEMO, and other information relevant to the main
26directory routines as well as the DOM (DOMain) directory.
27
28$\ $\newline    % force a new line
29
30% ================================================================
31% Fundamentals of the Discretisation
32% ================================================================
33\section{Fundamentals of the Discretisation}
34\label{DOM_basics}
35
36% -------------------------------------------------------------------------------------------------------------
37%        Arrangement of Variables
38% -------------------------------------------------------------------------------------------------------------
39\subsection{Arrangement of Variables}
40\label{DOM_cell}
41
42%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
43\begin{figure}[!tb]    \begin{center}
44\includegraphics[width=0.90\textwidth]{Fig_cell}
45\caption{ \label{Fig_cell}   
46Arrangement of variables. $t$ indicates scalar points where temperature,
47salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$)
48indicates vector points, and $f$ indicates vorticity points where both relative and
49planetary vorticities are defined}
50\end{center}   \end{figure}
51%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
52
53The numerical techniques used to solve the Primitive Equations in this model are
54based on the traditional, centred second-order finite difference approximation.
55Special attention has been given to the homogeneity of the solution in the three
56space directions. The arrangement of variables is the same in all directions.
57It consists of cells centred on scalar points ($t$, $S$, $p$, $\rho$) with vector
58points $(u, v, w)$ defined in the centre of each face of the cells (Fig. \ref{Fig_cell}).
59This is the generalisation to three dimensions of the well-known ``C'' grid in
60Arakawa's classification \citep{Mesinger_Arakawa_Bk76}. The relative and
61planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge
62and the barotropic stream function $\psi$ is defined at horizontal points overlying
63the $\zeta$ and $f$-points.
64
65The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
66by the transformation that gives ($\lambda$ ,$\varphi$ ,$z$) as a function of $(i,j,k)$.
67The grid-points are located at integer or integer and a half value of $(i,j,k)$ as
68indicated on Table \ref{Tab_cell}. In all the following, subscripts $u$, $v$, $w$,
69$f$, $uw$, $vw$ or $fw$ indicate the position of the grid-point where the scale
70factors are defined. Each scale factor is defined as the local analytical value
71provided by \eqref{Eq_scale_factors}. As a result, the mesh on which partial
72derivatives $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \varphi}$, and
73$\frac{\partial}{\partial z} $ are evaluated is a uniform mesh with a grid size of unity.
74Discrete partial derivatives are formulated by the traditional, centred second order
75finite difference approximation while the scale factors are chosen equal to their
76local analytical value. An important point here is that the partial derivative of the
77scale factors must be evaluated by centred finite difference approximation, not
78from their analytical expression. This preserves the symmetry of the discrete set
79of equations and therefore satisfies many of the continuous properties (see
80Appendix~\ref{Apdx_C}). A similar, related remark can be made about the domain
81size: when needed, an area, volume, or the total ocean depth must be evaluated
82as the sum of the relevant scale factors (see \eqref{DOM_bar}) in the next section).
83
84%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
85\begin{table}[!tb]
86\begin{center} \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
87\hline
88&$i$     & $j$    & $k$     \\ \hline
89& $i+1/2$   & $j$    & $k$    \\ \hline
90& $i$    & $j+1/2$   & $k$    \\ \hline
91& $i$    & $j$    & $k+1/2$   \\ \hline
92& $i+1/2$   & $j+1/2$   & $k$    \\ \hline
93uw & $i+1/2$   & $j$    & $k+1/2$   \\ \hline
94vw & $i$    & $j+1/2$   & $k+1/2$   \\ \hline
95fw & $i+1/2$   & $j+1/2$   & $k+1/2$   \\ \hline
96\end{tabular}
97\caption{ \label{Tab_cell}
98Location of grid-points as a function of integer or integer and a half value of the column,
99line or level. This indexing is only used for the writing of the semi-discrete equation.
100In the code, the indexing uses integer values only and has a reverse direction
101in the vertical (see \S\ref{DOM_Num_Index})}
102\end{center}
103\end{table}
104%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
105
106% -------------------------------------------------------------------------------------------------------------
107%        Vector Invariant Formulation
108% -------------------------------------------------------------------------------------------------------------
109\subsection{Discrete Operators}
110\label{DOM_operators}
111
112Given the values of a variable $q$ at adjacent points, the differencing and
113averaging operators at the midpoint between them are:
114\begin{subequations} \label{Eq_di_mi}
115\begin{align}
116 \delta _i [q]       &\  \    q(i+1/2)  - q(i-1/2)    \\
117 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2
118\end{align}
119\end{subequations}
120
121Similar operators are defined with respect to $i+1/2$, $j$, $j+1/2$, $k$, and
122$k+1/2$. Following \eqref{Eq_PE_grad} and \eqref{Eq_PE_lap}, the gradient of a
123variable $q$ defined at a $t$-point has its three components defined at $u$-, $v$-
124and $w$-points while its Laplacien is defined at $t$-point. These operators have
125the following discrete forms in the curvilinear $s$-coordinate system:
126\begin{equation} \label{Eq_DOM_grad}
127\nabla q\equiv    \frac{1}{e_{1u} } \delta _{i+1/2 } [q] \;\,\mathbf{i}
128      +  \frac{1}{e_{2v} } \delta _{j+1/2 } [q] \;\,\mathbf{j}
129      +  \frac{1}{e_{3w}} \delta _{k+1/2} [q] \;\,\mathbf{k}
130\end{equation}
131\begin{multline} \label{Eq_DOM_lap}
132\Delta q\equiv \frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
133       \;\left(          \delta_\left[ \frac{e_{2u}\,e_{3u}} {e_{1u}} \;\delta_{i+1/2} [q] \right]
134+                        \delta_\left[ \frac{e_{1v}\,e_{3v}}  {e_{2v}} \;\delta_{j+1/2} [q] \right] \;  \right)      \\
135+\frac{1}{e_{3t}} \delta_k \left[ \frac{1}{e_{3w} }                     \;\delta_{k+1/2} [q] \right]
136\end{multline}
137
138Following \eqref{Eq_PE_curl} and \eqref{Eq_PE_div}, a vector ${\rm {\bf A}}=\left( a_1,a_2,a_3\right)$ 
139defined at vector points $(u,v,w)$ has its three curl components defined at $vw$-, $uw$,
140and $f$-points, and its divergence defined at $t$-points:
141\begin{eqnarray}  \label{Eq_DOM_curl}
142 \nabla \times {\rm{\bf A}}\equiv &
143      \frac{1}{e_{2v}\,e_{3vw} } \ \left( \delta_{j +1/2} \left[e_{3w}\,a_3 \right] -\delta_{k+1/2} \left[e_{2v} \,a_2 \right] \right&\ \mathbf{i} \\ 
144 +& \frac{1}{e_{2u}\,e_{3uw}} \ \left( \delta_{k+1/2} \left[e_{1u}\,a_1  \right] -\delta_{i +1/2} \left[e_{3w}\,a_3 \right] \right&\ \mathbf{j} \\
145 +& \frac{1}{e_{1f} \,e_{2f}    } \ \left( \delta_{i +1/2} \left[e_{2v}\,a_2  \right] -\delta_{j +1/2} \left[e_{1u}\,a_1 \right] \right&\ \mathbf{k}
146 \end{eqnarray}
147\begin{eqnarray} \label{Eq_DOM_div}
148\nabla \cdot \rm{\bf A} \equiv 
149    \frac{1}{e_{1t}\,e_{2t}\,e_{3t}} \left( \delta_i \left[e_{2u}\,e_{3u}\,a_1 \right]
150                                           +\delta_j \left[e_{1v}\,e_{3v}\,a_2 \right] \right)+\frac{1}{e_{3t} }\delta_k \left[a_3 \right]
151\end{eqnarray}
152
153The vertical average over the whole water column denoted by an overbar becomes
154for a quantity $q$ which is a masked field (i.e. equal to zero inside solid area):
155\begin{equation} \label{DOM_bar}
156\bar q   =         \frac{1}{H}    \int_{k^b}^{k^o} {q\;e_{3q} \,dk} 
157      \equiv \frac{1}{H_q }\sum\limits_k {q\;e_{3q} }
158\end{equation}
159where $H_q$  is the ocean depth, which is the masked sum of the vertical scale
160factors at $q$ points, $k^b$ and $k^o$ are the bottom and surface $k$-indices,
161and the symbol $k^o$ refers to a summation over all grid points of the same type
162in the direction indicated by the subscript (here $k$).
