New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DOM.tex in branches/DEV_r1826_DOC/DOC/TexFiles/Chapters – NEMO

source: branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_DOM.tex @ 1831

Last change on this file since 1831 was 1831, checked in by gm, 14 years ago

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

  • Property svn:executable set to *
File size: 65.2 KB
Line 
1
2% ================================================================
3% Chapter 2 Ñ Space and Time Domain (DOM)
4% ================================================================
5\chapter{Space and Time Domain (DOM) }
6\label{DOM}
7\minitoc
8
9% Missing things:
10%  - istate: description of the initial state   ==> this has to be put elsewhere..
11%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
12%                  should be put outside of DOM routine (better with TRC staff and off-line
13%                  tracers)
14%  - daymod: definition of the time domain (nit000, nitend andd the calendar)
15%  -geo2ocean:  how to switch from geographic to mesh coordinate
16%  - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
17
18\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction
19which could be referred to here, would help  ==> to be added}
20%%%%
21
22
23\newpage
24$\ $\newline    % force a new ligne
25
26
27Having defined the continuous equations in Chap.~\ref{PE}, we need to choose a
28discretization on a grid, and numerical algorithms. In the present chapter, we
29provide a general description of the staggered grid used in \NEMO, and other
30information relevant to the main directory routines (time stepping, main program)
31as well as the DOM (DOMain) directory.
32
33$\ $\newline    % force a new ligne
34
35% ================================================================
36% Fundamentals of the Discretisation
37% ================================================================
38\section{Fundamentals of the Discretisation}
39\label{DOM_basics}
40
41% -------------------------------------------------------------------------------------------------------------
42%        Arrangement of Variables
43% -------------------------------------------------------------------------------------------------------------
44\subsection{Arrangement of Variables}
45\label{DOM_cell}
46
47%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
48\begin{figure}[!tb] \label{Fig_cell}  \begin{center}
49\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_cell.pdf}
50\caption{Arrangement of variables. $t$ indicates scalar points where temperature,
51salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$)
52indicates vector points, and $f$ indicates vorticity points where both relative and
53planetary vorticities are defined}
54\end{center}   \end{figure}
55%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
56
57The numerical techniques used to solve the Primitive Equations in this model are
58based on the traditional, centred second-order finite difference approximation.
59Special attention has been given to the homogeneity of the solution in the three
60space directions. The arrangement of variables is the same in all directions.
61It consists of cells centred on scalar points ($t$, $S$, $p$, $\rho$) with vector
62points $(u, v, w)$ defined in the centre of each face of the cells (Fig. \ref{Fig_cell}).
63This is the generalisation to three dimensions of the well-known ``C'' grid in
64Arakawa's classification \citep{Mesinger_Arakawa_Bk76}. The relative and
65planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge
66and the barotropic stream function $\psi$ is defined at horizontal points overlying
67the $\zeta$ and $f$-points.
68
69The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
70by the transformation that gives ($\lambda$ ,$\varphi$ ,$z$) as a function of $(i,j,k)$.
71The grid-points are located at integer or integer and a half value of $(i,j,k)$ as
72indicated on Table \ref{Tab_cell}. In all the following, subscripts $u$, $v$, $w$,
73$f$, $uw$, $vw$ or $fw$ indicate the position of the grid-point where the scale
74factors are defined. Each scale factor is defined as the local analytical value
75provided by \eqref{Eq_scale_factors}. As a result, the mesh on which partial
76derivatives $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \varphi}$, and
77$\frac{\partial}{\partial z} $ are evaluated is a uniform mesh with a grid size of unity.
78Discrete partial derivatives are formulated by the traditional, centred second order
79finite difference approximation while the scale factors are chosen equal to their
80local analytical value. An important point here is that the partial derivative of the
81scale factors must be evaluated by centred finite difference approximation, not
82from their analytical expression. This preserves the symmetry of the discrete set
83of equations and therefore satisfies many of the continuous properties (see
84Appendix~\ref{Apdx_C}). A similar, related remark can be made about the domain
85size: when needed, an area, volume, or the total ocean depth must be evaluated
86as the sum of the relevant scale factors (see \eqref{DOM_bar}) in the next section).
87
88\begin{table}[!tb] \label{Tab_cell}
89\begin{center} \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
90\hline
91&$i$     & $j$    & $k$     \\ \hline
92& $i+1/2$   & $j$    & $k$    \\ \hline
93& $i$    & $j+1/2$   & $k$    \\ \hline
94& $i$    & $j$    & $k+1/2$   \\ \hline
95& $i+1/2$   & $j+1/2$   & $k$    \\ \hline
96uw & $i+1/2$   & $j$    & $k+1/2$   \\ \hline
97vw & $i$    & $j+1/2$   & $k+1/2$   \\ \hline
98fw & $i+1/2$   & $j+1/2$   & $k+1/2$   \\ \hline
99\end{tabular}
100\caption{Location of grid-points as a function of integer or integer and a half value
101of the column, line or level. This indexing is only used for the writing of the semi-
102discrete equation. In the code, the indexing uses integer values only and has a
103reverse direction in the vertical (see \S\ref{DOM_Num_Index})}
104\end{center}
105\end{table}
106
107% -------------------------------------------------------------------------------------------------------------
108%        Vector Invariant Formulation
109% -------------------------------------------------------------------------------------------------------------
110\subsection{Discrete Operators}
111\label{DOM_operators}
112
113Given the values of a variable $q$ at adjacent points, the differencing and
114averaging operators at the midpoint between them are:
115\begin{subequations} \label{Eq_di_mi}
116\begin{align}
117 \delta _i [q]       &\  \    q(i+1/2)  - q(i-1/2)    \\
118 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2
119\end{align}
120\end{subequations}
121
122Similar operators are defined with respect to $i+1/2$, $j$, $j+1/2$, $k$, and
123$k+1/2$. Following \eqref{Eq_PE_grad} and \eqref{Eq_PE_lap}, the gradient of a
124variable $q$ defined at a $t$-point has its three components defined at $u$-, $v$-
125and $w$-points while its Laplacien is defined at $t$-point. These operators have
126the following discrete forms in the curvilinear $s$-coordinate system:
127\begin{equation} \label{Eq_DOM_grad}
128\nabla q\equiv    \frac{1}{e_{1u} } \delta _{i+1/2 } [q] \;\,{\rm {\bf i}}
129      +  \frac{1}{e_{2v} } \delta _{j+1/2 } [q] \;\,{\rm {\bf j}}
130      +  \frac{1}{e_{3w}} \delta _{k+1/2} [q] \;\,{\rm {\bf k}}
131\end{equation}
132\begin{multline} \label{Eq_DOM_lap}
133\Delta q\equiv \frac{1}{e_{1t}\,e_{2t}\,e_{3t} } 
134       \;\left(          \delta_\left[ \frac{e_{2u}\,e_{3u}} {e_{1u}} \;\delta_{i+1/2} [q] \right]
135+                        \delta_\left[ \frac{e_{1v}\,e_{3v}}  {e_{2v}} \;\delta_{j+1/2} [q] \right] \;  \right)      \\
136+\frac{1}{e_{3t}} \delta_k \left[ \frac{1}{e_{3w} }                     \;\delta_{k+1/2} [q] \right]
137\end{multline}
138
139Following \eqref{Eq_PE_curl} and \eqref{Eq_PE_div}, a vector ${\rm {\bf A}}=\left( a_1,a_2,a_3\right)$ 
140defined at vector points $(u,v,w)$ has its three curl components defined at $vw$-, $uw$,
141and $f$-points, and its divergence defined at $t$-points:
142\begin{eqnarray}  \label{Eq_DOM_curl}
143 \nabla \times {\rm {\bf A}}\equiv &
144      \frac{1}{e_{2v}\,e_{3vw} } \ \left( \delta_{j +1/2} \left[e_{3w}\,a_3 \right] -\delta_{k+1/2} \left[e_{2v} \,a_2 \right] \right&\ \rm{\bf i} \\ 
145 +& \frac{1}{e_{2u}\,e_{3uw}} \ \left( \delta_{k+1/2} \left[e_{1u}\,a_1  \right] -\delta_{i +1/2} \left[e_{3w}\,a_3 \right] \right&\ \rm{\bf j} \\ 
146 +& \frac{1}{e_{1f} \,e_{2f}    } \ \left( \delta_{i +1/2} \left[e_{2v}\,a_2  \right] -\delta_{j +1/2} \left[e_{1u}\,a_1 \right] \right&\ \rm{\bf k}
147 \end{eqnarray}
148\begin{equation} \label{Eq_DOM_div}
149\nabla \cdot \rm{\bf A}=\frac{1}{e_{1t}\,e_{2t}\,e_{3t}}\left( \delta_i \left[e_{2u}\,e_{3u}\,a_1 \right]
150                                                                                         +\delta_j \left[e_{1v}\,e_{3v}\,a_2 \right] \right)+\frac{1}{e_{3t} }\delta_k \left[a_3 \right]
151\end{equation}
152
153In the special case of a pure $z$-coordinate system, \eqref{Eq_DOM_lap} and
154\eqref{Eq_DOM_div} can be simplified. In this case, the vertical scale factor
155becomes a function of the single variable $k$ and thus does not depend on the
156horizontal location of a grid point. For example \eqref{Eq_DOM_div} reduces to:
157\begin{equation*}
158\nabla \cdot \rm{\bf A}=\frac{1}{e_{1t}\,e_{2t}} \left( \delta_i \left[e_{2u}\,a_1 \right] 
159                                                                              +\delta_j \left[e_{1v}\, a_2 \right]  \right)
160                                                     +\frac{1}{e_{3t}} \delta_k \left[             a_3 \right]
161\end{equation*}
162
163The vertical average over the whole water column denoted by an overbar becomes
164for a quantity $q$ which is a masked field (i.e. equal to zero inside solid area):
165\begin{equation} \label{DOM_bar}
166\bar q   =         \frac{1}{H}    \int_{k^b}^{k^o} {q\;e_{3q} \,dk} 
167      \equiv \frac{1}{H_q }\sum\limits_k {q\;e_{3q} }
168\end{equation}
169where $H_q$  is the ocean depth, which is the masked sum of the vertical scale
170factors at $q$ points, $k^b$ and $k^o$ are the bottom and surface $k$-indices,
171and the symbol $k^o$ refers to a summation over all grid points of the same type
172in the direction indicated by the subscript (here $k$).
