New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DYN.tex in branches/DEV_r1826_DOC/DOC/TexFiles/Chapters – NEMO

source: branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_DYN.tex @ 2223

Last change on this file since 2223 was 2223, checked in by sga, 14 years ago

NEMO branch DEV_r1826_DOC
Edits to DYN chapter.

  • Property svn:executable set to *
File size: 64.4 KB
Line 
1% ================================================================
2% Chapter Ñ Ocean Dynamics (DYN)
3% ================================================================
4\chapter{Ocean Dynamics (DYN)}
5\label{DYN}
6\minitoc
7
8% add a figure for  dynvor ens, ene latices
9
10%\vspace{2.cm}
11$\ $\newline      %force an empty line
12
13Using the representation described in Chapter \ref{DOM}, several semi-discrete
14space forms of the dynamical equations are available depending on the vertical
15coordinate used and on the conservation properties of the vorticity term. In all
16the equations presented here, the masking has been omitted for simplicity.
17One must be aware that all the quantities are masked fields and that each time an
18average or difference operator is used, the resulting field is multiplied by a mask.
19
20The prognostic ocean dynamics equation can be summarized as follows:
21\begin{equation*}
22\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }
23                  {\text{COR} + \text{ADV}                       }
24         + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
25\end{equation*}
26NXT stands for next, referring to the time-stepping. The first group of terms on
27the rhs of the this equation corresponds to the Coriolis and advection
28terms that are decomposed into a vorticity part (VOR), a kinetic energy part (KEG)
29and, either a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
30and advection part (COR+ADV) in the flux formulation. The terms following these
31are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient,
32and SPG, Surface Pressure Gradient); and contributions from lateral diffusion
33(LDF) and vertical diffusion (ZDF), which are added to the rhs in the \mdl{dynldf} 
34and \mdl{dynzdf} modules. The vertical diffusion term includes the surface and
35bottom stresses. The external forcings and parameterisations require complex
36inputs (surface wind stress calculation using bulk formulae, estimation of mixing
37coefficients) that are carried out in modules SBC, LDF and ZDF and are described
38in Chapters \ref{SBC}, \ref{LDF} and \ref{ZDF}, respectively.
39
40In the present chapter we also describe the diagnostic equations used to compute
41the horizontal divergence, curl of the velocities (\emph{divcur} module) and
42the vertical velocity (\emph{wzvmod} module).
43
44The different options available to the user are managed by namelist variables.
45For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
46where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
47If a CPP key is used for this term its name is \textbf{key\_ttt}. The corresponding
48code can be found in the \textit{dynttt\_xxx} module in the DYN directory, and it is
49usually computed in the \textit{dyn\_ttt\_xxx} subroutine.
50
51The user has the option of extracting and outputting each tendency term from the
523D momentum equations (\key{trddyn} defined), as described in
53Chap.\ref{MISC}.  Furthermore, the tendency terms associated with the 2D
54barotropic vorticity balance (when \key{trdvor} is defined) can be derived from the
553D terms.
56%%%
57\gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does
58MISC correspond to "extracting tendency terms" or "vorticity balance"?}
59
60$\ $\newline    % force a new ligne
61
62% ================================================================
63% Sea Surface Height evolution & Diagnostics variables
64% ================================================================
65\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
66\label{DYN_divcur_wzv}
67
68%--------------------------------------------------------------------------------------------------------------
69%           Horizontal divergence and relative vorticity
70%--------------------------------------------------------------------------------------------------------------
71\subsection   [Horizontal divergence and relative vorticity (\textit{divcur})]
72         {Horizontal divergence and relative vorticity (\mdl{divcur})}
73\label{DYN_divcur}
74
75The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows:
76\begin{equation} \label{Eq_divcur_cur}
77\zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta _{i+1/2} \left[ {e_{2v}\;v} \right]
78                          -\delta _{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
79\end{equation} 
80
81The horizontal divergence is defined at a $T$-point. It is given by:
82\begin{equation} \label{Eq_divcur_div}
83\chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
84      \left( {\delta _i \left[ {e_{2u}\,e_{3u}\,u} \right]
85             +\delta _j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
86\end{equation} 
87
88Note that in the $z$-coordinate with full step (when \key{zco} is defined),
89$e_{3u}$=$e_{3v}$=$e_{3f}$ so that these metric terms cancel in \eqref{Eq_divcur_div}.
90
91Note also that although the vorticity has the same discrete expression in $z$-
92and $s$-coordinates, its physical meaning is not identical. $\zeta$ is a pseudo
93vorticity along $s$-surfaces (only pseudo because $(u,v)$ are still defined along
94geopotential surfaces, but are not necessarily defined at the same depth).
95
96The vorticity and divergence at the \textit{before} step are used in the computation
97of the horizontal diffusion of momentum. Note that because they have been
98calculated prior to the Asselin filtering of the \textit{before} velocities, the
99\textit{before} vorticity and divergence arrays must be included in the restart file
100to ensure perfect restartability. The vorticity and divergence at the \textit{now} 
101time step are used for the computation of the nonlinear advection and of the
102vertical velocity respectively.