163
164In continuous form, the following properties are satisfied:
165\begin{equation} \label{Eq_DOM_curl_grad}
166\nabla \times \nabla q ={\rm {\bf {0}}}
167\end{equation}
168\begin{equation} \label{Eq_DOM_div_curl}
169\nabla \cdot \left( {\nabla \times {\rm {\bf A}}} \right)=0
170\end{equation}
171
172It is straightforward to demonstrate that these properties are verified locally in
173discrete form as soon as the scalar $q$ is taken at $t$-points and the vector
174\textbf{A} has its components defined at vector points $(u,v,w)$.
175
176Let $a$ and $b$ be two fields defined on the mesh, with value zero inside
177continental area. Using integration by parts it can be shown that the differencing
178operators ($\delta_i$, $\delta_j$ and $\delta_k$) are skew-symmetric linear operators,
179and further that the averaging operators $\overline{\,\cdot\,}^{\,i}$,
180$\overline{\,\cdot\,}^{\,k}$ and $\overline{\,\cdot\,}^{\,k}$) are symmetric linear
181operators, $i.e.$
182\begin{align} 
183\label{DOM_di_adj}
184\sum\limits_i { a_i \;\delta _i \left[ b \right]} 
185   &\equiv -\sum\limits_i {\delta _{i+1/2} \left[ a \right]\;b_{i+1/2} }      \\
186\label{DOM_mi_adj}
187\sum\limits_i { a_i \;\overline b^{\,i}} 
188   & \equiv \quad \sum\limits_i {\overline a ^{\,i+1/2}\;b_{i+1/2} } 
189\end{align}
190
191In other words, the adjoint of the differencing and averaging operators are
192$\delta_i^*=\delta_{i+1/2}$ and
193${(\overline{\,\cdot \,}^{\,i})}^*= \overline{\,\cdot\,}^{\,i+1/2}$, respectively.
194These two properties will be used extensively in the Appendix~\ref{Apdx_C} to
195demonstrate integral conservative properties of the discrete formulation chosen.
196
197% -------------------------------------------------------------------------------------------------------------
198%        Numerical Indexing
199% -------------------------------------------------------------------------------------------------------------
200\subsection{Numerical Indexing}
201\label{DOM_Num_Index}
202
203%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
204\begin{figure}[!tb]  \begin{center}
205\includegraphics[width=0.90\textwidth]{Fig_index_hor}
206\caption{   \label{Fig_index_hor}   
207Horizontal integer indexing used in the \textsc{Fortran} code. The dashed area indicates
208the cell in which variables contained in arrays have the same $i$- and $j$-indices}
209\end{center}   \end{figure}
210%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
211
212The array representation used in the \textsc{Fortran} code requires an integer
213indexing while the analytical definition of the mesh (see \S\ref{DOM_cell}) is
214associated with the use of integer values for $t$-points and both integer and
215integer and a half values for all the other points. Therefore a specific integer
216indexing must be defined for points other than $t$-points ($i.e.$ velocity and
217vorticity grid-points). Furthermore, the direction of the vertical indexing has
218been changed so that the surface level is at $k=1$.
219
220% -----------------------------------
221%        Horizontal Indexing
222% -----------------------------------
223\subsubsection{Horizontal Indexing}
224\label{DOM_Num_Index_hor}
225
226The indexing in the horizontal plane has been chosen as shown in Fig.\ref{Fig_index_hor}.
227For an increasing $i$ index ($j$ index), the $t$-point and the eastward $u$-point
228(northward $v$-point) have the same index (see the dashed area in Fig.\ref{Fig_index_hor}).
229A $t$-point and its nearest northeast $f$-point have the same $i$-and $j$-indices.
230
231% -----------------------------------
232%        Vertical indexing
233% -----------------------------------
234\subsubsection{Vertical Indexing}
235\label{DOM_Num_Index_vertical}
236
237In the vertical, the chosen indexing requires special attention since the
238$k$-axis is re-orientated downward in the \textsc{Fortran} code compared
239to the indexing used in the semi-discrete equations and given in \S\ref{DOM_cell}.
240The sea surface corresponds to the $w$-level $k=1$ which is the same index
241as $t$-level just below (Fig.\ref{Fig_index_vert}). The last $w$-level ($k=jpk$)
242either corresponds to the ocean floor or is inside the bathymetry while the last
243$t$-level is always inside the bathymetry (Fig.\ref{Fig_index_vert}). Note that
244for an increasing $k$ index, a $w$-point and the $t$-point just below have the
245same $k$ index, in opposition to what is done in the horizontal plane where
246it is the $t$-point and the nearest velocity points in the direction of the horizontal
247axis that have the same $i$ or $j$ index (compare the dashed area in
248Fig.\ref{Fig_index_hor} and \ref{Fig_index_vert}). Since the scale factors are
249chosen to be strictly positive, a \emph{minus sign} appears in the \textsc{Fortran} 
250code \emph{before all the vertical derivatives} of the discrete equations given in
251this documentation.
252
253%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
254\begin{figure}[!pt]    \begin{center}
255\includegraphics[width=.90\textwidth]{Fig_index_vert}
256\caption{ \label{Fig_index_vert}     
257Vertical integer indexing used in the \textsc{Fortran } code. Note that
258the $k$-axis is orientated downward. The dashed area indicates the cell in
259which variables contained in arrays have the same $k$-index.}
260\end{center}   \end{figure}
261%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
262
263% -----------------------------------
264%        Domain Size
265% -----------------------------------
266\subsubsection{Domain Size}
267\label{DOM_size}
268
269The total size of the computational domain is set by the parameters \np{jpiglo},
270\np{jpjglo} and \np{jpkglo} in the $i$, $j$ and $k$ directions respectively.
271%%%
272%%%
273%%%
274Parameters $jpi$ and $jpj$ refer to the size of each processor subdomain when the code is
275run in parallel using domain decomposition (\key{mpp\_mpi} defined, see \S\ref{LBC_mpp}).