173
174In continuous form, the following properties are satisfied:
175\begin{equation} \label{Eq_DOM_curl_grad}
176\nabla \times \nabla q ={\rm {\bf {0}}}
177\end{equation}
178\begin{equation} \label{Eq_DOM_div_curl}
179\nabla \cdot \left( {\nabla \times {\rm {\bf A}}} \right)=0
180\end{equation}
181
182It is straightforward to demonstrate that these properties are verified locally in
183discrete form as soon as the scalar $q$ is taken at $t$-points and the vector
184\textbf{A} has its components defined at vector points $(u,v,w)$.
185
186Let $a$ and $b$ be two fields defined on the mesh, with value zero inside
187continental area. Using integration by parts it can be shown that the differencing
188operators ($\delta_i$, $\delta_j$ and $\delta_k$) are anti-symmetric linear
189operators, and further that the averaging operators $\overline{\,\cdot\,}^{\,i}$,
190$\overline{\,\cdot\,}^{\,k}$ and $\overline{\,\cdot\,}^{\,k}$) are symmetric linear
191operators, $i.e.$
192\begin{align} 
193\label{DOM_di_adj}
194\sum\limits_i { a_i \;\delta _i \left[ b \right]} 
195   &\equiv -\sum\limits_i {\delta _{i+1/2} \left[ a \right]\;b_{i+1/2} }      \\
196\label{DOM_mi_adj}
197\sum\limits_i { a_i \;\overline b^{\,i}} 
198   & \equiv \quad \sum\limits_i {\overline a ^{\,i+1/2}\;b_{i+1/2} } 
199\end{align}
200
201In other words, the adjoint of the differencing and averaging operators are
202$\delta_i^*=\delta_{i+1/2}$ and
203${(\overline{\,\cdot \,}^{\,i})}^*= \overline{\,\cdot\,}^{\,i+1/2}$, respectively.
204These two properties will be used extensively in the Appendix~\ref{Apdx_C} to
205demonstrate integral conservative properties of the discrete formulation chosen.
206
207% -------------------------------------------------------------------------------------------------------------
208%        Numerical Indexing
209% -------------------------------------------------------------------------------------------------------------
210\subsection{Numerical Indexing}
211\label{DOM_Num_Index}
212
213%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
214\begin{figure}[!tb] \label{Fig_index_hor}  \begin{center}
215\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_index_hor.pdf}
216\caption{Horizontal integer indexing used in the \textsc{Fortran} code. The dashed
217area indicates the cell in which variables contained in arrays have the same
218$i$- and $j$-indices}
219\end{center}   \end{figure}
220%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
221
222The array representation used in the \textsc{Fortran} code requires an integer
223indexing while the analytical definition of the mesh (see \S\ref{DOM_cell}) is
224associated with the use of integer values for $t$-points and both integer and
225integer and a half values for all the other points. Therefore a specific integer
226indexing must be defined for points other than $t$-points ($i.e.$ velocity and
227vorticity grid-points). Furthermore, the direction of the vertical indexing has
228been changed so that the surface level is at $k=1$.
229
230% -----------------------------------
231%        Horizontal Indexing
232% -----------------------------------
233\subsubsection{Horizontal Indexing}
234\label{DOM_Num_Index_hor}
235
236The indexing in the horizontal plane has been chosen as shown in Fig.\ref{Fig_index_hor}.
237For an increasing $i$ index ($j$ index), the $t$-point and the eastward $u$-point
238(northward $v$-point) have the same index (see the dashed area in Fig.\ref{Fig_index_hor}).
239A $t$-point and its nearest northeast $f$-point have the same $i$-and $j$-indices.
240
241% -----------------------------------
242%        Vertical indexing
243% -----------------------------------
244\subsubsection{Vertical Indexing}
245\label{DOM_Num_Index_vertical}
246
247In the vertical, the chosen indexing requires special attention since the
248$k$-axis is re-orientated downward in the \textsc{Fortran} code compared
249to the indexing used in the semi-discrete equations and given in \S\ref{DOM_cell}.
250The sea surface corresponds to the $w$-level $k=1$ which is the same index
251as $t$-level just below (Fig.\ref{Fig_index_vert}). The last $w$-level ($k=jpk$)
252either corresponds to the ocean floor or is inside the bathymetry while the last
253$t$-level is always inside the bathymetry (Fig.\ref{Fig_index_vert}). Note that
254for an increasing $k$ index, a $w$-point and the $t$-point just below have the
255same $k$ index, in opposition to what is done in the horizontal plane where
256it is the $t$-point and the nearest velocity points in the direction of the horizontal
257axis that have the same $i$ or $j$ index (compare the dashed area in
258Fig.\ref{Fig_index_hor} and \ref{Fig_index_vert}). Since the scale factors are
259chosen to be strictly positive, a \emph{minus sign} appears in the \textsc{Fortran} 
260code \emph{before all the vertical derivatives} of the discrete equations given in
261this documentation.
262
263%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
264\begin{figure}[!pt] \label{Fig_index_vert}  \begin{center}
265\includegraphics[width=.90\textwidth]{./TexFiles/Figures/Fig_index_vert.pdf}
266\caption{Vertical integer indexing used in the \textsc{Fortran } code. Note that
267the $k$-axis is orientated downward. The dashed area indicates the cell in
268which variables contained in arrays have the same $k$-index.}
269\end{center}   \end{figure}
270%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
271
272% -----------------------------------
273%        Domain Size
274% -----------------------------------
275\subsubsection{Domain Size}
276\label{DOM_size}
277
278The total size of the computational domain is set by the parameters \jp{jpiglo},
279\jp{jpjglo} and \jp{jpk} in the $i$, $j$ and $k$ directions respectively. They are
280given as parameters in the \mdl{par\_oce} module\footnote{When a specific
281configuration is used (ORCA2 global ocean, etc...) the parameter are actually
282defined in additional files introduced by \mdl{par\_oce} module via CPP
283\textit{include} command. For example, ORCA2 parameters are set in
284\textit{par\_ORCA\_R2.h90} file}. The use of parameters rather than variables
285(together with dynamic allocation of arrays) was chosen because it ensured that
286the compiler would optimize the executable code efficiently, especially on vector
287machines (optimization may be less efficient when the problem size is unknown
288at the time of compilation). Nevertheless, it is possible to set up the code with full
289dynamical allocation by using the AGRIF packaged \citep{Debreu_al_CG2008}.