103
104%--------------------------------------------------------------------------------------------------------------
105%           Sea Surface Height evolution
106%--------------------------------------------------------------------------------------------------------------
107\subsection   [Sea surface height evolution and vertical velocity (\textit{sshwzv})]
108         {Horizontal divergence and relative vorticity (\mdl{sshwzv})}
109\label{DYN_sshwzv}
110
111The sea surface height is given by :
112\begin{equation} \label{Eq_dynspg_ssh}
113\begin{aligned}
114\frac{\partial \eta }{\partial t}
115&\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\delta _i \left[ {e_{2u}\,e_{3u}\;u} \right]
116                                                                                  +\delta _j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right) } 
117           -    \frac{\textit{emp}}{\rho _w }   \\
118&\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho _w }
119\end{aligned}
120\end{equation}
121where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
122expressed in Kg/m$^2$/s (which is equal to mm/s), and $\rho _w$=1,000~Kg/m$^3$ 
123is the density of pure water. If river runoff is expressed as a surface freshwater
124flux (see \S\ref{SBC}) then \textit{emp} can be written as the evaporation minus
125precipitation, minus the river runoff. The sea-surface height is evaluated
126using exactly the same time stepping scheme as the tracer equation \eqref{Eq_tra_nxt}:
127a leapfrog scheme in combination with an Asselin time filter, $i.e.$ the velocity appearing
128in \eqref{Eq_dynspg_ssh} is centred in time (\textit{now} velocity).
129This is of paramount importance. Replacing $T$ by the number $1$ in the tracer equation and summing
130over the water column must lead to the sea surface height equation otherwise tracer content
131will not be conserved \ref{Griffies_al_MWR01, LeclairMadec2009}.
132
133The vertical velocity is computed by an upward integration of the horizontal
134divergence starting at the bottom, taking into account the change of the thickness of the levels :
135
136\begin{equation} \label{Eq_wzv}
137\left\{   \begin{aligned}
138&\left. w \right|_{3/2} \quad= 0    \\
139&\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  + e_{3t}\;  \left. \chi \right|_
140                                         - \frac{ e_{3t}^{t+1} - e_{3t}^{t-1} } {2 \rdt}
141\end{aligned}   \right.
142\end{equation}
143\sgacomment{should e3t involve k in this equation?}
144
145In the case of a non-linear free surface (\key{vvl}), the top vertical velocity is $-\textit{emp}/\rho_w$,
146as changes in the divergence of the barotropic transport are absorbed into the change
147of the level thicknesses, re-orientated downward.
148In the case of a linear free surface, the time derivative in \eqref{Eq_wzv} disappears.
149The upper boundary condition applies at a fixed level $z=0$. The top vertical velocity
150is thus equal to the divergence of the barotropic transport ($i.e.$ the first term in the
151right-hand-side of \eqref{Eq_dynspg_ssh}).
152
153Note also that whereas the vertical velocity has the same discrete
154expression in $z$- and $s$-coordinates, its physical meaning is not the same:
155in the second case, $w$ is the velocity normal to the $s$-surfaces.
156Note also that the $k$-axis is re-orientated downwards in the \textsc{fortran} code compared
157to the indexing used in the semi-discrete equations such as \eqref{Eq_wzv} 
158(see  \S\ref{DOM_Num_Index_vertical}).
159
160
161% ================================================================
162% Coriolis and Advection terms: vector invariant form
163% ================================================================
164\section{Coriolis and Advection: vector invariant form}
165\label{DYN_adv_cor_vect}
166%-----------------------------------------nam_dynadv----------------------------------------------------
167\namdisplay{namdyn_adv} 
168%-------------------------------------------------------------------------------------------------------------
169
170The vector invariant form of the momentum equations is the one most
171often used in applications of the \NEMO ocean model. The flux form option
172(see next section) has been present since version $2$.
173Coriolis and momentum advection terms are evaluated using a leapfrog
174scheme, $i.e.$ the velocity appearing in these expressions is centred in
175time (\textit{now} velocity).
176At the lateral boundaries either free slip, no slip or partial slip boundary
177conditions are applied following Chap.\ref{LBC}.
178
179% -------------------------------------------------------------------------------------------------------------
180%        Vorticity term
181% -------------------------------------------------------------------------------------------------------------
182\subsection   [Vorticity term (\textit{dynvor}) ]
183         {Vorticity term (\mdl{dynvor})}
184\label{DYN_vor}
185%------------------------------------------nam_dynvor----------------------------------------------------
186\namdisplay{namdyn_vor} 
187%-------------------------------------------------------------------------------------------------------------
188
189Four discretisations of the vorticity term (\textit{ln\_dynvor\_xxx}=true) are available:
190conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ;
191conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for
192the relative vorticity term and horizontal kinetic energy for the planetary vorticity
193term (MIX scheme) ; or conserving both the potential enstrophy of horizontally non-divergent
194flow and horizontal kinetic energy (ENE scheme) (see  Appendix~\ref{Apdx_C_vor_zad}).
195The vorticity terms are given below for the general case, but note that in the full step
196$z$-coordinate (\key{zco} is defined), $e_{3u}$=$e_{3v}$=$e_{3f}$ so that the vertical scale
197factors disappear. The vorticity terms are all computed in dedicated routines that can be found in
198the \mdl{dynvor} module.
