New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_A.tex in branches/DEV_r1826_DOC/DOC/TexFiles/Chapters – NEMO

source: branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Annex_A.tex @ 1831

Last change on this file since 1831 was 1831, checked in by gm, 14 years ago

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

  • Property svn:executable set to *
File size: 27.7 KB
Line 
1
2% ================================================================
3% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
4% ================================================================
5\chapter{Curvilinear $s-$Coordinate Equations}
6\label{Apdx_A}
7\minitoc
8
9\newpage
10$\ $\newline    % force a new ligne
11
12% ================================================================
13% Chain rule
14% ================================================================
15\section{Chain rule of $s-$coordinate}
16\label{Apdx_A_continuity}
17
18In order to establish the set of Primitive Equation in curvilinear $s-$coordinates
19($i.e.$ an orthogonal curvilinear coordinate in the horizontal and an Arbitrary Lagrangian
20Eulerian (ALE) coordinate in the vertical), we start from the set of equations established
21in \S\ref{PE_zco_Eq} for the special case $k = z$ and thus $e_3 = 1$, and we introduce
22an arbitrary vertical coordinate $a = a(i,j,z,t)$. Let us define a new vertical scale factor by
23$e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and the horizontal
24slope of $s-$surfaces by :
25\begin{equation} \label{Apdx_A_s_slope}
26\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
27\quad \text{and} \quad 
28\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
29\end{equation}
30
31The chain rule to establish the model equations in the curvilinear $s-$coordinate
32system is:
33\begin{equation} \label{Apdx_A_s_chain_rule}
34\begin{aligned}
35&\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
36\left. {\frac{\partial \bullet }{\partial t}} \right|_s
37    -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\
38&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
39  \left. {\frac{\partial \bullet }{\partial i}} \right|_s
40     -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}=
41     \left. {\frac{\partial \bullet }{\partial i}} \right|_s
42     -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet }{\partial s} \\
43&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
44\left. {\frac{\partial \bullet }{\partial j}} \right|_s
45   - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
46\left. {\frac{\partial \bullet }{\partial j}} \right|_s
47   - \frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet }{\partial s} \\
48&\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\
49\end{aligned}
50\end{equation}
51
52In particular applying the time derivative chain rule to $z$ provides the expression
53for $w_s$,  the vertical velocity of the $s-$surfaces referenced to a fix z-coordinate:
54\begin{equation} \label{Apdx_A_w_in_s}
55w_s   =  \left.   \frac{\partial z }{\partial t}   \right|_s
56            = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 
57             = e_3 \, \frac{\partial s}{\partial t} 
58\end{equation}
59
60
61% ================================================================
62% continuity equation
63% ================================================================
64\section{Continuity Equation in $s-$coordinate}
65\label{Apdx_A_continuity}
66
67Using (\ref{Apdx_A_s_chain_rule}) and the fact that the horizontal scale factors
68$e_1$ and $e_2$ do not depend on the vertical coordinate, the divergence of
69the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows
70in order to obtain its expression in the curvilinear $s-$coordinate system:
71
72\begin{subequations} 
73\begin{align*} {\begin{array}{*{20}l} 
74\nabla \cdot {\rm {\bf U}} 
75&= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
76                  +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
77+ \frac{\partial w}{\partial z}     \\
78\\
79&     = \frac{1}{e_1 \,e_2 }  \left[
80        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
81        - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}
82      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       
83        - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s}   \right]
84   + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z}                        \\
85\\
86&     = \frac{1}{e_1 \,e_2 }   \left[
87        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
88      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s        \right]
89   + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
90                  -  \sigma _1 \frac{\partial u}{\partial s}
91                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]          \\
92\\
93&     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
94        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_
95        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s     
96      + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
97        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right]          \\
98& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
99   + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
100                  -  \sigma _1 \frac{\partial u}{\partial s}
101                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]      \\
102%
103\intertext{Noting that $
104  \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
105=\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