290%
291\gmcomment{  add the following ref
292\colorbox{yellow}{(ref part of the doc)} } 
293%
294Note that are other parameters in \mdl{par\_oce} that refer to the domain size.
295The two parameters $jpidta$ and $jpjdta$ may be larger than $jpiglo$, $jpjglo$ 
296when the user wants to use only a sub-region of a given configuration. This is
297the "zoom" capability described in \S\ref{MISC_zoom}. In most applications of
298the model, $jpidta=jpiglo$, $jpjdta=jpjglo$, and $jpizoom=jpjzoom=1$. Parameters
299$jpi$ and $jpj$ refer to the size of each processor subdomain when the code is
300run in parallel using domain decomposition (\key{mpp\_mpi} defined, see
301\S\ref{LBC_mpp}).
302
303
304$\ $\newline    % force a new ligne
305
306% ================================================================
307% Domain: Horizontal Grid (mesh)
308% ================================================================
309\section  [Domain: Horizontal Grid (mesh) (\textit{domhgr})]               
310      {Domain: Horizontal Grid (mesh) \small{(\mdl{domhgr} module)} }
311\label{DOM_hgr}
312
313% -------------------------------------------------------------------------------------------------------------
314%        Coordinates and scale factors
315% -------------------------------------------------------------------------------------------------------------
316\subsection{Coordinates and scale factors}
317\label{DOM_hgr_coord_e}
318
319The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
320by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
321The grid-points are located at integer or integer and a half values of as indicated
322in Table~\ref{Tab_cell}. The associated scale factors are defined using the
323analytical first derivative of the transformation \eqref{Eq_scale_factors}. These
324definitions are done in two modules, \mdl{domhgr} and \mdl{domzgr}, which
325provide the horizontal and vertical meshes, respectively. This section deals with
326the horizontal mesh parameters.
327
328In a horizontal plane, the location of all the model grid points is defined from the
329analytical expressions of the longitude $\lambda$ and  latitude $\varphi$ as a
330function of  $(i,j)$. The horizontal scale factors are calculated using
331\eqref{Eq_scale_factors}. For example, when the longitude and latitude are
332function of a single value ($i$ and $j$, respectively) (geographical configuration
333of the mesh), the horizontal mesh definition reduces to define the wanted
334$\lambda(i)$, $\varphi(j)$, and their derivatives $\lambda'(i)$ $\varphi'(j)$ in the
335\mdl{domhgr} module. The model computes the grid-point positions and scale
336factors in the horizontal plane as follows:
337\begin{flalign*}
338\lambda_t &\equiv \text{glamt}= \lambda(i)     & \varphi_t &\equiv \text{gphit} = \varphi(j)\\
339\lambda_u &\equiv \text{glamu}= \lambda(i+1/2)& \varphi_u &\equiv \text{gphiu}= \varphi(j)\\
340\lambda_v &\equiv \text{glamv}= \lambda(i)       & \varphi_v &\equiv \text{gphiv} = \varphi(j+1/2)\\
341\lambda_f &\equiv \text{glamf }= \lambda(i+1/2)& \varphi_f &\equiv \text{gphif }= \varphi(j+1/2)
342\end{flalign*}
343\begin{flalign*}
344e_{1t} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j)  |&
345e_{2t} &\equiv \text{e2t} = r_a |\varphi'(j)|  \\
346e_{1u} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)   \; \cos\varphi(j)  |&
347e_{2u} &\equiv \text{e2t} = r_a |\varphi'(j)|\\
348e_{1v} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j+1/2)  |&
349e_{2v} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|\\
350e_{1f} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)\; \cos\varphi(j+1/2)  |&
351e_{2f} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|
352\end{flalign*}
353where the last letter of each computational name indicates the grid point
354considered and $r_a$ is the earth radius (defined in \mdl{phycst} along with
355all universal constants). Note that the horizontal position of and scale factors
356at $w$-points are exactly equal to those of $t$-points, thus no specific arrays
357are defined at $w$-points.
358
359Note that the definition of the scale factors ($i.e.$ as the analytical first derivative
360of the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$) is
361specific to the \NEMO model \citep{Marti_al_JGR92}. As an example, $e_{1t}$ is defined
362locally at a $t$-point, whereas many other models on a C grid choose to define
363such a scale factor as the distance between the $U$-points on each side of the
364$t$-point. Relying on an analytical transformation has two advantages: firstly, there
365is no ambiguity in the scale factors appearing in the discrete equations, since they
366are first introduced in the continuous equations; secondly, analytical transformations
367encourage good practice by the definition of smoothly varying grids (rather than
368allowing the user to set arbitrary jumps in thickness between adjacent layers)
369\citep{Treguier1996}. An example of the effect of such a choice is shown in
370Fig.~\ref{Fig_zgr_e3}.
371%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
372\begin{figure}[!t] \label{Fig_zgr_e3}  \begin{center}
373\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr_e3.pdf}
374\caption{Comparison of (a) traditional definitions of grid-point position and grid-size
375in the vertical, and (b) analytically derived grid-point position and scale factors. For
376both grids here,  the same $w$-point depth has been chosen but in (a) the
377$t$-points are set half way between $w$-points while in (b) they are defined from
378an analytical function: $z(k)=5\,(i-1/2)^3 - 45\,(i-1/2)^2 + 140\,(i-1/2) - 150$.
379Note the resulting difference between the value of the grid-size $\Delta_k$ and
380those of the scale factor $e_k$. }
381\end{center}   \end{figure}
382%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
383
384% -------------------------------------------------------------------------------------------------------------
385%        Choice of horizontal grid
386% -------------------------------------------------------------------------------------------------------------
387\subsection{Choice of horizontal grid}
388\label{DOM_hgr_msh_choice}
389
390The user has three options available in defining a horizontal grid, which involve
391the parameter $jphgr\_mesh$ of the \mdl{par\_oce} module.
392\begin{description}
393\item[\jp{jphgr\_mesh}=0]  The most general curvilinear orthogonal grids.
394The coordinates and their first derivatives with respect to $i$ and $j$ are
395provided in a file, read in \rou{hgr\_read} subroutine of the domhgr module.
396\item[\jp{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).
397For other analytical grids, the \mdl{domhgr} module must be modified by the user.
398\end{description}
399
400There are two simple cases of geographical grids on the sphere. With
401\jp{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
402with grid sizes specified by parameters \pp{ppe1\_deg} and \pp{ppe2\_deg},
403respectively. Such a geographical grid can be very anisotropic at high latitudes
404because of the convergence of meridians (the zonal scale factors $e_1$ 
405become much smaller than the meridional scale factors $e_2$). The Mercator
406grid (\jp{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
407factors in the same way as the zonal ones. In this case, meridional scale factors
408and latitudes are calculated analytically using the formulae appropriate for
409a Mercator projection, based on \pp{ppe1\_deg} which is a reference grid spacing
410at the equator (this applies even when the geographical equator is situated outside
411the model domain).
412%%%
413\gmcomment{ give here the analytical expression of the Mercator mesh}
414%%%
415In these two cases (\jp{jphgr\_mesh}=1 or 4), the grid position is defined by the
416longitude and latitude of the south-westernmost point (\pp{ppglamt0} 
417and \pp{ppgphi0}). Note that for the Mercator grid the user need only provide
418an approximate starting latitude: the real latitude will be recalculated analytically,
419in order to ensure that the equator corresponds to line passing through $t$-
420and $u$-points. 
421
422Rectangular grids ignoring the spherical geometry are defined with
423\jp{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\jp{jphgr\_mesh} = 2,
424Coriolis factor is constant) or a beta-plane (\jp{jphgr\_mesh} = 3, the Coriolis factor
425is linear in the $j$-direction). The grid size is uniform in meter in each direction,
426and given by the parameters \pp{ppe1\_m} and \pp{ppe2\_m} respectively.
427The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
428with the first $t$-point. The meridional coordinate (gphi. arrays) is in kilometers,
429and the second $t$-point corresponds to coordinate $gphit=0$. The input
430parameter \pp{ppglam0} is ignored. \pp{ppgphi0} is used to set the reference
431latitude for computation of the Coriolis parameter. In the case of the beta plane,
432\pp{ppgphi0} corresponds to the center of the domain. Finally, the special case
433\jp{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
434GYRE configuration, representing a classical mid-latitude double gyre system.