199
200%-------------------------------------------------------------
201%                 enstrophy conserving scheme
202%-------------------------------------------------------------
203\subsubsection{Enstrophy conserving scheme (\np{ln\_dynvor\_ens}=true)}
204\label{DYN_vor_ens}
205
206In the enstrophy conserving case (ENS scheme), the discrete formulation of the
207vorticity term provides a global conservation of the enstrophy
208($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent
209flow ($i.e.$ $\chi$=$0$), but does not conserve the total kinetic energy. It is given by:
210\begin{equation} \label{Eq_dynvor_ens}
211\left\{ 
212\begin{aligned}
213{+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i} 
214                                & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
215{- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j} 
216                                & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j} 
217\end{aligned} 
218 \right.
219\end{equation} 
220
221%-------------------------------------------------------------
222%                 energy conserving scheme
223%-------------------------------------------------------------
224\subsubsection{Energy conserving scheme (\np{ln\_dynvor\_ene}=true)}
225\label{DYN_vor_ene}
226
227The kinetic energy conserving scheme (ENE scheme) conserves the global
228kinetic energy but not the global enstrophy. It is given by:
229\begin{equation} \label{Eq_dynvor_ene}
230\left\{   \begin{aligned}
231{+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
232                            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
233{- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
234                            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
235\end{aligned}    \right.
236\end{equation} 
237
238%-------------------------------------------------------------
239%                 mix energy/enstrophy conserving scheme
240%-------------------------------------------------------------
241\subsubsection{Mixed energy/enstrophy conserving scheme (\np{ln\_dynvor\_mix}=true) }
242\label{DYN_vor_mix}
243
244For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the
245two previous schemes is used. It consists of the ENS scheme (\ref{Eq_dynvor_ens})
246for the relative vorticity term, and of the ENE scheme (\ref{Eq_dynvor_ene}) applied
247to the planetary vorticity term.
248\begin{equation} \label{Eq_dynvor_mix}
249\left\{ {     \begin{aligned}
250 {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i} 
251 \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
252 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
253 \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
254{-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
255 \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
256 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
257 \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
258\end{aligned}     } \right.
259\end{equation} 
260
261%-------------------------------------------------------------
262%                 energy and enstrophy conserving scheme
263%-------------------------------------------------------------
264\subsubsection{Energy and enstrophy conserving scheme (\np{ln\_dynvor\_een}=true) }
265\label{DYN_vor_een}
266
267In both the ENS and ENE schemes, it is apparent that the combination of $i$ and $j$ 
268averages of the velocity allows for the presence of grid point oscillation structures
269that will be invisible to the operator. These structures are \textit{computational modes} 
270that will be at least partly damped by the momentum diffusion operator ($i.e.$ the
271subgrid-scale advection), but not by the resolved advection term. The ENS and ENE schemes
272therefore do not contribute to any grid point noise in the horizontal velocity field.
273Such noise would result in more noise in the vertical velocity field, an undesirable feature. This is a well-known
274characteristic of $C$-grid discretization where $u$ and $v$ are located at different grid points,
275a price worth paying to avoid a double averaging in the pressure gradient term as in the $B$-grid.
276\gmcomment{ To circumvent this, Adcroft (ADD REF HERE)
277
278Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....}
279
280A very nice solution to the problem of double averaging was proposed by \citet{Arakawa_Hsu_MWR90}. The idea is
281to get rid of the double averaging by considering triad combinations of vorticity.
282It is noteworthy that this solution is conceptually quite similar to the one proposed by
283\citep{Griffies_al_JPO98} for the discretization of the iso-neutral diffusion operator.
284
285The \citet{Arakawa_Hsu_MWR90} vorticity advection scheme for a single layer is modified
286for spherical coordinates as described by \citet{Arakawa_Lamb_MWR81} to obtain the EEN scheme.
287First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point:
288\begin{equation} \label{Eq_pot_vor}
289q  = \frac{\zeta +f} {e_{3f} }
290\end{equation}
291where the relative vorticity is defined by (\ref{Eq_divcur_cur}), the Coriolis parameter
292is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is:
293\begin{equation} \label{Eq_een_e3f}
294e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2}
295\end{equation}
296
297%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
298\begin{figure}[!ht] \label{Fig_DYN_een_triad}
299\begin{center}
300\includegraphics[width=0.70\textwidth]{./TexFiles/Figures/Fig_DYN_een_triad.pdf}
301\caption{Triads used in the energy and enstrophy conserving scheme (een) for
302$u$-component (upper panel) and $v$-component (lower panel).}
303\end{center}
304\end{figure}
305%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
306
307Note that a key point in \eqref{Eq_een_e3f} is that the averaging in the \textbf{i}- and
308\textbf{j}- directions uses the masked vertical scale factor but is always divided by
309$4$, not by the sum of the masks at the four $T$-points. This preserves the continuity of
310$e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and
311extends by continuity the value of $e_{3f}$ into the land areas. This feature is essential for
312the $z$-coordinate with partial steps.
313
314
315Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as
316the following triad combinations of the neighbouring potential vorticities defined at f-points
317(Fig.~\ref{Fig_DYN_een_triad}):
318\begin{equation} \label{Q_triads}
319_i^j \mathbb{Q}^{i_p}_{j_p}
320= \frac{1}{12} \ \left(   q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p}  \right)
321\end{equation}
322where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$.