276
277
278$\ $\newline    % force a new line
279
280% ================================================================
281% Domain: List of fields needed
282% ================================================================
283\section  [Domain: Needed fields]
284      {Domain: Needed fields}
285\label{DOM_fields}
286The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
287by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
288The grid-points are located at integer or integer and a half values of as indicated
289in Table~\ref{Tab_cell}. The associated scale factors are defined using the 
290analytical first derivative of the transformation \eqref{Eq_scale_factors}.
291Necessary fields for configuration definition are: \\
292Geographic position :
293
294longitude : glamt , glamu , glamv and glamf  (at T, U, V and F point)
295
296latitude : gphit , gphiu , gphiv and gphif (at T, U, V and F point)\\
297Coriolis parameter (if domain not on the sphere):
298
299 ff\_f  and  ff\_t (at T and F point)\\
300Scale factors :
301 
302 e1t, e1u, e1v and e1f (on i direction),
303
304 e2t, e2u, e2v and e2f (on j direction)
305
306 and ie1e2u\_v, e1e2u , e1e2v   
307 
308e1e2u , e1e2v are u and v surfaces (if gridsize reduction in some straits)\\
309ie1e2u\_v is a flag to flag set u and  v surfaces are neither read nor computed.\\
310 
311These fields can be read in an domain input file which name is setted in \np{cn\_domcfg} parameter specified in \ngn{namcfg}.
312\namdisplay{namcfg}
313or they can be defined in an analytical way in MY\_SRC directory of the configuration.
314For Reference Configurations of NEMO input domain files are supplied by NEMO System Team. For analytical definition of input fields two routines are supplied: \mdl{userdef\_hgr} and \mdl{userdef\_zgr}. They are an example of GYRE configuration parameters, and they are available in NEMO/OPA\_SRC/USR directory, they provide the horizontal and vertical mesh.
315% -------------------------------------------------------------------------------------------------------------
316%        Needed fields
317% -------------------------------------------------------------------------------------------------------------
318%\subsection{List of needed fields to build DOMAIN}
319%\label{DOM_fields_list}
320
321
322% ================================================================
323% Domain: Horizontal Grid (mesh)
324% ================================================================
325\section  [Domain: Horizontal Grid (mesh) (\textit{domhgr})]               
326      {Domain: Horizontal Grid (mesh) \small{(\mdl{domhgr} module)} }
327\label{DOM_hgr}
328
329% -------------------------------------------------------------------------------------------------------------
330%        Coordinates and scale factors
331% -------------------------------------------------------------------------------------------------------------
332\subsection{Coordinates and scale factors}
333\label{DOM_hgr_coord_e}
334
335The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
336by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
337The grid-points are located at integer or integer and a half values of as indicated
338in Table~\ref{Tab_cell}. The associated scale factors are defined using the
339analytical first derivative of the transformation \eqref{Eq_scale_factors}. These
340definitions are done in two modules, \mdl{domhgr} and \mdl{domzgr}, which
341provide the horizontal and vertical meshes, respectively. This section deals with
342the horizontal mesh parameters.
343
344In a horizontal plane, the location of all the model grid points is defined from the
345analytical expressions of the longitude $\lambda$ and  latitude $\varphi$ as a
346function of  $(i,j)$. The horizontal scale factors are calculated using
347\eqref{Eq_scale_factors}. For example, when the longitude and latitude are
348function of a single value ($i$ and $j$, respectively) (geographical configuration
349of the mesh), the horizontal mesh definition reduces to define the wanted
350$\lambda(i)$, $\varphi(j)$, and their derivatives $\lambda'(i)$ $\varphi'(j)$ in the
351\mdl{domhgr} module. The model computes the grid-point positions and scale
352factors in the horizontal plane as follows:
353\begin{flalign*}
354\lambda_t &\equiv \text{glamt}= \lambda(i)     & \varphi_t &\equiv \text{gphit} = \varphi(j)\\
355\lambda_u &\equiv \text{glamu}= \lambda(i+1/2)& \varphi_u &\equiv \text{gphiu}= \varphi(j)\\
356\lambda_v &\equiv \text{glamv}= \lambda(i)       & \varphi_v &\equiv \text{gphiv} = \varphi(j+1/2)\\
357\lambda_f &\equiv \text{glamf }= \lambda(i+1/2)& \varphi_f &\equiv \text{gphif }= \varphi(j+1/2)
358\end{flalign*}
359\begin{flalign*}
360e_{1t} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j)  |&
361e_{2t} &\equiv \text{e2t} = r_a |\varphi'(j)|  \\
362e_{1u} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)   \; \cos\varphi(j)  |&
363e_{2u} &\equiv \text{e2t} = r_a |\varphi'(j)|\\
364e_{1v} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j+1/2)  |&
365e_{2v} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|\\
366e_{1f} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)\; \cos\varphi(j+1/2)  |&
367e_{2f} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|
368\end{flalign*}
369where the last letter of each computational name indicates the grid point
370considered and $r_a$ is the earth radius (defined in \mdl{phycst} along with
371all universal constants). Note that the horizontal position of and scale factors
372at $w$-points are exactly equal to those of $t$-points, thus no specific arrays
373are defined at $w$-points.
374
375Note that the definition of the scale factors ($i.e.$ as the analytical first derivative
376of the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$) is
377specific to the \NEMO model \citep{Marti_al_JGR92}. As an example, $e_{1t}$ is defined
378locally at a $t$-point, whereas many other models on a C grid choose to define
379such a scale factor as the distance between the $U$-points on each side of the
380$t$-point. Relying on an analytical transformation has two advantages: firstly, there
381is no ambiguity in the scale factors appearing in the discrete equations, since they
382are first introduced in the continuous equations; secondly, analytical transformations
383encourage good practice by the definition of smoothly varying grids (rather than
384allowing the user to set arbitrary jumps in thickness between adjacent layers)
385\citep{Treguier1996}. An example of the effect of such a choice is shown in
386Fig.~\ref{Fig_zgr_e3}.
387%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
388\begin{figure}[!t]     \begin{center}
389\includegraphics[width=0.90\textwidth]{Fig_zgr_e3}
390\caption{ \label{Fig_zgr_e3}   
391Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical,
392and (b) analytically derived grid-point position and scale factors.
393For both grids here,  the same $w$-point depth has been chosen but in (a) the
394$t$-points are set half way between $w$-points while in (b) they are defined from
395an analytical function: $z(k)=5\,(k-1/2)^3 - 45\,(k-1/2)^2 + 140\,(k-1/2) - 150$.
396Note the resulting difference between the value of the grid-size $\Delta_k$ and
397those of the scale factor $e_k$. }
398\end{center}   \end{figure}
399%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
400
401% -------------------------------------------------------------------------------------------------------------
402%        Choice of horizontal grid
403% -------------------------------------------------------------------------------------------------------------
404\subsection{Choice of horizontal grid}
405\label{DOM_hgr_msh_choice}
406
407
408CAUTION! This part need to be rewritten! no jphgr\_mesh anymore
409
410The user has three options available in defining a horizontal grid, which involve
411the namelist variable \np{jphgr\_mesh} of the \ngn{namcfg} namelist.