435The rotation allows us to maximize the jet length relative to the gyre areas
436(and the number of grid points).
437
438The choice of the grid must be consistent with the boundary conditions specified
439by the parameter \jp{jperio} (see {\S\ref{LBC}).
440
441% -------------------------------------------------------------------------------------------------------------
442%        Grid files
443% -------------------------------------------------------------------------------------------------------------
444\subsection{Grid files}
445\label{DOM_hgr_files}
446
447All the arrays relating to a particular ocean model configuration (grid-point
448position, scale factors, masks) can be saved in files if $\np{nmsh} \not= 0$ 
449(namelist parameter). This can be particularly useful for plots and off-line
450diagnostics. In some cases, the user may choose to make a local modification
451of a scale factor in the code. This is the case in global configurations when
452restricting the width of a specific strait (usually a one-grid-point strait that
453happens to be too wide due to insufficient model resolution). An example
454is Gibraltar Strait in the ORCA2 configuration. When such modifications are done,
455the output grid written when $\np{nmsh} \not=0$ is no more equal to the input grid.
456
457$\ $\newline    % force a new ligne
458
459% ================================================================
460% Domain: Vertical Grid (domzgr)
461% ================================================================
462\section  [Domain: Vertical Grid (\textit{domzgr})]
463      {Domain: Vertical Grid \small{(\mdl{domzgr} module)} }
464\label{DOM_zgr}
465%-----------------------------------------nam_zgr & namdom-------------------------------------------
466\namdisplay{namzgr} 
467\namdisplay{namdom} 
468%-------------------------------------------------------------------------------------------------------------
469
470In the vertical, the model mesh is determined by four things:
471(1) the bathymetry given in meters ;
472(2) the number of levels of the model (\jp{jpk}) ;
473(3) the analytical transformation $z(i,j,k)$ and the vertical scale factors
474(derivatives of the transformation) ;
475and (4) the masking system, $i.e.$ the number of wet model levels at each
476$(i,j)$ column of points.
477
478%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
479\begin{figure}[!tb] \label{Fig_z_zps_s_sps}  \begin{center}
480\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_z_zps_s_sps.pdf}
481\caption{The ocean bottom as seen by the model:
482(a) $z$-coordinate with full step,
483(b) $z$-coordinate with partial step,
484(c) $s$-coordinate: terrain following representation,
485(d) hybrid $s-z$ coordinate,
486(e) hybrid $s-z$ coordinate with partial step, and
487(f) same as (e) but with variable volume associated with the non-linear free surface.
488Note that the variable volume option (\key{vvl}) can be used with any of the
4895 coordinates (a) to (e).}
490\end{center}   \end{figure}
491%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
492
493The choice of a vertical coordinate, even if it is made through a namelist parameter,
494must be done once of all at the beginning of an experiment. It is not intended as an
495option which can be enabled or disabled in the middle of an experiment. Three main
496choices are offered (Fig.~\ref{Fig_z_zps_s_sps}a to c): $z$-coordinate with full step
497bathymetry (\np{ln\_zco}=true), $z$-coordinate with partial step bathymetry
498(\np{ln\_zps}=true), or generalized, $s$-coordinate (\np{ln\_sco}=true).
499Hybridation of the three main coordinates are available: $s-z$ or $s-zps$ coordinate
500(Fig.~\ref{Fig_z_zps_s_sps}d and \ref{Fig_z_zps_s_sps}e). When using the variable
501volume option \key{vvl}) ($i.e.$ non-linear free surface), the coordinate follow the
502time-variation of the free surface so that the transformation is time dependent:
503$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). This option can be used with full step
504bathymetry or $s$-coordinate (hybride and partial step coordinates have not
505yet been tested in NEMO v2.3).
506
507Contrary to the horizontal grid, the vertical grid is computed in the code and no
508provision is made for reading it from a file. The only input file is the bathymetry
509(in meters)\footnote{N.B. in full step $z$-coordinate, a \textit{bathy\_level} file can
510replace the \textit{bathy\_meter} file, so that the computation of the number of
511wet ocean point in each water column is by-passed}. After reading the bathymetry,
512the algorithm for vertical grid definition differs between the different options:
513\begin{description}
514\item[\textit{zco}] set a reference coordinate transformation $z_0 (k)$, and set $z(i,j,k,t)=z_0 (k)$.
515\item[\textit{zps}] set a reference coordinate transformation $z_0 (k)$, and
516calculate the thickness of the deepest level at each $(i,j)$ point using the
517bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
518\item[\textit{sco}] smooth the bathymetry to fulfil the hydrostatic consistency
519criteria and set the three-dimensional transformation.
520\item[\textit{s-z} and \textit{s-zps}] smooth the bathymetry to fulfil the hydrostatic
521consistency criteria and set the three-dimensional transformation $z(i,j,k)$, and
522possibly introduce masking of extra land points to better fit the original bathymetry file
523\end{description}
524%%%
525\gmcomment{   add the description of the smoothing:  envelop topography...}
526%%%
527
528Generally, the arrays describing the grid point depths and vertical scale factors
529are three dimensional arrays $(i,j,k)$. In the special case of $z$-coordinates with
530full step bottom topography, it is possible to define those arrays as one-dimensional,
531in order to save memory. This is performed by defining the \key{zco} 
532C-Pre-Processor (CPP) key. To improve the code readability while providing this
533flexibility, the vertical coordinate and scale factors are defined as functions of
534$(i,j,k)$ with "fs" as prefix (examples: \textit{fsdeptht, fse3t,} etc) that can be either
535three-dimensional arrays, or a one dimensional array when \key{zco} is defined.
536These functions are defined in the file \hf{domzgr\_substitute} of the DOM directory.
537They are used throughout the code, and replaced by the corresponding arrays at
538the time of pre-processing (CPP capability).
539
540% -------------------------------------------------------------------------------------------------------------
541%        Meter Bathymetry
542% -------------------------------------------------------------------------------------------------------------
543\subsection{Meter Bathymetry}
544\label{DOM_bathy}
545
546Three options are possible for defining the bathymetry, according to the
547namelist variable \np{ntopo}:
548\begin{description}
549\item[\np{ntopo} = 0] a flat-bottom domain is defined. The total depth $z_w (jpk)$ 
550is given by the coordinate transformation. The domain can either be a closed
551basin or a periodic channel depending on the parameter \jp{jperio}.
552\item[\np{ntopo} = -1] a domain with a bump of topography one third of the
553domain width at the central latitude. This is meant for the "EEL-R5" configuration,
554a periodic or open boundary channel with a seamount.
555\item[\np{ntopo} = 1] read a bathymetry. The bathymetry file (Netcdf format)
556provides the ocean depth (positive, in meters) at each grid point of the model grid.
557The bathymetry is usually built by interpolating a standard bathymetry product
558($e.g.$ ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry also
559defines the coastline: where the bathymetry is zero, no model levels are defined
560(all levels are masked).
561\end{description}
562
563When using the rigid lid approximation (\key{dynspg\_rl} is defined) isolated land
564masses (islands) must be identified by negative integers in the input bathymetry file
565(see \S\ref{MISC_solisl}).
566
567When a global ocean is coupled to an atmospheric model it is better to represent
568all large water bodies (e.g, great lakes, Caspian sea...) even if the model
569resolution does not allow their communication with the rest of the ocean.
570This is unnecessary when the ocean is forced by fixed atmospheric conditions,
571so these seas can be removed from the ocean domain. The user has the option
572to set the bathymetry in closed seas to zero (see \S\ref{MISC_closea}), but the
573code has to be adapted to the user's configuration.
574
575% -------------------------------------------------------------------------------------------------------------
576%        z-coordinate  and reference coordinate transformation
577% -------------------------------------------------------------------------------------------------------------
578\subsection[$z$-coordinate (\np{ln\_zco} or \key{zco})]
579        {$z$-coordinate (\np{ln\_zco}=.true. or \key{zco}) and reference coordinate}
580\label{DOM_zco}
581
582%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
583\begin{figure}[!tb] \label{Fig_zgr}  \begin{center}
584\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr.pdf}
585\caption{Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level
586functions for (a) T-point depth and (b) the associated scale factor as computed
587from \eqref{DOM_zgr_ana} using \eqref{DOM_zgr_coef} in $z$-coordinate.}
588\end{center}   \end{figure}
589%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
590
591The reference coordinate transformation $z_0 (k)$ defines the arrays $gdept_0$ 
592and $gdepw_0$ for $t$- and $w$-points, respectively. As indicated on
593Fig.\ref{Fig_index_vert} \jp{jpk} is the number of $w$-levels. $gdepw_0(1)$ is the
594ocean surface. There are at most \jp{jpk}-1 $t$-points inside the ocean, the
595additional $t$-point at $jk=jpk$ is below the sea floor and is not used.