323
324Finally, the vorticity terms are represented as:
325\begin{equation} \label{Eq_dynvor_een}
326\left\{ {
327\begin{aligned}
328 +q\,e_3 \, v  &\equiv +\frac{1}{e_{1u} }   \sum_{\substack{i_p,\,k_p}} 
329                         {^{i+1/2-i_p}_j}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{1v}\,e_{3v} \;\right)^{i+1/2-i_p}_{j+j_p}   \\
330 - q\,e_3 \, u     &\equiv -\frac{1}{e_{2v} }    \sum_{\substack{i_p,\,k_p}} 
331                         {^i_{j+1/2-j_p}}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{2u}\,e_{3u} \;\right)^{i+i_p}_{j+1/2-j_p}   \\
332\end{aligned} 
333} \right.
334\end{equation} 
335
336This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes.
337It conserves both total energy and potential enstrophy in the limit of horizontally
338nondivergent flow ($i.e.$ $\chi$=$0$) (see  Appendix~\ref{Apdx_C_vor_zad}).
339Applied to a realistic ocean configuration, it has been shown that it
340leads to a significant reduction of the noise in the vertical velocity field \citep{Le_Sommer_al_OM09}.
341Furthermore, used in combination with a partial steps representation of bottom topography,
342it improves the interaction between current and topography, leading to a larger
343topostrophy of the flow  \citep{Barnier_al_OD06, Penduff_al_OS07}.
344
345%--------------------------------------------------------------------------------------------------------------
346%           Kinetic Energy Gradient term
347%--------------------------------------------------------------------------------------------------------------
348\subsection   [Kinetic Energy Gradient term (\textit{dynkeg})]
349         {Kinetic Energy Gradient term (\mdl{dynkeg})}
350\label{DYN_keg}
351
352As demonstrated in Appendix~\ref{Apdx_C}, there is a single discrete formulation
353of the kinetic energy gradient term that, together with the formulation chosen for
354the vertical advection (see below), conserves the total kinetic energy:
355\begin{equation} \label{Eq_dynkeg}
356\left\{ \begin{aligned}
357 -\frac{1}{2 \; e_{1u} }  & \ \delta _{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   \\
358 -\frac{1}{2 \; e_{2v} }  & \ \delta _{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   
359\end{aligned} \right.
360\end{equation} 
361
362%--------------------------------------------------------------------------------------------------------------
363%           Vertical advection term
364%--------------------------------------------------------------------------------------------------------------
365\subsection   [Vertical advection term (\textit{dynzad}) ]
366         {Vertical advection term (\mdl{dynzad}) }
367\label{DYN_zad}
368
369The discrete formulation of the vertical advection, together with the formulation
370chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
371energy. Indeed, the change of KE due to the vertical advection is exactly
372balanced by the change of KE due to the gradient of KE (see Appendix~\ref{Apdx_C}).
373\begin{equation} \label{Eq_dynzad}
374\left\{     \begin{aligned}
375-\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k}  \\
376-\frac{1} {e_{1v}\,e_{2v}\,e_{3v}}  &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k} 
377\end{aligned}         \right.
378\end{equation} 
379
380% ================================================================
381% Coriolis and Advection : flux form
382% ================================================================
383\section{Coriolis and Advection: flux form}
384\label{DYN_adv_cor_flux}
385%------------------------------------------nam_dynadv----------------------------------------------------
386\namdisplay{namdyn_adv} 
387%-------------------------------------------------------------------------------------------------------------
388
389In the flux form (as in the vector invariant form), the Coriolis and momentum
390advection terms are evaluated using a leapfrog scheme, $i.e.$ the velocity
391appearing in their expressions is centred in time (\textit{now} velocity). At the
392lateral boundaries either free slip, no slip or partial slip boundary conditions
393are applied following Chap.\ref{LBC}.
394
395
396%--------------------------------------------------------------------------------------------------------------
397%           Coriolis plus curvature metric terms
398%--------------------------------------------------------------------------------------------------------------
399\subsection   [Coriolis plus curvature metric terms (\textit{dynvor}) ]
400         {Coriolis plus curvature metric terms (\mdl{dynvor}) }
401\label{DYN_cor_flux}
402
403In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
404parameter has been modified to account for the "metric" term. This altered
405Coriolis parameter is thus discretised at $f$-points. It is given by:
406\begin{multline} \label{Eq_dyncor_metric}
407f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i}  -  u\frac{\partial e_1 }{\partial j}} \right\\
408   \equiv   f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta _{i+1/2} \left[ {e_{2u} } \right] 
409                                                                 -  \overline u ^{j+1/2}\delta _{j+1/2} \left[ {e_{1u} } \right]  }  \ \right)
410\end{multline} 
411
412Any of the (\ref{Eq_dynvor_ens}), (\ref{Eq_dynvor_ene}) and (\ref{Eq_dynvor_een})
413schemes can be used to compute the product of the Coriolis parameter and the
414vorticity. However, the energy-conserving scheme  (\ref{Eq_dynvor_een}) has
415exclusively been used to date. This term is evaluated using a leapfrog scheme,
416$i.e.$ the velocity is centred in time (\textit{now} velocity).