106=\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
107=\frac{\partial \sigma _1}{\partial s}
108$ and $
109\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
110=\frac{\partial \sigma _2}{\partial s}
111$, it becomes:}
112%
113\nabla \cdot {\rm {\bf U}} 
114& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
115        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
116      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]        \\ 
117& \qquad \qquad \qquad \qquad \quad
118 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\ 
119\\
120& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
121        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
122      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
123   + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma _1  - v\;\sigma _2  \right]
124\end{array} }     
125\end{align*}
126\end{subequations}
127
128Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
129Introducing the dia-surface velocity component, $\omega $, defined as
130the velocity relative to the moving $s-$surfaces and normal to them:
131\begin{equation} \label{Apdx_A_w_s}
132\omega  = w - w_s - \sigma _1 \,u - \sigma _2 \,v    \\
133\end{equation}
134with $w_s$ given by \eqref{Apdx_A_w_in_s}, we obtain the expression for
135the divergence of the velocity in the curvilinear $s-$coordinate system:
136\begin{subequations} 
137\begin{align*} {\begin{array}{*{20}l} 
138\nabla \cdot {\rm {\bf U}} 
139&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
140        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
141      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
142+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
143+ \frac{1}{e_3 } \frac{\partial w_s       }{\partial s}    \\
144\\
145&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
146        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
147      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
148+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
149+ \frac{1}{e_3 } \frac{\partial}{\partial s}  \left(  e_3 \; \frac{\partial s}{\partial t}   \right)   \\
150\\
151&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
152        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
153      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
154+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
155+ \frac{\partial}{\partial s} \frac{\partial s}{\partial t}
156+ \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}     \\
157\\
158&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
159        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
160      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
161+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
162+ \frac{1}{e_3 } \frac{\partial e_3}{\partial t}     \\
163\end{array} }     
164\end{align*}
165\end{subequations}
166
167As a result, the continuity equation \eqref{Eq_PE_continuity} in the
168$s-$coordinates is:
169\begin{equation} \label{Apdx_A_sco_Continuity}
170\frac{1}{e_3 } \frac{\partial e_3}{\partial t} 
171+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
172         {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
173          +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
174 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0   
175\end{equation}
176A additional term has appeared that take into account the contribution of the time variation
177of the vertical coordinate to the volume budget.
178
179
180% ================================================================
181% momentum equation
182% ================================================================
183\section{Momentum Equation in $s-$coordinate}
184\label{Apdx_A_momentum}
185
186Here we only consider the first component of the momentum equation,
187the generalization to the second one being straightforward.
188
189$\ $\newline    % force a new ligne
190
191$\bullet$ \textbf{Total derivative in vector invariant form}
192
193Let us consider \eqref{Eq_PE_dyn_vect}, the first component of the momentum
194equation in the vector invariant form. Its total $z-$coordinate time derivative,
195$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
196its expression in the curvilinear $s-$coordinate system:
197
198\begin{subequations} 
199\begin{align*} {\begin{array}{*{20}l} 
200\left. \frac{D u}{D t} \right|_z
201&= \left. {\frac{\partial u }{\partial t}} \right|_z
202   - \left. \zeta \right|_z v
203  + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
204  + w \;\frac{\partial u}{\partial z} \\
205\\
206&= \left. {\frac{\partial u }{\partial t}} \right|_z
207   - \left. \zeta \right|_z v
208  +  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
209                                             -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v     
210  +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
211  +  w \;\frac{\partial u}{\partial z}      \\
212%
213\intertext{introducing the chain rule (\ref{Apdx_A_s_chain_rule}) }
214%
215&= \left. {\frac{\partial u }{\partial t}} \right|_z       
216   - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
217                                          -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
218                                          \left. {-\frac{e_1}{e_3}\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}
219                                                   +\frac{e_2}{e_3}\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\ 
220& \qquad \qquad \qquad \qquad