596The vertical location of $w$- and $t$-levels is defined from the analytic expression
597of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides the
598vertical scale factors. The user must provide the analytical expression of both
599$z_0$ and its first derivative with respect to $k$. This is done in routine \mdl{domzgr} 
600through statement functions, using parameters provided in the \textit{par\_oce.h90} file.
601
602It is possible to define a simple regular vertical grid by giving zero stretching (\pp{ppacr=0}).
603In that case, the parameters \jp{jpk} (number of $w$-levels) and \pp{pphmax} 
604(total ocean depth in meters) fully define the grid.
605
606For climate-related studies it is often desirable to concentrate the vertical resolution
607near the ocean surface. The following function is proposed as a standard for a
608$z$-coordinate (with either full or partial steps):
609\begin{equation} \label{DOM_zgr_ana}
610\begin{split}
611 z_0 (k)    &= h_{sur} -h_0 \;k-\;h_1 \;\log \left[ {\,\cosh \left( {{(k-h_{th} )} / {h_{cr} }} \right)\,} \right] \\ 
612 e_3^0 (k)  &= \left| -h_0 -h_1 \;\tanh \left( {{(k-h_{th} )} / {h_{cr} }} \right) \right|
613\end{split}
614\end{equation}
615where $k=1$ to \jp{jpk} for $w$-levels and $k=1$ to $k=1$ for $T-$levels. Such an
616expression allows us to define a nearly uniform vertical location of levels at the
617ocean top and bottom with a smooth hyperbolic tangent transition in between
618(Fig.~\ref{Fig_zgr}).
619
620The most used vertical grid for ORCA2 has $10~m$ ($500~m)$ resolution in the
621surface (bottom) layers and a depth which varies from 0 at the sea surface to a
622minimum of $-5000~m$. This leads to the following conditions:
623\begin{equation} \label{DOM_zgr_coef}
624\begin{split}
625 e_3 (1+1/2)      &=10. \\ 
626 e_3 (jpk-1/2) &=500. \\ 
627 z(1)       &=0. \\ 
628 z(jpk)        &=-5000. \\ 
629\end{split}
630\end{equation}
631
632With the choice of the stretching $h_{cr} =3$ and the number of levels
633\jp{jpk}=$31$, the four coefficients $h_{sur}$, $h_{0}$, $h_{1}$, and $h_{th}$ in
634\eqref{DOM_zgr_ana} have been determined such that \eqref{DOM_zgr_coef} is
635satisfied, through an optimisation procedure using a bisection method. For the first
636standard ORCA2 vertical grid this led to the following values: $h_{sur} =4762.96$,
637$h_0 =255.58, h_1 =245.5813$, and $h_{th} =21.43336$. The resulting depths and
638scale factors as a function of the model levels are shown in Fig.~\ref{Fig_zgr} and
639given in Table \ref{Tab_orca_zgr}. Those values correspond to the parameters
640\pp{ppsur}, \pp{ppa0}, \pp{ppa1}, \pp{ppkth} in the parameter file \mdl{par\_oce}.
641
642Rather than entering parameters $h_{sur}$, $h_{0}$, and $h_{1}$ directly, it is
643possible to recalculate them. In that case the user sets
644\pp{ppsur}=\pp{ppa0}=\pp{ppa1}=\pp{pp\_to\_be\_computed}, in \mdl{par\_oce},
645and specifies instead the four following parameters:
646\begin{itemize}
647\item    \pp{ppacr}=$h_{cr} $: stretching factor (nondimensional). The larger
648\pp{ppacr}, the smaller the stretching. Values from $3$ to $10$ are usual.
649\item    \pp{ppkth}=$h_{th} $: is approximately the model level at which maximum
650stretching occurs (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
651\item    \pp{ppdzmin}: minimum thickness for the top layer (in meters)
652\item    \pp{pphmax}: total depth of the ocean (meters).
653\end{itemize}
654As an example, for the $45$ layers used in the DRAKKAR configuration those
655parameters are: \jp{jpk}=46, \pp{ppacr}=9, \pp{ppkth}=23.563, \pp{ppdzmin}=6m,
656\pp{pphmax}=5750m.
657
658%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
659\begin{table} \label{Tab_orca_zgr}
660\begin{center} \begin{tabular}{c||r|r|r|r}
661\hline
662\textbf{LEVEL}& \textbf{gdept}& \textbf{gdepw}& \textbf{e3t }& \textbf{e3w  } \\ \hline
663&  \textbf{  5.00}   &       0.00 & \textbf{ 10.00} &  10.00 \\   \hline
664&  \textbf{15.00} &    10.00 &   \textbf{ 10.00} &  10.00 \\   \hline
665&  \textbf{25.00} &    20.00 &   \textbf{ 10.00} &     10.00 \\   \hline
666&  \textbf{35.01} &    30.00 &   \textbf{ 10.01} &     10.00 \\   \hline
667&  \textbf{45.01} &    40.01 &   \textbf{ 10.01} &  10.01 \\   \hline
668&  \textbf{55.03} &    50.02 &   \textbf{ 10.02} &     10.02 \\   \hline
669&  \textbf{65.06} &    60.04 &   \textbf{ 10.04} &  10.03 \\   \hline
670&  \textbf{75.13} &    70.09 &   \textbf{ 10.09} &  10.06 \\   \hline
671&  \textbf{85.25} &    80.18 &   \textbf{ 10.17} &  10.12 \\   \hline
67210 &  \textbf{95.49} &    90.35 &   \textbf{ 10.33} &  10.24 \\   \hline
67311 &  \textbf{105.97}   &   100.69 &   \textbf{ 10.65} &  10.47 \\   \hline
67412 &  \textbf{116.90}   &   111.36 &   \textbf{ 11.27} &  10.91 \\   \hline
67513 &  \textbf{128.70}   &   122.65 &   \textbf{ 12.47} &  11.77 \\   \hline
67614 &  \textbf{142.20}   &   135.16 &   \textbf{ 14.78} &  13.43 \\   \hline
67715 &  \textbf{158.96}   &   150.03 &   \textbf{ 19.23} &  16.65 \\   \hline
67816 &  \textbf{181.96}   &   169.42 &   \textbf{ 27.66} &  22.78 \\   \hline
67917 &  \textbf{216.65}   &   197.37 &   \textbf{ 43.26} &  34.30 \\ \hline
68018 &  \textbf{272.48}   &   241.13 &   \textbf{ 70.88} &  55.21 \\ \hline
68119 &  \textbf{364.30}   &   312.74 &   \textbf{116.11} &  90.99 \\ \hline
68220 &  \textbf{511.53}   &   429.72 &   \textbf{181.55} &    146.43 \\ \hline
68321 &  \textbf{732.20}   &   611.89 &   \textbf{261.03} &    220.35 \\ \hline
68422 &  \textbf{1033.22}&  872.87 &   \textbf{339.39} &    301.42 \\ \hline
68523 &  \textbf{1405.70}& 1211.59 & \textbf{402.26} &   373.31 \\ \hline
68624 &  \textbf{1830.89}& 1612.98 & \textbf{444.87} &   426.00 \\ \hline
68725 &  \textbf{2289.77}& 2057.13 & \textbf{470.55} &   459.47 \\ \hline
68826 &  \textbf{2768.24}& 2527.22 & \textbf{484.95} &   478.83 \\ \hline
68927 &  \textbf{3257.48}& 3011.90 & \textbf{492.70} &   489.44 \\ \hline
69028 &  \textbf{3752.44}& 3504.46 & \textbf{496.78} &   495.07 \\ \hline
69129 &  \textbf{4250.40}& 4001.16 & \textbf{498.90} &   498.02 \\ \hline
69230 &  \textbf{4749.91}& 4500.02 & \textbf{500.00} &   499.54 \\ \hline
69331 &  \textbf{5250.23}& 5000.00 &   \textbf{500.56} & 500.33 \\ \hline
694\end{tabular} \end{center} 
695\caption{Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration
696as computed from \eqref{DOM_zgr_ana} using the coefficients given in
697\eqref{DOM_zgr_coef}}
698\end{table}
699%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
700
701% -------------------------------------------------------------------------------------------------------------
702%        z-coordinate with partial step
703% -------------------------------------------------------------------------------------------------------------
704\subsection   [$z$-coordinate with partial step (\np{ln\_zps})]
705         {$z$-coordinate with partial step (\np{ln\_zps}=.true.)}
706\label{DOM_zps}
707%--------------------------------------------namdom-------------------------------------------------------
708\namdisplay{namdom} 
709%--------------------------------------------------------------------------------------------------------------
710
711In $z$-coordinate partial step, the depths of the model levels are defined by the
712reference analytical function $z_0 (k)$ as described in the previous
713section, \emph{except} in the bottom layer. The thickness of the bottom layer is
714allowed to vary as a function of geographical location $(\lambda,\varphi)$ to allow a
715better representation of the bathymetry, especially in the case of small
716slopes (where the bathymetry varies by less than one level thickness from
717one grid point to the next). The reference layer thicknesses $e_{3t}^0$ have been
718defined in the absence of bathymetry. With partial steps, layers from 1 to
719\jp{jpk}-2 can have a thickness smaller than $e_{3t}(jk)$. The model deepest layer (\jp{jpk}-1)
720is allowed to have either a smaller or larger thickness than $e_{3t}(jpk)$: the
721maximum thickness allowed is $2*e_{3t}(jpk-1)$. This has to be kept in mind when
722specifying the maximum depth \pp{pphmax} in partial steps: for example, with
723\pp{pphmax}$=5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean depth
724allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk-1)$ being $250~m$).