417
418%--------------------------------------------------------------------------------------------------------------
419%           Flux form Advection term
420%--------------------------------------------------------------------------------------------------------------
421\subsection   [Flux form Advection term (\textit{dynadv}) ]
422         {Flux form Advection term (\mdl{dynadv}) }
423\label{DYN_adv_flux}
424
425The discrete expression of the advection term is given by :
426\begin{equation} \label{Eq_dynadv}
427\left\{ 
428\begin{aligned}
429\frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 
430\left(      \delta _{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i       }  \ u_t      \right]   
431          + \delta _{j       } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2}  \ u_f      \right] \right\ \;   \\
432\left.   + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2}  \ u_{uw} \right] \right)   \\
433\\
434\frac{1}{e_{1v}\,e_{2v}\,e_{3v}} 
435\left(     \delta _{i       } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f       \right] 
436         + \delta _{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i       } \ v_t       \right] \right\ \, \, \\
437\left.  + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw}  \right] \right) \\
438\end{aligned}
439\right.
440\end{equation}
441
442Two advection schemes are available: a $2^{nd}$ order centered finite
443difference scheme, CEN2, or a $3^{rd}$ order upstream biased scheme, UBS.
444The latter is described in \citet{Shchepetkin_McWilliams_OM05}. The schemes are
445selected using the namelist logicals \np{ln\_dynadv\_cen2} and \np{ln\_dynadv\_ubs}.
446In flux form, the schemes differ by the choice of a space and time interpolation to
447define the value of $u$ and $v$ at the centre of each face of $u$- and $v$-cells,
448$i.e.$ at the $T$-, $f$-, and $uw$-points for $u$ and at the $f$-, $T$- and
449$vw$-points for $v$.
450
451%-------------------------------------------------------------
452%                 2nd order centred scheme
453%-------------------------------------------------------------
454\subsubsection{$2^{nd}$ order centred scheme (cen2) (\np{ln\_dynadv\_cen2}=true)}
455\label{DYN_adv_cen2}
456
457In the centered $2^{nd}$ order formulation, the velocity is evaluated as the
458mean of the two neighbouring points :
459\begin{equation} \label{Eq_dynadv_cen2}
460\left\{     \begin{aligned}
461 u_T^{cen2} &=\overline u^{i }       \quad &  u_F^{cen2} &=\overline u^{j+1/2}  \quad &  u_{uw}^{cen2} &=\overline u^{k+1/2}   \\
462 v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j      \quad &  v_{vw}^{cen2} &=\overline v ^{k+1/2}  \\
463\end{aligned}      \right.
464\end{equation} 
465
466The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
467($i.e.$ it may create false extrema). It is therefore notoriously noisy and must be
468used in conjunction with an explicit diffusion operator to produce a sensible solution.
469The associated time-stepping is performed using a leapfrog scheme in conjunction
470with an Asselin time-filter, so $u$ and $v$ are the \emph{now} velocities.
471
472%-------------------------------------------------------------
473%                 UBS scheme
474%-------------------------------------------------------------
475\subsubsection{Upstream Biased Scheme (UBS) (\np{ln\_dynadv\_ubs}=true)}
476\label{DYN_adv_ubs}
477
478The UBS advection scheme is an upstream biased third order scheme based on
479an upstream-biased parabolic interpolation. For example, the evaluation of
480$u_T^{ubs} $ is done as follows:
481\begin{equation} \label{Eq_dynadv_ubs}
482u_T^{ubs} =\overline u ^i-\;\frac{1}{6}   \begin{cases}
483      u"_{i-1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  \geqslant 0$ }    \\
484      u"_{i+1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  < 0$ }
485\end{cases}
486\end{equation}
487where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta _i \left[ u \right]} \right]$. This results
488in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error \citep{Shchepetkin_McWilliams_OM05}.
489The overall performance of the advection scheme is similar to that reported in
490\citet{Farrow1995}. It is a relatively good compromise between accuracy and
491smoothness. It is not a \emph{positive} scheme, meaning that false extrema are
492permitted. But the amplitudes of the false extrema are significantly reduced over
493those in the centred second order method. As the scheme already includes
494a diffusion component, it can be used without explicit  lateral diffusion on momentum
495($i.e.$ \np{ln\_dynldf\_lap}=\np{ln\_dynldf\_bilap}=false), and it is recommended to do so.
496
497The UBS scheme is not used in all directions. In the vertical, the centred $2^{nd}$ 
498order evaluation of the advection is preferred, $i.e.$ $u_{uw}^{ubs}$ and
499$u_{vw}^{ubs}$ in \eqref{Eq_dynadv_cen2} are used. UBS is diffusive and is
500associated with vertical mixing of momentum. \gmcomment{ gm  pursue the
501sentence:Since vertical mixing of momentum is a source term of the TKE equation...  }
502
503For stability reasons,  the first term in (\ref{Eq_dynadv_ubs}), which corresponds
504to a second order centred scheme, is evaluated using the \textit{now} velocity
505(centred in time), while the second term, which is the diffusion part of the scheme,
506is evaluated using the \textit{before} velocity (forward in time). This is discussed
507by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme.
