New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
annex_A.tex in branches/2017/dev_merge_2017/DOC/tex_sub – NEMO

source: branches/2017/dev_merge_2017/DOC/tex_sub/annex_A.tex @ 9407

Last change on this file since 9407 was 9407, checked in by nicolasmartin, 6 years ago

Complete refactoring of cross-referencing

  • Use of \autoref instead of simple \ref for contextual text depending on target type
  • creation of few prefixes for marker to identify the type reference: apdx|chap|eq|fig|sec|subsec|tab
File size: 27.9 KB
RevLine 
[9389]1\documentclass[../tex_main/NEMO_manual]{subfiles}
[6997]2\begin{document}
[707]3
4% ================================================================
5% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
6% ================================================================
[2282]7\chapter{Curvilinear $s-$Coordinate Equations}
[9407]8\label{apdx:A}
[707]9\minitoc
10
[2282]11\newpage
12$\ $\newline    % force a new ligne
[996]13
[2282]14% ================================================================
15% Chain rule
16% ================================================================
[9393]17\section{Chain rule for $s-$coordinates}
[9407]18\label{sec:A_continuity}
[2282]19
[3294]20In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
[2282]21($i.e.$ an orthogonal curvilinear coordinate in the horizontal and an Arbitrary Lagrangian
22Eulerian (ALE) coordinate in the vertical), we start from the set of equations established
[9407]23in \autoref{subsec:PE_zco_Eq} for the special case $k = z$ and thus $e_3 = 1$, and we introduce
[2282]24an arbitrary vertical coordinate $a = a(i,j,z,t)$. Let us define a new vertical scale factor by
[1223]25$e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and the horizontal
[2282]26slope of $s-$surfaces by :
[9407]27\begin{equation} \label{apdx:A_s_slope}
[707]28\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
[817]29\quad \text{and} \quad 
[707]30\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
31\end{equation}
32
[2282]33The chain rule to establish the model equations in the curvilinear $s-$coordinate
[1223]34system is:
[9407]35\begin{equation} \label{apdx:A_s_chain_rule}
[707]36\begin{aligned}
[817]37&\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
38\left. {\frac{\partial \bullet }{\partial t}} \right|_s
39    -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\
40&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
41  \left. {\frac{\partial \bullet }{\partial i}} \right|_s
42     -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}=
43     \left. {\frac{\partial \bullet }{\partial i}} \right|_s
44     -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet }{\partial s} \\
45&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
46\left. {\frac{\partial \bullet }{\partial j}} \right|_s
47   - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
48\left. {\frac{\partial \bullet }{\partial j}} \right|_s
49   - \frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet }{\partial s} \\
50&\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\
[707]51\end{aligned}
52\end{equation}
53
[2282]54In particular applying the time derivative chain rule to $z$ provides the expression
55for $w_s$,  the vertical velocity of the $s-$surfaces referenced to a fix z-coordinate:
[9407]56\begin{equation} \label{apdx:A_w_in_s}
[817]57w_s   =  \left.   \frac{\partial z }{\partial t}   \right|_s
58            = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 
59             = e_3 \, \frac{\partial s}{\partial t} 
60\end{equation}
[707]61
[2282]62
[817]63% ================================================================
64% continuity equation
65% ================================================================
[9393]66\section{Continuity equation in $s-$coordinates}
[9407]67\label{sec:A_continuity}
[707]68
[9407]69Using (\autoref{apdx:A_s_chain_rule}) and the fact that the horizontal scale factors
[1223]70$e_1$ and $e_2$ do not depend on the vertical coordinate, the divergence of
[2282]71the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows
72in order to obtain its expression in the curvilinear $s-$coordinate system:
[707]73
[2282]74\begin{subequations} 
75\begin{align*} {\begin{array}{*{20}l} 
[817]76\nabla \cdot {\rm {\bf U}} 
77&= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
78                  +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
79+ \frac{\partial w}{\partial z}     \\
80\\
81&     = \frac{1}{e_1 \,e_2 }  \left[
82        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
83        - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}
84      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       
85        - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s}   \right]
86   + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z}                        \\
87\\
88&     = \frac{1}{e_1 \,e_2 }   \left[
89        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
90      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s        \right]