725Two variables in the namdom namelist are used to define the partial step
726vertical grid. The mimimum water thickness (in meters) allowed for a cell
727partially filled with bathymetry at level jk is the minimum of \np{rn\_e3zps\_min} 
728(thickness in meters, usually $20~m$) or $e_{3t}(jk)*\np{rn\_e3zps\_rat}$ (a fraction,
729usually 10\%, of the default thickness $e_{3t}(jk)$).
730
731 \colorbox{yellow}{Add a figure here of pstep especially at last ocean level }
732
733% -------------------------------------------------------------------------------------------------------------
734%        s-coordinate
735% -------------------------------------------------------------------------------------------------------------
736\subsection   [$s$-coordinate (\np{ln\_sco})]
737           {$s$-coordinate (\np{ln\_sco}=true)}
738\label{DOM_sco}
739%------------------------------------------nam_zgr_sco---------------------------------------------------
740\namdisplay{namzgr_sco} 
741%--------------------------------------------------------------------------------------------------------------
742In $s$-coordinate (\key{sco} is defined), the depth and thickness of the model
743levels are defined from the product of a depth field and either a stretching
744function or its derivative, respectively:
745\begin{equation} \label{DOM_sco_ana}
746\begin{split}
747 z(k)       &= h(i,j) \; z_0(k)  \\
748 e_3(k)  &= h(i,j) \; z_0'(k)
749\end{split}
750\end{equation}
751where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $t$-point
752location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea
753surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean
754depth, since a mixed step-like and bottom-following representation of the
755topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e). In the example provided
756(\hf{zgr\_s} file) $h$ is a smooth envelope bathymetry and steps are used to represent
757sharp bathymetric gradients.
758
759A new flexible stretching function, modified from \citet{Song_Haidvogel_JCP94} is provided as an example:
760\begin{equation} \label{DOM_sco_function}
761\begin{split}
762&= h_c +( h-h_c)\;c s)  \\
763c(s)  &\frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)} 
764               - \tanh{ \left\theta \, b      \right)}  \right]}
765            {2\;\sinh \left( \theta \right)}
766\end{split}
767\end{equation}
768where $h_c$ is the thermocline depth and $\theta$ and $b$ are the surface and
769bottom control parameters such that $0\leqslant \theta \leqslant 20$, and
770$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom
771increase of the vertical resolution (Fig.~\ref{Fig_sco_function}).
772
773%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
774\begin{figure}[!tb] \label{Fig_sco_function}  \begin{center}
775\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_sco_function.pdf}
776\caption{Examples of the stretching function applied to a sea mont; from left to right:
777surface, surface and bottom, and bottom intensified resolutions}
778\end{center}   \end{figure}
779%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
780
781% -------------------------------------------------------------------------------------------------------------
782%        z*- or s*-coordinate
783% -------------------------------------------------------------------------------------------------------------
784\subsection{$z^*$- or $s^*$-coordinate (add \key{vvl}) }
785\label{DOM_zgr_vvl}
786
787This option is described in the Report by Levier \textit{et al.} (2007), available on
788the \NEMO web site.
789
790%gm% key advantage: minimise the diffusion/dispertion associated with advection in response to high frequency surface disturbances
791
792% -------------------------------------------------------------------------------------------------------------
793%        level bathymetry and mask
794% -------------------------------------------------------------------------------------------------------------
795\subsection{level bathymetry and mask}
796\label{DOM_msk}
797
798Whatever the vertical coordinate used, the model offers the possibility of
799representing the bottom topography with steps that follow the face of the
800model cells (step like topography) \citep{Madec_al_JPO96}. The distribution of
801the steps in the horizontal is defined in a 2D integer array, mbathy, which
802gives the number of ocean levels ($i.e.$ those that are not masked) at each
803$t$-point. mbathy is computed from the meter bathymetry using the definiton of
804gdept as the number of $t$-points which gdept $\leq$ bathy. Note that in version
805NEMO v2.3, the user still has to provide the "level" bathymetry in a NetCDF
806file when using the full step option (\np{ln\_zco}), rather than the bathymetry
807in meters: both will be allowed in future versions.
808
809Modifications of the model bathymetry are performed in the \textit{bat\_ctl} 
810routine (see \mdl{domzgr} module) after mbathy is computed. Isolated grid points
811that do not communicate with another ocean point at the same level are eliminated.
812
813In the case of the rigid-lid approximation when islands occur in the computational
814domain (\np{ln\_dynspg\_rl}=.true. and \key{island} is defined), the \textit{mbathy} 
815array must be provided and takes values from $-N$ to \jp{jpk}-1. It provides the
816following information: $mbathy(i,j) = -n, \ n \in \left] 0,N \right]$, $t$-points are
817land points on the $n^{th}$ island ; $mbathy(i,j) =0$, $t$-points are land points
818on the main land (continent) ; $mbathy(i,j) =k$, the first $k$ $t$- and $w$-points
819are ocean points, the others are points below the ocean floor.
820
821This is used to compute the island barotropic stream function used in the rigid lid
822computation (see \S\ref{MISC_solisl}).
823
824From the \textit{mbathy} array, the mask fields are defined as follows:
825\begin{align*}
826tmask(i,j,k) &= \begin{cases}   \; 1&   \text{ if $k\leq mbathy(i,j)$  }    \\
827                                                \; 0&   \text{ if $k\leq mbathy(i,j)$  }    \end{cases}     \\
828umask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
829vmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j+1,k)   \\
830fmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
831                   & \ \ \, * tmask(i,j,k) \ * \ tmask(i+1,j,k)
832\end{align*}
833
834\gmcomment{ STEVEN: are the dots multiplications?}     
835
836Note that \textit{wmask} is not defined as it is exactly equal to \textit{tmask} with
837the numerical indexing used (\S~\ref{DOM_Num_Index}). Moreover, the
838specification of closed lateral boundaries requires that at least the first and last
839rows and columns of the \textit{mbathy} array are set to zero. In the particular
840case of an east-west cyclical boundary condition, \textit{mbathy} has its last
841column equal to the second one and its first column equal to the last but one
842(and so too the mask arrays) (see \S~\ref{LBC_jperio}).
843
844%%%
845\gmcomment{   \colorbox{yellow}{Add one word on tricky trick !} mbathy in further modified in zdfbfr{\ldots}}
846%%%
847
848$\ $\newline    % force a new ligne
849
850% ================================================================
851% Time Discretisation
852% ================================================================
853\section{Time Discretisation}
854\label{DOM_nxt}
855
856The time stepping used in \NEMO is a three level scheme that can be
857represented as follows:
858\begin{equation} \label{Eq_DOM_nxt}
859   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t-\Delta t,t,t+\Delta t}
860\end{equation} 
861where $x$ stands for $u$, $v$, $t$ or $S$; RHS is the Right-Hand-Side of the
862corresponding time evolution equation; $\Delta t$ is the time step; and the
863superscripts indicate the time at which a quantity is evaluated. Each term of the
864RHS is evaluated at a specific time step(s) depending on the physics with which
865it is associated.