508
509Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
510schemes only differ by one coefficient. Replacing $1/6$ by $1/8$ in
511(\ref{Eq_dynadv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
512This option is not available through a namelist parameter, since the $1/6$ coefficient
513is hard coded. Nevertheless it is quite easy to make the substitution in the
514\mdl{dynadv\_ubs} module and obtain a QUICK scheme.
515
516Note also that in the current version of \mdl{dynadv\_ubs}, there is also the
517possibility of using a $4^{th}$ order evaluation of the advective velocity as in
518ROMS. This is an error and should be suppressed soon.
519%%%
520\gmcomment{action :  this have to be done}
521%%%
522
523% ================================================================
524%           Hydrostatic pressure gradient term
525% ================================================================
526\section  [Hydrostatic pressure gradient (\textit{dynhpg})]
527      {Hydrostatic pressure gradient (\mdl{dynhpg})}
528\label{DYN_hpg}
529%------------------------------------------nam_dynhpg---------------------------------------------------
530\namdisplay{namdyn_hpg} 
531%-------------------------------------------------------------------------------------------------------------
532
533The key distinction between the different algorithms used for the hydrostatic
534pressure gradient is the vertical coordinate used, since HPG is a \emph{horizontal} 
535pressure gradient, $i.e.$ computed along geopotential surfaces. As a result, any
536tilt of the surface of the computational levels will require a specific treatment to
537compute the hydrostatic pressure gradient.
538
539The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
540$i.e.$ the density appearing in its expression is centred in time (\emph{now} $\rho$), or
541a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial slip
542boundary conditions are applied.
543
544%--------------------------------------------------------------------------------------------------------------
545%           z-coordinate with full step
546%--------------------------------------------------------------------------------------------------------------
547\subsection   [$z$-coordinate with full step (\np{ln\_dynhpg\_zco}) ]
548         {$z$-coordinate with full step (\np{ln\_dynhpg\_zco}=true)}
549\label{DYN_hpg_zco}
550
551The hydrostatic pressure can be obtained by integrating the hydrostatic equation
552vertically from the surface. However, the pressure is large at great depth while its
553horizontal gradient is several orders of magnitude smaller. This may lead to large
554truncation errors in the pressure gradient terms. Thus, the two horizontal components
555of the hydrostatic pressure gradient are computed directly as follows:
556
557for $k=km$ (surface layer, $jk=1$ in the code)
558\begin{equation} \label{Eq_dynhpg_zco_surf}
559\left\{ \begin{aligned}
560               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k=km} 
561&= \frac{1}{2} g \   \left. \delta _{i+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
562                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k=km} 
563&= \frac{1}{2} g \   \left. \delta _{j+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
564\end{aligned} \right.
565\end{equation} 
566
567for $1<k<km$ (interior layer)
568\begin{equation} \label{Eq_dynhpg_zco}
569\left\{ \begin{aligned}
570               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k} 
571&=             \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k-1} 
572+    \frac{1}{2}\;g\;   \left. \delta _{i+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
573                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k} 
574&=                \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k-1} 
575+    \frac{1}{2}\;g\;   \left. \delta _{j+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
576\end{aligned} \right.
577\end{equation} 
578
579Note that the $1/2$ factor in (\ref{Eq_dynhpg_zco_surf}) is adequate because of
580the definition of $e_{3w}$ as the vertical derivative of the scale factor at the surface
581level ($z=0$). Note also that in case of variable volume level (\key{vvl} defined), the
582surface pressure gradient is included in \eqref{Eq_dynhpg_zco_surf} and \eqref{Eq_dynhpg_zco} 
583through the space and time variations of the vertical scale factor $e_{3w}$.
584
585%--------------------------------------------------------------------------------------------------------------
586%           z-coordinate with partial step
587%--------------------------------------------------------------------------------------------------------------
588\subsection   [$z$-coordinate with partial step (\np{ln\_dynhpg\_zps})]
589         {$z$-coordinate with partial step (\np{ln\_dynhpg\_zps}=true)}
590\label{DYN_hpg_zps}
591
592With partial bottom cells, tracers in horizontally adjacent cells generally live at
593different depths. Before taking horizontal gradients between these tracer points,
594a linear interpolation is used to approximate the deeper tracer as if it actually lived
595at the depth of the shallower tracer point.
596
597Apart from this modification, the horizontal hydrostatic pressure gradient evaluated
598in the $z$-coordinate with partial step is exactly as in the pure $z$-coordinate case.
599As explained in detail in section \S\ref{TRA_zpshde}, the nonlinearity of pressure
600effects in the equation of state is such that it is better to interpolate temperature and
601salinity vertically before computing the density. Horizontal gradients of temperature
602and salinity are needed for the TRA modules, which is the reason why the horizontal
603gradients of density at the deepest model level are computed in module \mdl{zpsdhe} 
604located in the TRA directory and described in \S\ref{TRA_zpshde}.
605
606%--------------------------------------------------------------------------------------------------------------
607%           s- and s-z-coordinates
608%--------------------------------------------------------------------------------------------------------------
609\subsection{$s$- and $z$-$s$-coordinates}
610\label{DYN_hpg_sco}
611
612Pressure gradient formulations in an $s$-coordinate have been the subject of a vast
613number of papers ($e.g.$, \citet{Song1998, Shchepetkin_McWilliams_OM05}).