221 { + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
222                                    - \frac{e_1}{e_3}\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
223   + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} }    \\
224\\
225&= \left. {\frac{\partial u }{\partial t}} \right|_z       
226  + \left. \zeta \right|_s \;v
227  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s      \\
228&\qquad \qquad \qquad \quad
229  + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
230   - \left[   {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}
231               - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v     
232   - \frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s}      \\
233\\
234&= \left. {\frac{\partial u }{\partial t}} \right|_z       
235  + \left. \zeta \right|_s \;v
236  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s      \\
237&\qquad \qquad \qquad \quad
238 + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
239                           +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s}
240                           - \sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\
241\\
242&= \left. {\frac{\partial u }{\partial t}} \right|_z       
243  + \left. \zeta \right|_s \;v
244  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
245  + \frac{1}{e_3} \left[  w - \sigma _2 v - \sigma _1 u  \right] 
246                \; \frac{\partial u}{\partial s}   \\
247%
248\intertext{Introducing $\omega$, the dia-a-surface velocity given by (\ref{Apdx_A_w_s}) }
249%
250&= \left. {\frac{\partial u }{\partial t}} \right|_z       
251  + \left. \zeta \right|_s \;v
252  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
253  + \frac{1}{e_3 } \left( \omega - w_s \right) \frac{\partial u}{\partial s}   \\
254\end{array} }     
255\end{align*}
256\end{subequations}
257%
258Applying the time derivative chain rule (first equation of (\ref{Apdx_A_s_chain_rule}))
259to $u$ and using (\ref{Apdx_A_w_in_s}) provides the expression of the last term
260of the right hand side,
261\begin{equation*} {\begin{array}{*{20}l} 
262w_\;\frac{\partial u}{\partial s} 
263   = \frac{\partial s}{\partial t} \;  \frac{\partial u }{\partial s}
264   = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \quad ,
265\end{array} }     
266\end{equation*}
267leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
268$i.e.$ the total $s-$coordinate time derivative :
269\begin{align} \label{Apdx_A_sco_Dt_vect}
270\left. \frac{D u}{D t} \right|_s
271  = \left. {\frac{\partial u }{\partial t}} \right|_s       
272  + \left. \zeta \right|_s \;v
273  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_
274  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s}   
275\end{align}
276Therefore, the vector invariant form of the total time derivative has exactly the same
277mathematical form in $z-$ and $s-$coordinates. This is not the case for the flux form
278as shown in next paragraph.
279
280$\ $\newline    % force a new ligne
281
282$\bullet$ \textbf{Total derivative in flux form}
283
284Let us start from the total time derivative in the curvilinear $s-$coordinate system
285we have just establish. Following the procedure used to establish (\ref{Eq_PE_flux_form}),
286it can be transformed into :
287%\begin{subequations}
288\begin{align*} {\begin{array}{*{20}l} 
289\left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_
290                            & -  \zeta \;v
291                        + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
292                                                 + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s}          \\
293\\
294  &= \left. {\frac{\partial u }{\partial t}} \right|_
295          &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
296                                          + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
297            + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s}                                \\ 
298\\
299        &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
300                                   + \frac{\partial(e_1 v)}{\partial j}    \right)
301                          + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]      \\
302\\
303        &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
304                          -u  \;\frac{\partial e_1 }{\partial j}  \right)                             \\
305\end{array} }     
306\end{align*}
307%
308Introducing the vertical scale factor inside the horizontal derivative of the first two terms
309($i.e.$ the horizontal divergence), it becomes :
310\begin{subequations} 
311\begin{align*} {\begin{array}{*{20}l} 
312%\begin{align*} {\begin{array}{*{20}l}
313%{\begin{array}{*{20}l}
314\left. \frac{D u}{D t} \right|_
315   &= \left. {\frac{\partial u }{\partial t}} \right|_
316   &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
317                                   + \frac{\partial( e_1 e_3 \,u v )}{\partial j}     
318                              -  e_2 u u \frac{\partial e_3}{\partial i}
319                       -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
320       + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s}                                  \\
321\\
322           && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i} 
323                                  + \frac{\partial(e_1 e_3 \, v)}{\partial j} 
324                                        -  e_2 u \;\frac{\partial e_3 }{\partial i}
325                                        -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