866
867The choice of the time step used for this evaluation is discussed below as
868well as the implications in terms of starting or restarting a model
869simulation. Note that the time stepping is generally performed in a one step
870operation. With such a complex and nonlinear system of equations it would be
871dangerous to let a prognostic variable evolve in time for each term separately.
872
873The three level scheme requires three arrays for each prognostic variables.
874For each variable $x$ there is $x_b$ (before) and $x_n$ (now). The third array,
875although referred to as $x_a$ (after) in the code, is usually not the variable at
876the next time step; but rather it is used to store the time derivative (RHS in
877\eqref{Eq_DOM_nxt}) prior to time-stepping the equation. Generally, the time
878stepping is performed once at each time step in \mdl{tranxt} and \mdl{dynnxt} 
879modules, except for implicit vertical diffusion or sea surface height when
880time-splitting options are used.
881
882% -------------------------------------------------------------------------------------------------------------
883%        Non-Diffusive Part---Leapfrog Scheme
884% -------------------------------------------------------------------------------------------------------------
885\subsection{Non-Diffusive Part --- Leapfrog Scheme}
886\label{DOM_nxt_leap_frog}
887
888The time stepping used for non-diffusive processes is the well-known
889leapfrog scheme. It is a time centred scheme, i.e. the RHS is evaluated at
890time step $t$, the now time step. It is only used for non-diffusive terms,
891that is momentum and tracer advection, pressure gradient, and Coriolis
892terms. This scheme is widely used for advective processes in low-viscosity
893fluids. It is an efficient method that achieves second-order accuracy with
894just one right hand side evaluation per time step. Moreover, it does not
895artificially damp linear oscillatory motion nor does it produce instability
896by amplifying the oscillations. These advantages are somewhat diminished by
897the large phase-speed error of the leapfrog scheme, and the unsuitability of
898leapfrog differencing for the representation of diffusive and Rayleigh
899damping processes. However, the most serious problem associated with the
900leapfrog scheme is a high-frequency computational noise called
901"time-splitting" \citep{Haltiner1980} that develops when the method
902is used to model non linear fluid dynamics: the even and odd time steps tend
903to diverge into a physical and a computational mode. Time splitting can
904be controlled through the use of an Asselin time filter (first designed by
905\citep{Robert1966} and more comprehensively studied by \citet{Asselin1972}),
906or by periodically reinitialising the leapfrog solution through a single
907integration step with a two-level scheme. In \NEMO we follow the first
908strategy:
909\begin{equation} \label{Eq_DOM_nxt_asselin}
910x_F^t  = x^t + \gamma \, \left[ x_f^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
911\end{equation} 
912where the subscript $f$ denotes filtered values and $\gamma$ is the Asselin
913coefficient. $\gamma$ is initialized as \np{atfp} (namelist parameter).
914Its default value is \np{atfp}=0.1.  This default value causes a significant dissipation
915of high frequency motions. Recommended values in idealized studies of shallow
916water turbulence are two orders of magnitude smaller (\citep{Farge1987}).
917Both strategies do, nevertheless, degrade the accuracy of the calculation from
918second to first order. The leapfrog scheme combined with a Robert-Asselin
919time filter has been preferred to other time differencing schemes such as
920predictor corrector or trapezoidal schemes, because the user has an explicit
921and simple control of the magnitude of the time diffusion of the scheme.
922In association with the 2nd order centred space discretisation of the
923advective terms in the momentum and tracer equations, it avoids implicit
924numerical diffusion in both the time and space discretisations of the
925advective term: they are both set explicitly by the user through the Robert-Asselin
926filter parameter and the viscous and diffusive coefficients.
927
928\gmcomment{
929%gm - reflexion about leapfrog: ongoing work with Matthieu Leclair
930% to be updated latter with addition of new time stepping strategy
931\colorbox{yellow}{Note}:
932The Robert-Asselin time filter slightly departs from a simple second order time
933diffusive operator computed with a forward time stepping due to the presence of
934$x_f^{t-\Delta t}$ in the right hand side of  \ref{Eq_DOM_nxt_asselin}. The original
935willing of Robert1966 and Asselin1972 was to design a time filter that allow much
936larger parameter than 0.5.   is due to computer saving consideration. In the original
937asselin filter, $x^{t-\Delta t}$ is used instead:
938 \begin{equation} \label{Eq_DOM_nxt_asselin_true}
939x_f^t  = x^t + \gamma \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
940\end{equation} 
941Applying a "true" Asselin time filter is nothing more than adding a harmonic
942diffusive operator in time. Indeed, equations \ref{Eq_DOM_nxt} and
943\ref{Eq_DOM_nxt_asselin_true} can be rewritten together as:
944\begin{equation} \label{Eq_DOM_nxt2}
945\begin{split}
946  \frac{ x^{t+\Delta t} - x^{t-\Delta t} } { 2 \,\Delta t } 
947  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} + \frac{ x_f^t  - x^t }{2 \,\Delta t} \\
948  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
949    + \gamma\ \frac{  \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right] }{2 \,\Delta t}  \\
950  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
951  + 2 \Delta t \ \gamma \ \frac{1}{{2 \Delta t}^2} 
952   \,\delta_{t-1}\,\left[ \delta_{t+1/2}\left[ x^t \right] \right]
953  \end{split}
954\end{equation} 
955expressing this again in a continuous form, one finds that the Asselin filter leads to :
956\begin{equation} \label{Eq_DOM_nxt3}
957  \frac{ \partial x} { \partial t } =  \text{RHS} + 2 \,\Delta t \ \gamma \ \frac{ {\partial}^2 x}{ \partial t ^2 }
958\end{equation} 
959
960Equations  \ref{Eq_DOM_nxt2} and \ref{Eq_DOM_nxt3} suggest several remarks.
961First the Asselin filter is definitively a second order time diffusive operator which is
962evaluated at centered time step. The magnitude of this diffusion is proportional to
963the time step (with $\gamma$ usually taken between $10^{-1}$ to $10^{-3}$).
964Second, this term has to be taken into account in all budgets of the equations
965(mass, heat content, salt content, kinetic energy...). Nevertheless,we stress here
966that it is small and does not create systematic biases. Indeed let us evaluate how
967it contributes to the time evolution of $x$ between $t_o$ and $t_1$:
968\begin{equation} \label{Eq_DOM_nxt4}
969\begin{split}
970 t_1-t_o &= \int_{t_o}^{t_1} \frac{ \partial x} { \partial t } dt \\
971      &= \int_{t_o}^{t_1} \text{RHS} dt + 2 \,\Delta t \ \gamma \left(
972        \left. \frac{ \partial x}{ \partial t } \right|_1
973      - \left. \frac{ \partial x}{ \partial t } \right|_\right)
974 \end{split}
975\end{equation} 
976}
977
978Alternative time stepping schemes are currently under investigation.
979
980% -------------------------------------------------------------------------------------------------------------
981%        Diffusive Part---Forward or Backward Scheme
982% -------------------------------------------------------------------------------------------------------------
983\subsection{Diffusive Part --- Forward or Backward Scheme}
984\label{DOM_nxt_forward_imp}
985
986The leapfrog differencing scheme is unsuitable for the representation of
987diffusive and damping processes. For a tendancy $D_x$, representing a
988diffusive term or a restoring term to a tracer climatology
989(when present, see \S~\ref{TRA_dmp}), a forward time differencing scheme
990 is used :
991\begin{equation} \label{Eq_DOM_nxt_euler}
992   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \ {D_x}^{t-\Delta t}
993\end{equation} 
994
995This is diffusive in time and conditionally stable. For example, the
996conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies_Bk04}:
997\begin{equation} \label{Eq_DOM_nxt_euler_stability}
998A^h < \left\{
999\begin{aligned}
1000                    &\frac{e^2}{  8 \; \Delta t }  &&\quad \text{laplacian diffusion}  \\
1001                    &\frac{e^4}{64 \; \Delta t }   &&\quad \text{bilaplacian diffusion} 
1002            \end{aligned}
1003\right.