614A number of different pressure gradient options are coded, but they are not yet fully
615documented or tested.
616
617$\bullet$ Traditional coding (see for example \citet{Madec_al_JPO96}: (\np{ln\_dynhpg\_sco}=true,
618\np{ln\_dynhpg\_hel}=true)
619\begin{equation} \label{Eq_dynhpg_sco}
620\left\{ \begin{aligned}
621 - \frac{1}                   {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  p^h  \right] 
622+ \frac{g\; \overline {\rho}^{i+1/2}}  {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  z_t   \right]    \\
623 - \frac{1}                   {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  p^h  \right] 
624+ \frac{g\; \overline {\rho}^{j+1/2}}  {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  z_t   \right]    \\
625\end{aligned} \right.
626\end{equation} 
627
628Where the first term is the pressure gradient along coordinates, computed as in
629\eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of
630the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point
631($e_{3w}$). The version \np{ln\_dynhpg\_hel}=true has been added by Aike
632Beckmann and involves a redefinition of the relative position of $T$-points relative
633to $w$-points.
634
635$\bullet$ Weighted density Jacobian (WDJ) \citep{Song1998} (\np{ln\_dynhpg\_wdj}=true)
636
637$\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{Shchepetkin_McWilliams_OM05} 
638(\np{ln\_dynhpg\_djc}=true)
639
640$\bullet$ Rotated axes scheme (rot) \citep{Thiem_Berntsen_OM06} (\np{ln\_dynhpg\_rot}=true)
641
642Note that expression \eqref{Eq_dynhpg_sco} is used when the variable volume
643formulation is activated (\key{vvl}) because in that case, even with a flat bottom,
644the coordinate surfaces are not horizontal but follow the free surface
645\citep{Levier2007}. The other pressure gradient options are not yet available.
646
647%--------------------------------------------------------------------------------------------------------------
648%           Time-scheme
649%--------------------------------------------------------------------------------------------------------------
650\subsection   [Time-scheme (\np{ln\_dynhpg\_imp}) ]
651         {Time-scheme (\np{ln\_dynhpg\_imp}= true/false)}
652\label{DYN_hpg_imp}
653
654The default time differencing scheme used for the horizontal pressure gradient is
655a leapfrog scheme and therefore the density used in all discrete expressions given
656above is the  \textit{now} density, computed from the \textit{now} temperature and
657salinity. In some specific cases (usually high resolution simulations over an ocean
658domain which includes weakly stratified regions) the physical phenomenon that
659controls the time-step is internal gravity waves (IGWs). A semi-implicit scheme for
660doubling the stability limit associated with IGWs can be used \citep{Brown_Campana_MWR78,
661Maltrud1998}. It involves the evaluation of the hydrostatic pressure gradient as an
662average over the three time levels $t-\rdt$, $t$, and $t+\rdt$ ($i.e.$ 
663\textit{before}\textit{now} and  \textit{after} time-steps), rather than at the central
664time level $t$ only, as in the standard leapfrog scheme.
665
666$\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}=true):
667
668\begin{equation} \label{Eq_dynhpg_lf}
669\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
670   -\frac{1}{\rho _o \,e_{1u} }\delta _{i+1/2} \left[ {p_h^t } \right]
671\end{equation}
672
673$\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}=true):
674\begin{equation} \label{Eq_dynhpg_imp}
675\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
676   -\frac{1}{4\,\rho _o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt}  \right]
677\end{equation}
678
679The semi-implicit time scheme \eqref{Eq_dynhpg_imp} is made possible without
680significant additional computation since the density can be updated to time level
681$t+\rdt$ before computing the horizontal hydrostatic pressure gradient. It can
682be easily shown that the stability limit associated with the hydrostatic pressure
683gradient doubles using \eqref{Eq_dynhpg_imp} compared to that using the
684standard leapfrog scheme \eqref{Eq_dynhpg_lf}. Note that \eqref{Eq_dynhpg_imp} 
685is equivalent to applying a time filter to the pressure gradient to eliminate high
686frequency IGWs. Obviously, when using \eqref{Eq_dynhpg_imp}, the doubling of
687the time-step is achievable only if no other factors control the time-step, such as
688the stability limits associated with advection or diffusion.
689
690In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}=true.
691In this case, we choose to apply the time filter to temperature and salinity used in
692the equation of state, instead of applying it to the hydrostatic pressure or to the
693density, so that no additional storage array has to be defined. The density used to
694compute the hydrostatic pressure gradient (whatever the formulation) is evaluated
695as follows:
696\begin{equation} \label{Eq_rho_flt}
697   \rho^t = \rho( \widetilde{T},\widetilde {S},z_t)
698 \quad     \text{with}  \quad 
699   \widetilde{X} = 1 / 4 \left(  X^{t+\rdt} +2 \,X^t + X^{t-\rdt}  \right)
700\end{equation}
701
702Note that in the semi-implicit case, it is necessary to save the filtered density, an
703extra three-dimensional field, in the restart file to restart the model with exact
704reproducibility. This option is controlled by  \np{nn\_dynhpg\_rst}, a namelist parameter.