412\begin{description}
413\item[\np{jphgr\_mesh}=0]  The most general curvilinear orthogonal grids.
414The coordinates and their first derivatives with respect to $i$ and $j$ are provided
415in a input file (\ifile{coordinates}), read in \rou{hgr\_read} subroutine of the domhgr module.
416\item[\np{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).
417For other analytical grids, the \mdl{domhgr} module must be modified by the user.
418\end{description}
419
420There are two simple cases of geographical grids on the sphere. With
421\np{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
422with grid sizes specified by parameters \np{ppe1\_deg} and \np{ppe2\_deg},
423respectively. Such a geographical grid can be very anisotropic at high latitudes
424because of the convergence of meridians (the zonal scale factors $e_1$ 
425become much smaller than the meridional scale factors $e_2$). The Mercator
426grid (\np{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
427factors in the same way as the zonal ones. In this case, meridional scale factors
428and latitudes are calculated analytically using the formulae appropriate for
429a Mercator projection, based on \np{ppe1\_deg} which is a reference grid spacing
430at the equator (this applies even when the geographical equator is situated outside
431the model domain).
432%%%
433\gmcomment{ give here the analytical expression of the Mercator mesh}
434%%%
435In these two cases (\np{jphgr\_mesh}=1 or 4), the grid position is defined by the
436longitude and latitude of the south-westernmost point (\np{ppglamt0} 
437and \np{ppgphi0}). Note that for the Mercator grid the user need only provide
438an approximate starting latitude: the real latitude will be recalculated analytically,
439in order to ensure that the equator corresponds to line passing through $t$-
440and $u$-points. 
441
442Rectangular grids ignoring the spherical geometry are defined with
443\np{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\np{jphgr\_mesh} = 2,
444Coriolis factor is constant) or a beta-plane (\np{jphgr\_mesh} = 3, the Coriolis factor
445is linear in the $j$-direction). The grid size is uniform in meter in each direction,
446and given by the parameters \np{ppe1\_m} and \np{ppe2\_m} respectively.
447The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
448with the first $t$-point. The meridional coordinate (gphi. arrays) is in kilometers,
449and the second $t$-point corresponds to coordinate $gphit=0$. The input
450variable \np{ppglam0} is ignored. \np{ppgphi0} is used to set the reference
451latitude for computation of the Coriolis parameter. In the case of the beta plane,
452\np{ppgphi0} corresponds to the center of the domain. Finally, the special case
453\np{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
454GYRE configuration, representing a classical mid-latitude double gyre system.
455The rotation allows us to maximize the jet length relative to the gyre areas
456(and the number of grid points).
457
458The choice of the grid must be consistent with the boundary conditions specified
459by \np{jperio}, a parameter found in \ngn{namcfg} namelist (see {\S\ref{LBC}).
460
461% -------------------------------------------------------------------------------------------------------------
462%        Grid files
463% -------------------------------------------------------------------------------------------------------------
464\subsection{Output Grid files}
465\label{DOM_hgr_files}
466
467All the arrays relating to a particular ocean model configuration (grid-point
468position, scale factors, masks) can be saved in files if $\np{nn\_msh} \not= 0$ 
469(namelist variable in \ngn{namdom}). This can be particularly useful for plots and off-line
470diagnostics. In some cases, the user may choose to make a local modification
471of a scale factor in the code. This is the case in global configurations when
472restricting the width of a specific strait (usually a one-grid-point strait that
473happens to be too wide due to insufficient model resolution). An example
474is Gibraltar Strait in the ORCA2 configuration. When such modifications are done,
475the output grid written when $\np{nn\_msh} \not=0$ is no more equal to the input grid.
476
477$\ $\newline    % force a new line
478
479% ================================================================
480% Domain: Vertical Grid (domzgr)
481% ================================================================
482\section  [Domain: Vertical Grid (\textit{domzgr})]
483      {Domain: Vertical Grid \small{(\mdl{domzgr} module)} }
484\label{DOM_zgr}
485%-----------------------------------------nam_zgr & namdom-------------------------------------------
486\namdisplay{namzgr} 
487\namdisplay{namdom} 
488%-------------------------------------------------------------------------------------------------------------
489
490Variables are defined through the \ngn{namzgr} and \ngn{namdom} namelists.
491In the vertical, the model mesh is determined by four things:
492(1) the bathymetry given in meters ;
493(2) the number of levels of the model (\jp{jpk}) ;
494(3) the analytical transformation $z(i,j,k)$ and the vertical scale factors
495(derivatives of the transformation) ;
496and (4) the masking system, $i.e.$ the number of wet model levels at each
497$(i,j)$ column of points.
498
499%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
500\begin{figure}[!tb]    \begin{center}
501\includegraphics[width=1.0\textwidth]{Fig_z_zps_s_sps}
502\caption{  \label{Fig_z_zps_s_sps}   
503The ocean bottom as seen by the model:
504(a) $z$-coordinate with full step,
505(b) $z$-coordinate with partial step,
506(c) $s$-coordinate: terrain following representation,
507(d) hybrid $s-z$ coordinate,
508(e) hybrid $s-z$ coordinate with partial step, and
509(f) same as (e) but in the non-linear free surface (\np{ln\_linssh}=false).
510Note that the non-linear free surface can be used with any of the
5115 coordinates (a) to (e).}
512\end{center}   \end{figure}
513%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
514
515The choice of a vertical coordinate, even if it is made through \ngn{namzgr} namelist parameters,
516must be done once of all at the beginning of an experiment. It is not intended as an
517option which can be enabled or disabled in the middle of an experiment. Three main
518choices are offered (Fig.~\ref{Fig_z_zps_s_sps}a to c): $z$-coordinate with full step
519bathymetry (\np{ln\_zco}~=~true), $z$-coordinate with partial step bathymetry
520(\np{ln\_zps}~=~true), or generalized, $s$-coordinate (\np{ln\_sco}~=~true).
521Hybridation of the three main coordinates are available: $s-z$ or $s-zps$ coordinate
522(Fig.~\ref{Fig_z_zps_s_sps}d and \ref{Fig_z_zps_s_sps}e). By default a non-linear free surface is used:
523the coordinate follow the time-variation of the free surface so that the transformation is time dependent:
524$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). When a linear free surface is assumed (\np{ln\_linssh}=true),
525the vertical coordinate are fixed in time, but the seawater can move up and down across the z=0 surface
526(in other words, the top of the ocean in not a rigid-lid).
527The last choice in terms of vertical coordinate concerns the presence (or not) in the model domain
528of ocean cavities beneath ice shelves. Setting \np{ln\_isfcav} to true allows to manage ocean cavities,
529otherwise they are filled in. This option is currently only available in $z$- or $zps$-coordinate,
530and partial step are also applied at the ocean/ice shelf interface.
531
532Contrary to the horizontal grid, the vertical grid is computed in the code and no
533provision is made for reading it from a file. The only input file is the bathymetry
534(in meters) (\ifile{bathy\_meter}).
535\footnote{N.B. in full step $z$-coordinate, a \ifile{bathy\_level} file can replace the
536\ifile{bathy\_meter} file, so that the computation of the number of wet ocean point
537in each water column is by-passed}.