1004\end{equation}
1005where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is
1006the mixing coefficient. The linear constraint \eqref{Eq_DOM_nxt_euler_stability} 
1007is a necessary condition, but not sufficient. If it is not satisfied, even mildly,
1008then the model soon becomes wildly unstable. The instability can be removed
1009by either reducing the length of the time steps or reducing the mixing coefficient.
1010
1011For the vertical diffusion terms, a forward time differencing scheme can be
1012used, but usually the numerical stability condition implies a strong
1013constraint on the time step. Two solutions are available in \NEMO to overcome
1014the stability constraint: $(a)$ a forward time differencing scheme using a
1015time splitting technique (\np{ln\_zdfexp}=.true.) or $(b)$ a backward (or implicit)
1016time differencing scheme by \np{ln\_zdfexp}=.false.). In $(a)$, the master
1017time step $\Delta $t is cut into $N$ fractional time steps so that the
1018stability criterion is reduced by a factor of $N$. The computation is done as
1019follows:
1020\begin{equation} \label{Eq_DOM_nxt_ts}
1021\begin{split}
1022& u_\ast ^{t-\Delta t} = u^{t-\Delta t}   \\
1023& u_\ast ^{t-\Delta t+L\frac{2\Delta t}{N}}=u_\ast ^{t-\Delta t+\left( {L-1} 
1024\right)\frac{2\Delta t}{N}}+\frac{2\Delta t}{N}\;\text{DF}^{t-\Delta t+\left( {L-1} \right)\frac{2\Delta t}{N}}
1025        \quad \text{for $L=1$ to $N$}      \\
1026& u^{t+\Delta t} = u_\ast^{t+\Delta t}
1027\end{split}
1028\end{equation}
1029with DF a vertical diffusion term. The number of fractional time steps, $N$, is given
1030by setting \np{n\_zdfexp}, (namelist parameter). The scheme $(b)$ is unconditionally
1031stable but diffusive. It can be written as follows:
1032\begin{equation} \label{Eq_DOM_nxt_imp}
1033   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t+\Delta t}
1034\end{equation} 
1035
1036This scheme is rather time consuming since it requires a matrix inversion,
1037but it becomes attractive since a splitting factor of 3 or more is needed
1038for the forward time differencing scheme. For example, the finite difference
1039approximation of the temperature equation is:
1040\begin{equation} \label{Eq_DOM_nxt_imp_zdf}
1041\frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\Delta t}\equiv \text{RHS}+\frac{1}{e_{3t} }\delta 
1042_k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
1043\right]
1044\end{equation}
1045where RHS is the right hand side of the equation except for the vertical diffusion term.
1046We rewrite \eqref{Eq_DOM_nxt_imp} as:
1047\begin{equation} \label{Eq_DOM_nxt_imp_mat}
1048-c(k+1)\;u^{t+1}(k+1)+d(k)\;u^{t+1}(k)-\;c(k)\;u^{t+1}(k-1) \equiv b(k)
1049\end{equation}
1050where
1051\begin{align*} 
1052 c(k) &= A_w^{vm} (k) \, / \, e_{3uw} (k)     \\
1053 d(k) &= e_{3u} (k)       \, / \, (2\Delta t) + c_k + c_{k+1}    \\
1054 b(k) &= e_{3u} (k) \; \left( u^{t-1}(k) \, / \, (2\Delta t) + \text{RHS} \right)   
1055\end{align*}
1056
1057\eqref{Eq_DOM_nxt_imp_mat} is a linear system of equations which associated
1058matrix is tridiagonal. Moreover, $c(k)$ and $d(k)$ are positive and the diagonal
1059term is greater than the sum of the two extra-diagonal terms, therefore a special
1060adaptation of the Gauss elimination procedure is used to find the solution
1061(see for example \citet{Richtmyer1967}).
1062
1063% -------------------------------------------------------------------------------------------------------------
1064%        Start/Restart strategy
1065% -------------------------------------------------------------------------------------------------------------
1066\subsection{Start/Restart strategy}
1067\label{DOM_nxt_rst}
1068%--------------------------------------------namrun-------------------------------------------
1069\namdisplay{namrun}         
1070%--------------------------------------------------------------------------------------------------------------
1071
1072The first time step of this three level scheme when starting from initial conditions
1073is a forward step (Euler time integration):
1074\begin{equation} \label{Eq_DOM_euler}
1075   x^1 = x^0 + \Delta t \ \text{RHS}^0
1076\end{equation}
1077
1078It is also possible to restart from a previous computation, by using a
1079restart file. The restart strategy is designed to ensure perfect
1080restartability of the code: the user should obtain the same results to
1081machine precision either by running the model for $2N$ time steps in one go,
1082or by performing two consecutive experiments of $N$ steps with a restart.
1083This requires saving two time levels and many auxiliary data in the restart
1084files in machine precision.
1085
1086Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
1087gradient (see \S\ref{DYN_hpg_imp}), an extra three-dimensional field has to be
1088added in the restart file to ensure an exact restartability. This is done only optionally
1089via the namelist parameter \np{nn\_dynhpg\_rst}, so that a reduction of the size of
1090restart file can be obtained when the restartability is not a key issue (operational
1091oceanography or ensemble simulation for seasonal forcast).
1092%%%
1093\gmcomment{add here how to force the restart to contain only one time step for operational purposes}
1094%%%
1095
1096\gmcomment{       % add a subsection here 
1097
1098%-------------------------------------------------------------------------------------------------------------
1099%        Time Domain
1100% -------------------------------------------------------------------------------------------------------------
1101\subsection{Time domain}
1102\label{DOM_nxt_time}
1103
1104 \colorbox{yellow}{add here a few word on nit000 and nitend}
1105
1106 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
1107
1108}        %% end add
1109
1110
1111
1112
1113
1114Implicit time stepping in case of variable volume thickness.
1115
1116Tracer case (NB for momentum in vector invariant form take care!)
1117
1118\begin{flalign*}
1119&\frac{\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}}{2\Delta t}
1120\equiv \text{RHS}+ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
1121\right]      \\
1122&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
1123\equiv {2\Delta t} \ \text{RHS}+ {2\Delta t} \ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
1124\right]      \\
1125&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
1126\equiv 2\Delta t \ \text{RHS}
1127+ 2\Delta t \ \left\{ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} [ T_{k+1}^{t+1} - T_k      ^{t+1} ]
1128                          - \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} [ T_k       ^{t+1} - T_{k-1}^{t+1} ]  \right\}     \\
1129&\\
1130&\left( e_{3t}\,T \right)_k^{t+1}
1131{2\Delta t} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}                  T_{k+1}^{t+1} 
1132+ {2\Delta t} \ \left\{  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
1133                            +  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}     \right\}   T_{k    }^{t+1}
1134{2\Delta t} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                  T_{k-1}^{t+1}      \\
1135&\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\Delta t} \ \text{RHS}    \\
1136%
1137\end{flalign*}
1138
1139\begin{flalign*}
1140\allowdisplaybreaks
1141\intertext{ Tracer case }
1142%
1143&  \qquad \qquad  \quad   -  {2\Delta t}                  \ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}   
1144                                                                                                      \qquad \qquad \qquad  \qquad  T_{k+1}^{t+1}   \\
1145&+ {2\Delta t} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
1146                                                                               +   \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
1147& \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\Delta t} \                          \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                          \quad \ \ T_{k-1}^{t+1}     
1148\ \equiv \ \left( e_{3t}\,T \right)_k^{t-1} + {2\Delta t} \ \text{RHS}  \\
1149%
1150\end{flalign*}
1151\begin{flalign*}
1152\allowdisplaybreaks
1153\intertext{ Tracer content case }
1154%
1155& -  {2\Delta t} \              & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_{k+1}^{t+1}}  && \  \left( e_{3t}\,T \right)_{k+1}^{t+1}   &\\
1156& + {2\Delta t} \ \left[ 1  \right.+ & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_k^{t+1}} 
1157                                    + & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \left\right& \left( e_{3t}\,T \right)_{k   }^{t+1}  &\\
1158& -  {2\Delta t} \               & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_{k-1}^{t+1}}     &\  \left( e_{3t}\,T \right)_{k-1}^{t+1}   
1159\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\Delta t} \ \text{RHS}  &
1160\end{flalign*}
1161
Note: See TracBrowser for help on using the repository browser.