326             -\frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]                      \\
327\\
328            && - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
329                                -u  \;\frac{\partial e_1 }{\partial j}  \right)                      \\
330\\
331   &= \left. {\frac{\partial u }{\partial t}} \right|_
332   &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
333                                   + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
334     + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s}                               \\
335\\
336&& - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i} 
337                           + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
338        -\frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]                 
339     - \frac{v}{e_1 e_2 }\left(  v   \;\frac{\partial e_2 }{\partial i}
340                                 -u   \;\frac{\partial e_1 }{\partial j}   \right)                  \\
341%
342\intertext {Introducing a more compact form for the divergence of the momentum fluxes,
343and using (\ref{Apdx_A_sco_Continuity}), the $s-$coordinate continuity equation,
344it becomes : }
345%
346   &= \left. {\frac{\partial u }{\partial t}} \right|_
347   &+ \left\nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)    \right|_s
348     + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}   
349      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
350                         -u  \;\frac{\partial e_1 }{\partial j}   \right) \\
351\end{array} }     
352\end{align*}
353\end{subequations}
354which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
355$i.e.$ the total $s-$coordinate time derivative in flux form :
356\begin{flalign}\label{Apdx_A_sco_Dt_flux}
357\left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_
358           + \left\nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)    \right|_s
359           - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
360                         -u  \;\frac{\partial e_1 }{\partial j}            \right)
361\end{flalign}
362which is the total time derivative expressed in the curvilinear $s-$coordinate system.
363It has the same form as in the $z-$coordinate but for the vertical scale factor
364that has appeared inside the time derivative which comes from the modification
365of (\ref{Apdx_A_sco_Continuity}), the continuity equation.
366
367$\ $\newline    % force a new ligne
368
369$\bullet$ \textbf{horizontal pressure gradient}
370
371The horizontal pressure gradient term can be transformed as follows:
372\begin{equation*}
373\begin{split}
374 -\frac{1}{\rho _o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
375 & =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
376& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
377&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
378\end{split}
379\end{equation*}
380Applying similar manipulation to the second component and replacing
381$\sigma _1$ and $\sigma _2$ by their expression \eqref{Apdx_A_s_slope}, it comes:
382\begin{equation} \label{Apdx_A_grad_p}
383\begin{split}
384 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
385&=-\frac{1}{\rho _o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
386                                                  + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
387%
388 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
389&=-\frac{1}{\rho _o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
390                                                   + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) \\
391\end{split}
392\end{equation}
393
394An additional term appears in (\ref{Apdx_A_grad_p}) which accounts for the
395tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
396
397As in $z$-coordinate, the horizontal pressure gradient can be split in two parts
398following \citet{Marsaleix_al_OM08}. Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
399and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
400The pressure is then given by:
401\begin{equation*} 
402\begin{split}
403p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \left\rho_o \, d + 1 \right) \; e_3 \; dk   \\
404   &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + g \, \int_z^\eta e_3 \; dk   
405\end{split}
406\end{equation*}
407Therefore, $p$ and $p_h'$ are linked through:
408\begin{equation} \label{Apdx_A_pressure}
409   p = \rho_o \; p_h' + g \, ( z + \eta )
410\end{equation}
411and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
412\begin{equation*} 
413\frac{\partial p_h'}{\partial k} = - d \, g \, e_3
414\end{equation*}
415
416Substituing \eqref{Apdx_A_pressure} in \eqref{Apdx_A_grad_p} and using the definition of
417the density anomaly it comes the expression in two parts:
418\begin{equation} \label{Apdx_A_grad_p}
419\begin{split}
420 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
421&=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
422                                       + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} \\
423%
424 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
425&=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
426                                        + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j}\\
427\end{split}
428\end{equation}
429This formulation of the pressure gradient is characterised by the appearance of a term depending on the
430the sea surface height only (last term on the right hand side of expression \eqref{Apdx_A_grad_p}).