538If \np{ln\_isfcav}~=~true, an extra file input file describing the ice shelf draft
539(in meters) (\ifile{isf\_draft\_meter}) is needed.
540
541After reading the bathymetry, the algorithm for vertical grid definition differs
542between the different options:
543\begin{description}
544\item[\textit{zco}] set a reference coordinate transformation $z_0 (k)$, and set $z(i,j,k,t)=z_0 (k)$.
545\item[\textit{zps}] set a reference coordinate transformation $z_0 (k)$, and
546calculate the thickness of the deepest level at each $(i,j)$ point using the
547bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
548\item[\textit{sco}] smooth the bathymetry to fulfil the hydrostatic consistency
549criteria and set the three-dimensional transformation.
550\item[\textit{s-z} and \textit{s-zps}] smooth the bathymetry to fulfil the hydrostatic
551consistency criteria and set the three-dimensional transformation $z(i,j,k)$, and
552possibly introduce masking of extra land points to better fit the original bathymetry file
553\end{description}
554%%%
555\gmcomment{   add the description of the smoothing:  envelop topography...}
556%%%
557
558Unless a linear free surface is used (\np{ln\_linssh}=false), the arrays describing
559the grid point depths and vertical scale factors are three set of three dimensional arrays $(i,j,k)$ 
560defined at \textit{before}, \textit{now} and \textit{after} time step. The time at which they are
561defined is indicated by a suffix:$\_b$, $\_n$, or $\_a$, respectively. They are updated at each model time step
562using a fixed reference coordinate system which computer names have a $\_0$ suffix.
563When the linear free surface option is used (\np{ln\_linssh}=true), \textit{before}, \textit{now} 
564and \textit{after} arrays are simply set one for all to their reference counterpart.
565
566
567% -------------------------------------------------------------------------------------------------------------
568%        Meter Bathymetry
569% -------------------------------------------------------------------------------------------------------------
570\subsection{Meter Bathymetry}
571\label{DOM_bathy}
572
573Three options are possible for defining the bathymetry, according to the
574namelist variable \np{nn\_bathy} (found in \ngn{namdom} namelist):
575\begin{description}
576\item[\np{nn\_bathy} = 0] a flat-bottom domain is defined. The total depth $z_w (jpk)$ 
577is given by the coordinate transformation. The domain can either be a closed
578basin or a periodic channel depending on the parameter \np{jperio}.
579\item[\np{nn\_bathy} = -1] a domain with a bump of topography one third of the
580domain width at the central latitude. This is meant for the "EEL-R5" configuration,
581a periodic or open boundary channel with a seamount.
582\item[\np{nn\_bathy} = 1] read a bathymetry and ice shelf draft (if needed).
583 The \ifile{bathy\_meter} file (Netcdf format) provides the ocean depth (positive, in meters)
584 at each grid point of the model grid. The bathymetry is usually built by interpolating a standard bathymetry product
585($e.g.$ ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry also
586defines the coastline: where the bathymetry is zero, no model levels are defined
587(all levels are masked).
588
589The \ifile{isfdraft\_meter} file (Netcdf format) provides the ice shelf draft (positive, in meters)
590 at each grid point of the model grid. This file is only needed if \np{ln\_isfcav}~=~true.
591Defining the ice shelf draft will also define the ice shelf edge and the grounding line position.
592\end{description}
593
594When a global ocean is coupled to an atmospheric model it is better to represent
595all large water bodies (e.g, great lakes, Caspian sea...) even if the model
596resolution does not allow their communication with the rest of the ocean.
597This is unnecessary when the ocean is forced by fixed atmospheric conditions,
598so these seas can be removed from the ocean domain. The user has the option
599to set the bathymetry in closed seas to zero (see \S\ref{MISC_closea}), but the
600code has to be adapted to the user's configuration.
601
602% -------------------------------------------------------------------------------------------------------------
603%        z-coordinate  and reference coordinate transformation
604% -------------------------------------------------------------------------------------------------------------
605\subsection[$z$-coordinate (\np{ln\_zco}]
606        {$z$-coordinate (\np{ln\_zco}=true) and reference coordinate}
607\label{DOM_zco}
608
609%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
610\begin{figure}[!tb]    \begin{center}
611\includegraphics[width=0.90\textwidth]{Fig_zgr}
612\caption{ \label{Fig_zgr}   
613Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level functions for
614(a) T-point depth and (b) the associated scale factor as computed
615from \eqref{DOM_zgr_ana} using \eqref{DOM_zgr_coef} in $z$-coordinate.}
616\end{center}   \end{figure}
617%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
618
619The reference coordinate transformation $z_0 (k)$ defines the arrays $gdept_0$ 
620and $gdepw_0$ for $t$- and $w$-points, respectively. As indicated on
621Fig.\ref{Fig_index_vert} \jp{jpk} is the number of $w$-levels. $gdepw_0(1)$ is the
622ocean surface. There are at most \jp{jpk}-1 $t$-points inside the ocean, the
623additional $t$-point at $jk=jpk$ is below the sea floor and is not used.
624The vertical location of $w$- and $t$-levels is defined from the analytic expression
625of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides the
626vertical scale factors. The user must provide the analytical expression of both
627$z_0$ and its first derivative with respect to $k$. This is done in routine \mdl{domzgr} 
628through statement functions, using parameters provided in the \ngn{namcfg} namelist.
629
630It is possible to define a simple regular vertical grid by giving zero stretching (\np{ppacr=0}).
631In that case, the parameters \jp{jpk} (number of $w$-levels) and \np{pphmax} 
632(total ocean depth in meters) fully define the grid.
633
634For climate-related studies it is often desirable to concentrate the vertical resolution
635near the ocean surface. The following function is proposed as a standard for a
636$z$-coordinate (with either full or partial steps):
637\begin{equation} \label{DOM_zgr_ana}
638\begin{split}
639 z_0 (k)    &= h_{sur} -h_0 \;k-\;h_1 \;\log \left[ {\,\cosh \left( {{(k-h_{th} )} / {h_{cr} }} \right)\,} \right] \\ 
640 e_3^0 (k)  &= \left| -h_0 -h_1 \;\tanh \left( {{(k-h_{th} )} / {h_{cr} }} \right) \right|
641\end{split}
642\end{equation}
643where $k=1$ to \jp{jpk} for $w$-levels and $k=1$ to $k=1$ for $T-$levels. Such an
644expression allows us to define a nearly uniform vertical location of levels at the
645ocean top and bottom with a smooth hyperbolic tangent transition in between
646(Fig.~\ref{Fig_zgr}).
647
648If the ice shelf cavities are opened (\np{ln\_isfcav}=~true~}), the definition of $z_0$ is the same.