91   + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
92                  -  \sigma _1 \frac{\partial u}{\partial s}
93                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]          \\
94\\
95&     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
96        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_
97        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s     
98      + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
99        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right]          \\
100& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
101   + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
102                  -  \sigma _1 \frac{\partial u}{\partial s}
103                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]      \\
[2282]104%
105\intertext{Noting that $
106  \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
107=\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
108=\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
109=\frac{\partial \sigma _1}{\partial s}
110$ and $
111\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
112=\frac{\partial \sigma _2}{\partial s}
113$, it becomes:}
114%
[817]115\nabla \cdot {\rm {\bf U}} 
116& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
117        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
118      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]        \\ 
[2282]119& \qquad \qquad \qquad \qquad \quad
[817]120 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\ 
121\\
122& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
123        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
124      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
125   + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma _1  - v\;\sigma _2  \right]
[2282]126\end{array} }     
127\end{align*}
128\end{subequations}
129
[1223]130Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
131Introducing the dia-surface velocity component, $\omega $, defined as
[3294]132the volume flux across the moving $s$-surfaces per unit horizontal area:
[9407]133\begin{equation} \label{apdx:A_w_s}
[817]134\omega  = w - w_s - \sigma _1 \,u - \sigma _2 \,v    \\
[707]135\end{equation}
[9407]136with $w_s$ given by \autoref{apdx:A_w_in_s}, we obtain the expression for
[2282]137the divergence of the velocity in the curvilinear $s-$coordinate system:
138\begin{subequations} 
139\begin{align*} {\begin{array}{*{20}l} 
[817]140\nabla \cdot {\rm {\bf U}} 
141&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
142        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
143      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
144+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
145+ \frac{1}{e_3 } \frac{\partial w_s       }{\partial s}    \\
146\\
147&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
148        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
149      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
150+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
151+ \frac{1}{e_3 } \frac{\partial}{\partial s}  \left(  e_3 \; \frac{\partial s}{\partial t}   \right)   \\
152\\
153&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
154        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
155      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
156+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
157+ \frac{\partial}{\partial s} \frac{\partial s}{\partial t}
158+ \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}     \\
159\\
160&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
161        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
162      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
163+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
164+ \frac{1}{e_3 } \frac{\partial e_3}{\partial t}     \\
[2282]165\end{array} }     
[817]166\end{align*}
[2282]167\end{subequations}
[707]168
[9407]169As a result, the continuity equation \autoref{eq:PE_continuity} in the
[2282]170$s-$coordinates is:
[9407]171\begin{equation} \label{apdx:A_sco_Continuity}
[817]172\frac{1}{e_3 } \frac{\partial e_3}{\partial t} 
173+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
174         {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
175          +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
176 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0   
[707]177\end{equation}
[2282]178A additional term has appeared that take into account the contribution of the time variation
179of the vertical coordinate to the volume budget.
[707]180
[2282]181
[817]182% ================================================================
183% momentum equation
184% ================================================================
[9393]185\section{Momentum equation in $s-$coordinate}
[9407]186\label{sec:A_momentum}
[707]187
[2282]188Here we only consider the first component of the momentum equation,
189the generalization to the second one being straightforward.