431This term will be abusively named \textit{surface pressure gradient} whereas the first term will be named
432\textit{hydrostatic pressure gradient} by analogy to the $z$-coordinate formulation.
433In fact, the the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$, and
434$\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of
435the vertical integration.
436 
437
438$\ $\newline    % force a new ligne
439
440$\bullet$ \textbf{The other terms of the momentum equation}
441
442The coriolis and forcing terms as well as the the vertical physics remain unchanged
443as they involve neither time nor space derivatives. The form of the lateral physics is
444discussed in appendix~\ref{Apdx_B}.
445
446
447$\ $\newline    % force a new ligne
448
449$\bullet$ \textbf{Full momentum equation}
450
451To sum up, in a curvilinear $s$-coordinate system, the vector invariant momentum equation
452solved by the model has the same mathematical expression as the one in a curvilinear
453$z-$coordinate, but the pressure gradient term :
454\begin{subequations} \label{Apdx_A_dyn_vect}
455\begin{multline} \label{Apdx_A_PE_dyn_vect_u}
456 \frac{\partial u}{\partial t}=
457   +   \left( {\zeta +f} \right)\,v                                   
458   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
459   -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
460        -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right
461        -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
462   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
463\end{multline}
464\begin{multline} \label{Apdx_A_dyn_vect_v}
465\frac{\partial v}{\partial t}=
466   -   \left( {\zeta +f} \right)\,u   
467   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)       
468   -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
469        -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right
470        -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
471   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
472\end{multline}
473\end{subequations}
474whereas the flux form momentum equation differ from it by the formulation of both
475the time derivative and the pressure gradient term  :
476\begin{subequations} \label{Apdx_A_dyn_flux}
477\begin{multline} \label{Apdx_A_PE_dyn_flux_u}
478 \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
479   \nabla \cdot \left(   {{\rm {\bf U}}\,u}   \right)
480   +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
481                                       -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\                               
482        -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right
483        -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
484   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
485\end{multline}
486\begin{multline} \label{Apdx_A_dyn_flux_v}
487 \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
488   -  \nabla \cdot \left(   {{\rm {\bf U}}\,v}   \right)
489   +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
490                                        -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\                               
491        -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right
492        -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
493   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
494\end{multline}
495\end{subequations}
496Both formulation share the same hydrostatic pressure balance expressed in terms of
497hydrostatic pressure and density anmalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
498\begin{equation} \label{Apdx_A_dyn_zph}
499\frac{\partial p_h'}{\partial k} = - d \, g \, e_3
500\end{equation}
501
502It is important to realize that the change in coordinate system has only concerned
503the position on the vertical. It has not affected (\textbf{i},\textbf{j},\textbf{k}), the
504orthogonal curvilinear set of unit vector. ($u$,$v$) are always horizontal velocities
505so that their evolution is driven by \emph{horizontal} forces, in particular
506the pressure gradient. By contrast, $\omega$ is not $w$, the third component of the velocity,
507but the dia-surface velocity component, $i.e.$ the velocity relative to the moving
508$s-$surfaces and normal to them.
509
510
511% ================================================================
512% Tracer equation
513% ================================================================
514\section{Tracer Equation}
515\label{Apdx_A_tracer}
516
517The tracer equation is obtained using the same calculation as for the continuity
518equation and then regrouping the time derivative terms in the left hand side :
519
520\begin{multline} \label{Apdx_A_tracer}
521 \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t} 
522   = -\frac{1}{e_1 \,e_2 \,e_3} 
523      \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
524                   +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
525   +  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right
526    +  D^{T} +F^{T}
527\end{multline}
528
529
530The expression for the advection term is a straight consequence of (A.4), the
531expression of the 3D divergence in the $s-$coordinates established above.
532
Note: See TracBrowser for help on using the repository browser.