649However, definition of $e_3^0$ at $t$- and $w$-points is respectively changed to:
650\begin{equation} \label{DOM_zgr_ana}
651\begin{split}
652 e_3^T(k) &= z_W (k+1) - z_W (k)   \\
653 e_3^W(k) &= z_T (k)   - z_T (k-1) \\
654\end{split}
655\end{equation}
656This formulation decrease the self-generated circulation into the ice shelf cavity
657(which can, in extreme case, leads to blow up).\\
658
659 
660The most used vertical grid for ORCA2 has $10~m$ ($500~m)$ resolution in the
661surface (bottom) layers and a depth which varies from 0 at the sea surface to a
662minimum of $-5000~m$. This leads to the following conditions:
663\begin{equation} \label{DOM_zgr_coef}
664\begin{split}
665 e_3 (1+1/2)      &=10. \\ 
666 e_3 (jpk-1/2) &=500. \\ 
667 z(1)       &=0. \\ 
668 z(jpk)        &=-5000. \\ 
669\end{split}
670\end{equation}
671
672With the choice of the stretching $h_{cr} =3$ and the number of levels
673\jp{jpk}=$31$, the four coefficients $h_{sur}$, $h_{0}$, $h_{1}$, and $h_{th}$ in
674\eqref{DOM_zgr_ana} have been determined such that \eqref{DOM_zgr_coef} is
675satisfied, through an optimisation procedure using a bisection method. For the first
676standard ORCA2 vertical grid this led to the following values: $h_{sur} =4762.96$,
677$h_0 =255.58, h_1 =245.5813$, and $h_{th} =21.43336$. The resulting depths and
678scale factors as a function of the model levels are shown in Fig.~\ref{Fig_zgr} and
679given in Table \ref{Tab_orca_zgr}. Those values correspond to the parameters
680\np{ppsur}, \np{ppa0}, \np{ppa1}, \np{ppkth} in \ngn{namcfg} namelist.
681
682Rather than entering parameters $h_{sur}$, $h_{0}$, and $h_{1}$ directly, it is
683possible to recalculate them. In that case the user sets
684\np{ppsur}=\np{ppa0}=\np{ppa1}=999999., in \ngn{namcfg} namelist,
685and specifies instead the four following parameters:
686\begin{itemize}
687\item    \np{ppacr}=$h_{cr} $: stretching factor (nondimensional). The larger
688\np{ppacr}, the smaller the stretching. Values from $3$ to $10$ are usual.
689\item    \np{ppkth}=$h_{th} $: is approximately the model level at which maximum
690stretching occurs (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
691\item    \np{ppdzmin}: minimum thickness for the top layer (in meters)
692\item    \np{pphmax}: total depth of the ocean (meters).
693\end{itemize}
694As an example, for the $45$ layers used in the DRAKKAR configuration those
695parameters are: \jp{jpk}=46, \np{ppacr}=9, \np{ppkth}=23.563, \np{ppdzmin}=6m,
696\np{pphmax}=5750m.
697
698%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
699\begin{table}     \begin{center} \begin{tabular}{c||r|r|r|r}
700\hline
701\textbf{LEVEL}& \textbf{gdept\_1d}& \textbf{gdepw\_1d}& \textbf{e3t\_1d }& \textbf{e3w\_1d  } \\ \hline
702&  \textbf{  5.00}   &       0.00 & \textbf{ 10.00} &  10.00 \\   \hline
703&  \textbf{15.00} &    10.00 &   \textbf{ 10.00} &  10.00 \\   \hline
704&  \textbf{25.00} &    20.00 &   \textbf{ 10.00} &     10.00 \\   \hline
705&  \textbf{35.01} &    30.00 &   \textbf{ 10.01} &     10.00 \\   \hline
706&  \textbf{45.01} &    40.01 &   \textbf{ 10.01} &  10.01 \\   \hline
707&  \textbf{55.03} &    50.02 &   \textbf{ 10.02} &     10.02 \\   \hline
708&  \textbf{65.06} &    60.04 &   \textbf{ 10.04} &  10.03 \\   \hline
709&  \textbf{75.13} &    70.09 &   \textbf{ 10.09} &  10.06 \\   \hline
710&  \textbf{85.25} &    80.18 &   \textbf{ 10.17} &  10.12 \\   \hline
71110 &  \textbf{95.49} &    90.35 &   \textbf{ 10.33} &  10.24 \\   \hline
71211 &  \textbf{105.97}   &   100.69 &   \textbf{ 10.65} &  10.47 \\   \hline
71312 &  \textbf{116.90}   &   111.36 &   \textbf{ 11.27} &  10.91 \\   \hline
71413 &  \textbf{128.70}   &   122.65 &   \textbf{ 12.47} &  11.77 \\   \hline
71514 &  \textbf{142.20}   &   135.16 &   \textbf{ 14.78} &  13.43 \\   \hline
71615 &  \textbf{158.96}   &   150.03 &   \textbf{ 19.23} &  16.65 \\   \hline
71716 &  \textbf{181.96}   &   169.42 &   \textbf{ 27.66} &  22.78 \\   \hline
71817 &  \textbf{216.65}   &   197.37 &   \textbf{ 43.26} &  34.30 \\ \hline
71918 &  \textbf{272.48}   &   241.13 &   \textbf{ 70.88} &  55.21 \\ \hline
72019 &  \textbf{364.30}   &   312.74 &   \textbf{116.11} &  90.99 \\ \hline
72120 &  \textbf{511.53}   &   429.72 &   \textbf{181.55} &    146.43 \\ \hline
72221 &  \textbf{732.20}   &   611.89 &   \textbf{261.03} &    220.35 \\ \hline
72322 &  \textbf{1033.22}&  872.87 &   \textbf{339.39} &    301.42 \\ \hline
72423 &  \textbf{1405.70}& 1211.59 & \textbf{402.26} &   373.31 \\ \hline
72524 &  \textbf{1830.89}& 1612.98 & \textbf{444.87} &   426.00 \\ \hline
72625 &  \textbf{2289.77}& 2057.13 & \textbf{470.55} &   459.47 \\ \hline
72726 &  \textbf{2768.24}& 2527.22 & \textbf{484.95} &   478.83 \\ \hline
72827 &  \textbf{3257.48}& 3011.90 & \textbf{492.70} &   489.44 \\ \hline
72928 &  \textbf{3752.44}& 3504.46 & \textbf{496.78} &   495.07 \\ \hline
73029 &  \textbf{4250.40}& 4001.16 & \textbf{498.90} &   498.02 \\ \hline
73130 &  \textbf{4749.91}& 4500.02 & \textbf{500.00} &   499.54 \\ \hline
73231 &  \textbf{5250.23}& 5000.00 &   \textbf{500.56} & 500.33 \\ \hline
733\end{tabular} \end{center} 
734\caption{ \label{Tab_orca_zgr}   
735Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as computed
736from \eqref{DOM_zgr_ana} using the coefficients given in \eqref{DOM_zgr_coef}}
737\end{table}
738%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
739
740% -------------------------------------------------------------------------------------------------------------
741%        z-coordinate with partial step
742% -------------------------------------------------------------------------------------------------------------
743\subsection   [$z$-coordinate with partial step (\np{ln\_zps})]
744         {$z$-coordinate with partial step (\np{ln\_zps}=.true.)}
745\label{DOM_zps}
746%--------------------------------------------namdom-------------------------------------------------------
747\namdisplay{namdom} 
748%--------------------------------------------------------------------------------------------------------------
749
750In $z$-coordinate partial step, the depths of the model levels are defined by the
751reference analytical function $z_0 (k)$ as described in the previous
752section, \emph{except} in the bottom layer. The thickness of the bottom layer is
753allowed to vary as a function of geographical location $(\lambda,\varphi)$ to allow a
754better representation of the bathymetry, especially in the case of small
755slopes (where the bathymetry varies by less than one level thickness from
756one grid point to the next). The reference layer thicknesses $e_{3t}^0$ have been
757defined in the absence of bathymetry. With partial steps, layers from 1 to
758\jp{jpk}-2 can have a thickness smaller than $e_{3t}(jk)$. The model deepest layer (\jp{jpk}-1)
759is allowed to have either a smaller or larger thickness than $e_{3t}(jpk)$: the
760maximum thickness allowed is $2*e_{3t}(jpk-1)$. This has to be kept in mind when
761specifying values in \ngn{namdom} namelist, as the maximum depth \np{pphmax} 
762in partial steps: for example, with
763\np{pphmax}$=5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean depth
764allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk-1)$ being $250~m$).