190
191$\ $\newline    % force a new ligne
192
193$\bullet$ \textbf{Total derivative in vector invariant form}
194
[9407]195Let us consider \autoref{eq:PE_dyn_vect}, the first component of the momentum
[2282]196equation in the vector invariant form. Its total $z-$coordinate time derivative,
197$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
198its expression in the curvilinear $s-$coordinate system:
[707]199
[2282]200\begin{subequations} 
201\begin{align*} {\begin{array}{*{20}l} 
202\left. \frac{D u}{D t} \right|_z
203&= \left. {\frac{\partial u }{\partial t}} \right|_z
204   - \left. \zeta \right|_z v
205  + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
206  + w \;\frac{\partial u}{\partial z} \\
[817]207\\
[2282]208&= \left. {\frac{\partial u }{\partial t}} \right|_z
209   - \left. \zeta \right|_z v
210  +  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
211                                             -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v     
212  +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
213  +  w \;\frac{\partial u}{\partial z}      \\
214%
215\intertext{introducing the chain rule (\ref{Apdx_A_s_chain_rule}) }
216%
217&= \left. {\frac{\partial u }{\partial t}} \right|_z       
218   - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
219                                          -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
220                                          \left. {-\frac{e_1}{e_3}\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}
221                                                   +\frac{e_2}{e_3}\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\ 
222& \qquad \qquad \qquad \qquad
223 { + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
224                                    - \frac{e_1}{e_3}\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
225   + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} }    \\
[817]226\\
[2282]227&= \left. {\frac{\partial u }{\partial t}} \right|_z       
228  + \left. \zeta \right|_s \;v
229  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s      \\
230&\qquad \qquad \qquad \quad
231  + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
232   - \left[   {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}
233               - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v     
234   - \frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s}      \\
[817]235\\
[2282]236&= \left. {\frac{\partial u }{\partial t}} \right|_z       
237  + \left. \zeta \right|_s \;v
238  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s      \\
239&\qquad \qquad \qquad \quad
240 + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
241                           +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s}
242                           - \sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\
243\\
244&= \left. {\frac{\partial u }{\partial t}} \right|_z       
245  + \left. \zeta \right|_s \;v
246  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
247  + \frac{1}{e_3} \left[  w - \sigma _2 v - \sigma _1 u  \right] 
[817]248                \; \frac{\partial u}{\partial s}   \\
[2282]249%
250\intertext{Introducing $\omega$, the dia-a-surface velocity given by (\ref{Apdx_A_w_s}) }
251%
252&= \left. {\frac{\partial u }{\partial t}} \right|_z       
253  + \left. \zeta \right|_s \;v
254  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
255  + \frac{1}{e_3 } \left( \omega - w_s \right) \frac{\partial u}{\partial s}   \\
256\end{array} }     
257\end{align*}
258\end{subequations}
259%
[9407]260Applying the time derivative chain rule (first equation of (\autoref{apdx:A_s_chain_rule}))
261to $u$ and using (\autoref{apdx:A_w_in_s}) provides the expression of the last term
[2282]262of the right hand side,
263\begin{equation*} {\begin{array}{*{20}l} 
264w_\;\frac{\partial u}{\partial s} 
265   = \frac{\partial s}{\partial t} \;  \frac{\partial u }{\partial s}
266   = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \quad ,
267\end{array} }     
268\end{equation*}
269leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
270$i.e.$ the total $s-$coordinate time derivative :
[9407]271\begin{align} \label{apdx:A_sco_Dt_vect}
[2282]272\left. \frac{D u}{D t} \right|_s
273  = \left. {\frac{\partial u }{\partial t}} \right|_s       
274  + \left. \zeta \right|_s \;v
275  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
276  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s}   
277\end{align}
278Therefore, the vector invariant form of the total time derivative has exactly the same
279mathematical form in $z-$ and $s-$coordinates. This is not the case for the flux form
280as shown in next paragraph.
281
282$\ $\newline    % force a new ligne
283
284$\bullet$ \textbf{Total derivative in flux form}
285
286Let us start from the total time derivative in the curvilinear $s-$coordinate system
[9407]287we have just establish. Following the procedure used to establish (\autoref{eq:PE_flux_form}),
[2282]288it can be transformed into :
289%\begin{subequations}
290\begin{align*} {\begin{array}{*{20}l} 
291\left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_
292                            & -  \zeta \;v
293                        + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
294                                                 + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s}          \\
[817]295\\
[2282]296  &= \left. {\frac{\partial u }{\partial t}} \right|_
297          &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
298                                          + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
299            + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s}                                \\ 
300\\
301        &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
302                                   + \frac{\partial(e_1 v)}{\partial j}    \right)
303                          + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]      \\
304\\
305        &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
306                          -u  \;\frac{\partial e_1 }{\partial j}  \right)                             \\
307\end{array} }     
[817]308\end{align*}
[2282]309%
310Introducing the vertical scale factor inside the horizontal derivative of the first two terms
311($i.e.$ the horizontal divergence), it becomes :
312\begin{subequations} 
313\begin{align*} {\begin{array}{*{20}l} 
314%\begin{align*} {\begin{array}{*{20}l}
315%{\begin{array}{*{20}l}
316\left. \frac{D u}{D t} \right|_