765Two variables in the namdom namelist are used to define the partial step
766vertical grid. The mimimum water thickness (in meters) allowed for a cell
767partially filled with bathymetry at level jk is the minimum of \np{rn\_e3zps\_min} 
768(thickness in meters, usually $20~m$) or $e_{3t}(jk)*\np{rn\_e3zps\_rat}$ (a fraction,
769usually 10\%, of the default thickness $e_{3t}(jk)$).
770
771\gmcomment{ \colorbox{yellow}{Add a figure here of pstep especially at last ocean level }  }
772
773% -------------------------------------------------------------------------------------------------------------
774%        s-coordinate
775% -------------------------------------------------------------------------------------------------------------
776\subsection   [$s$-coordinate (\np{ln\_sco})]
777           {$s$-coordinate (\np{ln\_sco}=true)}
778\label{DOM_sco}
779%------------------------------------------nam_zgr_sco---------------------------------------------------
780\namdisplay{namzgr_sco} 
781%--------------------------------------------------------------------------------------------------------------
782Options are defined in \ngn{namzgr\_sco}.
783In $s$-coordinate (\np{ln\_sco}~=~true), the depth and thickness of the model
784levels are defined from the product of a depth field and either a stretching
785function or its derivative, respectively:
786
787\begin{equation} \label{DOM_sco_ana}
788\begin{split}
789 z(k)       &= h(i,j) \; z_0(k)  \\
790 e_3(k)  &= h(i,j) \; z_0'(k)
791\end{split}
792\end{equation}
793
794where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $t$-point
795location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea
796surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean
797depth, since a mixed step-like and bottom-following representation of the
798topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e) or an envelop bathymetry can be defined (Fig.~\ref{Fig_z_zps_s_sps}f).
799The namelist parameter \np{rn\_rmax} determines the slope at which the terrain-following coordinate intersects
800the sea bed and becomes a pseudo z-coordinate.
801The coordinate can also be hybridised by specifying \np{rn\_sbot\_min} and \np{rn\_sbot\_max} 
802as the minimum and maximum depths at which the terrain-following vertical coordinate is calculated.
803
804Options for stretching the coordinate are provided as examples, but care must be taken to ensure
805that the vertical stretch used is appropriate for the application.
806
807The original default NEMO s-coordinate stretching is available if neither of the other options
808are specified as true (\np{ln\_s\_SH94}~=~false and \np{ln\_s\_SF12}~=~false).
809This uses a depth independent $\tanh$ function for the stretching \citep{Madec_al_JPO96}:
810
811\begin{equation}
812  z = s_{min}+C\left(s\right)\left(H-s_{min}\right)
813  \label{eq:SH94_1}
814\end{equation}
815
816where $s_{min}$ is the depth at which the $s$-coordinate stretching starts and
817allows a $z$-coordinate to placed on top of the stretched coordinate,
818and $z$ is the depth (negative down from the asea surface).
819
820\begin{equation}
821  s = -\frac{k}{n-1} \quad \text{ and } \quad 0 \leq k \leq n-1
822  \label{eq:s}
823\end{equation}
824
825\begin{equation} \label{DOM_sco_function}
826\begin{split}
827C(s)  &\frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)} 
828               - \tanh{ \left\theta \, b      \right)}  \right]}
829            {2\;\sinh \left( \theta \right)}
830\end{split}
831\end{equation}
832
833A stretching function, modified from the commonly used \citet{Song_Haidvogel_JCP94} 
834stretching (\np{ln\_s\_SH94}~=~true), is also available and is more commonly used for shelf seas modelling:
835
836\begin{equation}
837  C\left(s\right) =   \left(1 - b \right)\frac{ \sinh\left( \theta s\right)}{\sinh\left(\theta\right)} +      \\
838  b\frac{ \tanh \left[ \theta \left(s + \frac{1}{2} \right)\right] - \tanh\left(\frac{\theta}{2}\right)}{ 2\tanh\left (\frac{\theta}{2}\right)}
839  \label{eq:SH94_2}
840\end{equation}
841
842%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
843\begin{figure}[!ht]    \begin{center}
844\includegraphics[width=1.0\textwidth]{Fig_sco_function}
845\caption{  \label{Fig_sco_function}   
846Examples of the stretching function applied to a seamount; from left to right:
847surface, surface and bottom, and bottom intensified resolutions}
848\end{center}   \end{figure}
849%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
850
851where $H_c$ is the critical depth (\np{rn\_hc}) at which the coordinate transitions from
852pure $\sigma$ to the stretched coordinate,  and $\theta$ (\np{rn\_theta}) and $b$ (\np{rn\_bb})
853are the surface and bottom control parameters such that $0\leqslant \theta \leqslant 20$, and
854$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom
855increase of the vertical resolution (Fig.~\ref{Fig_sco_function}).
856
857Another example has been provided at version 3.5 (\np{ln\_s\_SF12}) that allows
858a fixed surface resolution in an analytical terrain-following stretching \citet{Siddorn_Furner_OM12}.
859In this case the a stretching function $\gamma$ is defined such that:
860
861\begin{equation}
862z = -\gamma h \quad \text{ with } \quad 0 \leq \gamma \leq 1
863\label{eq:z}
864\end{equation}
865
866The function is defined with respect to $\sigma$, the unstretched terrain-following coordinate:
867
868\begin{equation} \label{DOM_gamma_deriv}
869\gamma= A\left(\sigma-\frac{1}{2}\left(\sigma^{2}+f\left(\sigma\right)\right)\right)+B\left(\sigma^{3}-f\left(\sigma\right)\right)+f\left(\sigma\right)
870\end{equation}
871
872Where:
873\begin{equation} \label{DOM_gamma}
874f\left(\sigma\right)=\left(\alpha+2\right)\sigma^{\alpha+1}-\left(\alpha+1\right)\sigma^{\alpha+2} \quad \text{ and } \quad \sigma = \frac{k}{n-1} 
875\end{equation}
876
877This gives an analytical stretching of $\sigma$ that is solvable in $A$ and $B$ as a function of
878the user prescribed stretching parameter $\alpha$ (\np{rn\_alpha}) that stretches towards
879the surface ($\alpha > 1.0$) or the bottom ($\alpha < 1.0$) and user prescribed surface (\np{rn\_zs})
880and bottom depths. The bottom cell depth in this example is given as a function of water depth:
881
882\begin{equation} \label{DOM_zb}
883Z_b= h a + b
884\end{equation}
885
886where the namelist parameters \np{rn\_zb\_a} and \np{rn\_zb\_b} are $a$ and $b$ respectively.
887
888%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
889\begin{figure}[!ht]
890   \includegraphics[width=1.0\textwidth]{FIG_DOM_compare_coordinates_surface}
891        \caption{A comparison of the \citet{Song_Haidvogel_JCP94} $S$-coordinate (solid lines), a 50 level $Z$-coordinate (contoured surfaces) and the \citet{Siddorn_Furner_OM12} $S$-coordinate (dashed lines) in the surface 100m for a idealised bathymetry that goes from 50m to 5500m depth. For clarity every third coordinate surface is shown.}
892    \label{fig_compare_coordinates_surface}
893\end{figure}
894%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
895
896This gives a smooth analytical stretching in computational space that is constrained to given specified surface and bottom grid cell thicknesses in real space. This is not to be confused with the hybrid schemes that superimpose geopotential coordinates on terrain following coordinates thus creating a non-analytical vertical coordinate that therefore may suffer from large gradients in the vertical resolutions. This stretching is less straightforward to implement than the \citet{Song_Haidvogel_JCP94} stretching, but has the advantage of resolving diurnal processes in deep water and has generally flatter slopes.
897
898As with the \citet{Song_Haidvogel_JCP94} stretching the stretch is only applied at depths greater than the critical depth $h_c$. In this example two options are available in depths shallower than $h_c$, with pure sigma being applied if the \np{ln\_sigcrit} is true and pure z-coordinates if it is false (the z-coordinate being equal to the depths of the stretched coordinate at $h_c$.
899
900Minimising the horizontal slope of the vertical coordinate is important in terrain-following systems as large slopes lead to hydrostatic consistency. A hydrostatic consistency parameter diagnostic following \citet{Haney1991} has been implemented, and is output as part of the model mesh file at the start of the run.
901
902% -------------------------------------------------------------------------------------------------------------
903%        z*- or s*-coordinate
904% -------------------------------------------------------------------------------------------------------------
905\subsection{$z^*$- or $s^*$-coordinate (\np{ln\_linssh}=false) }
906\label{DOM_zgr_star}
907
908This option is described in the Report by Levier \textit{et al.} (2007), available on the \NEMO web site.
909
910%gm% key advantage: minimise the diffusion/dispertion associated with advection in response to high frequency surface disturbances
911
912% -------------------------------------------------------------------------------------------------------------
913%        level bathymetry and mask
914% -------------------------------------------------------------------------------------------------------------
915\subsection{level bathymetry and mask}
916\label{DOM_msk}
917
918Whatever the vertical coordinate used, the model offers the possibility of
919representing the bottom topography with steps that follow the face of the
920model cells (step like topography) \citep{Madec_al_JPO96}. The distribution of
921the steps in the horizontal is defined in a 2D integer array, mbathy, which
922gives the number of ocean levels ($i.e.$ those that are not masked) at each
923$t$-point. mbathy is computed from the meter bathymetry using the definiton of
924gdept as the number of $t$-points which gdept $\leq$ bathy.
925
926Modifications of the model bathymetry are performed in the \textit{bat\_ctl} 
927routine (see \mdl{domzgr} module) after mbathy is computed. Isolated grid points
928that do not communicate with another ocean point at the same level are eliminated.
929
930As for the representation of bathymetry, a 2D integer array, misfdep, is created.
931misfdep defines the level of the first wet $t$-point. All the cells between $k=1$ and $misfdep(i,j)-1$ are masked.
932By default, misfdep(:,:)=1 and no cells are masked.
933
934In case of ice shelf cavities, modifications of the model bathymetry and ice shelf draft into
935the cavities are performed in the \textit{zgr\_isf} routine. The compatibility between ice shelf draft and bathymetry is checked.
936All the locations where the isf cavity is thinnest than \np{rn\_isfhmin} meters are grounded ($i.e.$ masked).
937If only one cell on the water column is opened at $t$-, $u$- or $v$-points, the bathymetry or the ice shelf draft is dug to fit this constrain.
938If the incompatibility is too strong (need to dig more than 1 cell), the cell is masked.\\ 
939
940From the \textit{mbathy} and \textit{misfdep} array, the mask fields are defined as follows:
941\begin{align*}
942tmask(i,j,k) &= \begin{cases}   \; 0&   \text{ if $k < misfdep(i,j) $ } \\
943                                \; 1&   \text{ if $misfdep(i,j) \leq k\leq mbathy(i,j)$  }    \\
944                                \; 0&   \text{ if $k > mbathy(i,j)$  }    \end{cases}     \\
945umask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
946vmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j+1,k)   \\
947fmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
948             &    \ \ \, * tmask(i,j,k) \ * \ tmask(i+1,j,k) \\
949wmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j,k-1) \text{ with } wmask(i,j,1) = tmask(i,j,1)
950\end{align*}
951
952Note that, without ice shelves cavities, masks at $t-$ and $w-$points are identical with
953the numerical indexing used (\S~\ref{DOM_Num_Index}). Nevertheless, $wmask$ are required
954with oceean cavities to deal with the top boundary (ice shelf/ocean interface)
955exactly in the same way as for the bottom boundary.
956
957The specification of closed lateral boundaries requires that at least the first and last
958rows and columns of the \textit{mbathy} array are set to zero. In the particular
959case of an east-west cyclical boundary condition, \textit{mbathy} has its last
960column equal to the second one and its first column equal to the last but one
961(and so too the mask arrays) (see \S~\ref{LBC_jperio}).
962
963
964% ================================================================
965% Domain: Initial State (dtatsd & istate)
966% ================================================================
967\section  [Domain: Initial State (\textit{istate and dtatsd})]
968      {Domain: Initial State \small{(\mdl{istate} and \mdl{dtatsd} modules)} }
969\label{DTA_tsd}
970%-----------------------------------------namtsd-------------------------------------------
971\namdisplay{namtsd} 
972%------------------------------------------------------------------------------------------
973
974Options are defined in \ngn{namtsd}.
975By default, the ocean start from rest (the velocity field is set to zero) and the initialization of
976temperature and salinity fields is controlled through the \np{ln\_tsd\_ini} namelist parameter.
977\begin{description}
978\item[ln\_tsd\_init = .true.]  use a T and S input files that can be given on the model grid itself or
979on their native input data grid. In the latter case, the data will be interpolated on-the-fly both in the
980horizontal and the vertical to the model grid (see \S~\ref{SBC_iof}). The information relative to the
981input files are given in the \np{sn\_tem} and \np{sn\_sal} structures.
982The computation is done in the \mdl{dtatsd} module.
983\item[ln\_tsd\_init = .false.] use constant salinity value of 35.5 psu and an analytical profile of temperature
984(typical of the tropical ocean), see \rou{istate\_t\_s} subroutine called from \mdl{istate} module.
985\end{description}
986\end{document}
Note: See TracBrowser for help on using the repository browser.