317   &= \left. {\frac{\partial u }{\partial t}} \right|_
318   &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
319                                   + \frac{\partial( e_1 e_3 \,u v )}{\partial j}     
320                              -  e_2 u u \frac{\partial e_3}{\partial i}
321                       -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
322       + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s}                                  \\
323\\
324           && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i} 
325                                  + \frac{\partial(e_1 e_3 \, v)}{\partial j} 
326                                        -  e_2 u \;\frac{\partial e_3 }{\partial i}
327                                        -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
328             -\frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]                      \\
329\\
330            && - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
331                                -u  \;\frac{\partial e_1 }{\partial j}  \right)                      \\
332\\
333   &= \left. {\frac{\partial u }{\partial t}} \right|_
334   &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
335                                   + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
336     + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s}                               \\
337\\
338&& - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i} 
339                           + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
340        -\frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]                 
341     - \frac{v}{e_1 e_2 }\left(  v   \;\frac{\partial e_2 }{\partial i}
342                                 -u   \;\frac{\partial e_1 }{\partial j}   \right)                  \\
343%
344\intertext {Introducing a more compact form for the divergence of the momentum fluxes,
345and using (\ref{Apdx_A_sco_Continuity}), the $s-$coordinate continuity equation,
346it becomes : }
347%
348   &= \left. {\frac{\partial u }{\partial t}} \right|_
349   &+ \left\nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)    \right|_s
350     + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}   
351      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
352                         -u  \;\frac{\partial e_1 }{\partial j}   \right) \\
353\end{array} }     
354\end{align*}
355\end{subequations}
356which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
357$i.e.$ the total $s-$coordinate time derivative in flux form :
[9407]358\begin{flalign}\label{apdx:A_sco_Dt_flux}
[2282]359\left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_
360           + \left\nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)    \right|_s
361           - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
362                         -u  \;\frac{\partial e_1 }{\partial j}            \right)
363\end{flalign}
364which is the total time derivative expressed in the curvilinear $s-$coordinate system.
365It has the same form as in the $z-$coordinate but for the vertical scale factor
366that has appeared inside the time derivative which comes from the modification
[9407]367of (\autoref{apdx:A_sco_Continuity}), the continuity equation.
[707]368
[2282]369$\ $\newline    % force a new ligne
[707]370
[2282]371$\bullet$ \textbf{horizontal pressure gradient}
372
373The horizontal pressure gradient term can be transformed as follows:
374\begin{equation*}
[707]375\begin{split}
[2282]376 -\frac{1}{\rho _o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
377 & =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
[707]378& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
379&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
380\end{split}
[2282]381\end{equation*}
382Applying similar manipulation to the second component and replacing
[9407]383$\sigma _1$ and $\sigma _2$ by their expression \autoref{apdx:A_s_slope}, it comes:
384\begin{equation} \label{apdx:A_grad_p}
[2282]385\begin{split}
386 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
387&=-\frac{1}{\rho _o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
388                                                  + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
389%
390 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
391&=-\frac{1}{\rho _o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
392                                                   + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) \\
393\end{split}
[707]394\end{equation}
395
[9407]396An additional term appears in (\autoref{apdx:A_grad_p}) which accounts for the
[2282]397tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
[707]398
[2282]399As in $z$-coordinate, the horizontal pressure gradient can be split in two parts
400following \citet{Marsaleix_al_OM08}. Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
401and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
402The pressure is then given by:
403\begin{equation*} 
404\begin{split}
405p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \left\rho_o \, d + 1 \right) \; e_3 \; dk   \\
406   &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + g \, \int_z^\eta e_3 \; dk   
407\end{split}
408\end{equation*}
409Therefore, $p$ and $p_h'$ are linked through:
[9407]410\begin{equation} \label{apdx:A_pressure}
[2282]411   p = \rho_o \; p_h' + g \, ( z + \eta )
412\end{equation}
413and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
414\begin{equation*} 
415\frac{\partial p_h'}{\partial k} = - d \, g \, e_3
416\end{equation*}
417
[9407]418Substituing \autoref{apdx:A_pressure} in \autoref{apdx:A_grad_p} and using the definition of
[2282]419the density anomaly it comes the expression in two parts:
[9407]420\begin{equation} \label{apdx:A_grad_p}
[2282]421\begin{split}
422 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
423&=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
424                                       + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} \\
425%
426 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
427&=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
428                                        + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j}\\
429\end{split}
430\end{equation}
431This formulation of the pressure gradient is characterised by the appearance of a term depending on the
[9407]432the sea surface height only (last term on the right hand side of expression \autoref{apdx:A_grad_p}).
[3294]433This term will be loosely termed \textit{surface pressure gradient}
434whereas the first term will be termed the
[2282]435\textit{hydrostatic pressure gradient} by analogy to the $z$-coordinate formulation.
436In fact, the the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$, and
437$\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of
438the vertical integration.
439 
440
441$\ $\newline    % force a new ligne
442
443$\bullet$ \textbf{The other terms of the momentum equation}
444
445The coriolis and forcing terms as well as the the vertical physics remain unchanged
446as they involve neither time nor space derivatives. The form of the lateral physics is
[9407]447discussed in \autoref{apdx:B}.
[2282]448
449
450$\ $\newline    % force a new ligne
451
452$\bullet$ \textbf{Full momentum equation}
453
454To sum up, in a curvilinear $s$-coordinate system, the vector invariant momentum equation
455solved by the model has the same mathematical expression as the one in a curvilinear
[3294]456$z-$coordinate, except for the pressure gradient term :
[9407]457\begin{subequations} \label{apdx:A_dyn_vect}
458\begin{multline} \label{apdx:A_PE_dyn_vect_u}
[2282]459 \frac{\partial u}{\partial t}=
[817]460   +   \left( {\zeta +f} \right)\,v                                   
461   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
462   -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
[2282]463        -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right
464        -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[817]465   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
466\end{multline}
[9407]467\begin{multline} \label{apdx:A_dyn_vect_v}
[2282]468\frac{\partial v}{\partial t}=
[817]469   -   \left( {\zeta +f} \right)\,u   
470   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)       
471   -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
[2282]472        -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right
473        -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[817]474   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
475\end{multline}
476\end{subequations}
[2282]477whereas the flux form momentum equation differ from it by the formulation of both
478the time derivative and the pressure gradient term  :
[9407]479\begin{subequations} \label{apdx:A_dyn_flux}
480\begin{multline} \label{apdx:A_PE_dyn_flux_u}
[2282]481 \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
482   \nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)
483   +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
484                                       -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\                               
485        -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right
486        -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
487   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
488\end{multline}
[9407]489\begin{multline} \label{apdx:A_dyn_flux_v}
[2282]490 \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
491   -  \nabla \cdot \left(   {{\rm {\bf U}}\,v}   \right)
492   +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
493                                        -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\                               
494        -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right
495        -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
496   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
497\end{multline}
498\end{subequations}
499Both formulation share the same hydrostatic pressure balance expressed in terms of
[3294]500hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
[9407]501\begin{equation} \label{apdx:A_dyn_zph}
[2282]502\frac{\partial p_h'}{\partial k} = - d \, g \, e_3
503\end{equation}
[707]504
[2282]505It is important to realize that the change in coordinate system has only concerned
506the position on the vertical. It has not affected (\textbf{i},\textbf{j},\textbf{k}), the
[3294]507orthogonal curvilinear set of unit vectors. ($u$,$v$) are always horizontal velocities
[2282]508so that their evolution is driven by \emph{horizontal} forces, in particular
509the pressure gradient. By contrast, $\omega$ is not $w$, the third component of the velocity,
[3294]510but the dia-surface velocity component, $i.e.$ the volume flux across the moving
511$s$-surfaces per unit horizontal area.
[817]512
[2282]513
[817]514% ================================================================
515% Tracer equation
516% ================================================================
[9393]517\section{Tracer equation}
[9407]518\label{sec:A_tracer}
[817]519
[1223]520The tracer equation is obtained using the same calculation as for the continuity
521equation and then regrouping the time derivative terms in the left hand side :
[707]522
[9407]523\begin{multline} \label{apdx:A_tracer}
[817]524 \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t} 
[2282]525   = -\frac{1}{e_1 \,e_2 \,e_3} 
526      \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
527                   +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
528   +  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right
529    +  D^{T} +F^{T}
[707]530\end{multline}
531
532
[1223]533The expression for the advection term is a straight consequence of (A.4), the
[2282]534expression of the 3D divergence in the $s-$coordinates established above.
[707]535
[6997]536\end{document}
Note: See TracBrowser for help on using the repository browser.