705
706% ================================================================
707% Surface Pressure Gradient
708% ================================================================
709\section  [Surface pressure gradient (\textit{dynspg}) ]
710      {Surface pressure gradient (\mdl{dynspg})}
711\label{DYN_spg}
712%-----------------------------------------nam_dynspg----------------------------------------------------
713\namdisplay{namdyn_spg} 
714%------------------------------------------------------------------------------------------------------------
715
716$\ $\newline      %force an empty line
717
718%%%
719The surface pressure gradient term is related to the representation of the free surface (\S\ref{PE_hor_pg}). The main distinction is between the fixed volume case (linear free surface) and the variable volume case (nonlinear free surface, \key{vvl} is defined). In the linear free surface case (\S\ref{PE_free_surface}) the vertical scale factors $e_{3}$ are fixed in time, while they are time-dependent in the nonlinear case (\S\ref{PE_free_surface}). With both linear and nonlinear free surface, external gravity waves are allowed in the equations, which imposes a very small time step when an explicit time stepping is used. Two methods are proposed to allow a longer time step for the three-dimensional equations: the filtered free surface, which is a modification of the continuous equations (see \eqref{Eq_PE_flt}), and the split-explicit free surface described below. The extra term introduced in the filtered method is calculated implicitly, so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
720
721%%%
722
723
724The form of the surface pressure gradient term depends on how the user wants to handle
725the fast external gravity waves that are a solution of the analytical equation (\S\ref{PE_hor_pg}).
726Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx):
727an explicit formulation which requires a small time step ;
728a filtered free surface formulation which allows a larger time step by adding a filtering
729term into the momentum equation ;
730and a split-explicit free surface formulation, described below, which also allows a larger time step.
731
732The extra term introduced in the filtered method is calculated
733implicitly, so that a solver is used to compute it. As a consequence the update of the $next$ 
734velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
735
736
737
738%--------------------------------------------------------------------------------------------------------------
739% Explicit free surface formulation
740%--------------------------------------------------------------------------------------------------------------
741\subsection{Explicit free surface (\key{dynspg\_exp})}
742\label{DYN_spg_exp}
743
744In the explicit free surface formulation (\key{dynspg\_exp} defined), the model time step
745is chosen to be small enough to resolve the external gravity waves (typically a few tens of seconds).
746The surface pressure gradient, evaluated using a leap-frog scheme ($i.e.$ centered in time),
747is thus simply given by :
748\begin{equation} \label{Eq_dynspg_exp}
749\left\{ \begin{aligned}
750 - \frac{1}{e_{1u}\,\rho_o} \;   \delta _{i+1/2} \left[  \,\rho \,\eta\,  \right]   \\
751 - \frac{1}{e_{2v}\,\rho_o} \;   \delta _{j+1/2} \left[  \,\rho \,\eta\,  \right] 
752\end{aligned} \right.
753\end{equation} 
754
755Note that in the non-linear free surface case ($i.e.$ \key{vvl} defined), the surface pressure
756gradient is already included in the momentum tendency  through the level thickness variation
757allowed in the computation of the hydrostatic pressure gradient. Thus, nothing is done in the \mdl{dynspg\_exp} module.
758
759%--------------------------------------------------------------------------------------------------------------
760% Split-explict free surface formulation
761%--------------------------------------------------------------------------------------------------------------
762\subsection{Split-Explicit free surface (\key{dynspg\_ts})}
763\label{DYN_spg_ts}
764
765The split-explicit free surface formulation used in \NEMO (\key{dynspg\_ts} defined),
766also called the time-splitting formulation, follows the one
767proposed by \citet{Griffies_Bk04}. The general idea is to solve the free surface
768equation and the associated barotropic velocity equations with a smaller time
769step than $\rdt$, the time step used for the three dimensional prognostic
770variables (Fig.\ref {Fig_DYN_dynspg_ts}).
771The size of the small time step, $\Delta_e$ (the external mode or barotropic time step)
772 is provided through the \np{nn\_baro} namelist parameter as:
773$\Delta_e = \Delta / nn\_baro$.
774 
775
776%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
777\begin{figure}[!t] \label{Fig_DYN_dynspg_ts}
778\begin{center}
779\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_DYN_dynspg_ts.pdf}
780\caption{Schematic of the split-explicit time stepping scheme for the external
781and internal modes. Time increases to the right.
782Internal mode time steps (which are also the model time steps) are denoted
783by $t-\rdt$, $t, t+\rdt$, and $t+2\rdt$.
784The curved line represents a leap-frog time step, and the smaller time
785steps $N \rdt_e=\frac{3}{2}\rdt$ are denoted by the zig-zag line.
786The vertically integrated forcing \textbf{M}(t) computed at the model time step $t$ 
787represents the interaction between the external and internal motions.
788While keeping \textbf{M} and freshwater forcing field fixed, a leap-frog
789integration carries the external mode variables (surface height and vertically
790integrated velocity) from $t$ to $t+\frac{3}{2} \rdt$ using N external time
791steps of length $\rdt_e$. Time averaging the external fields over the
792$\frac{2}{3}N+1$ time steps (endpoints included) centers the vertically integrated
793velocity and the sea surface height at the model timestep $t+\rdt$.
794These averaged values are used to update \textbf{M}(t) with both the surface
795pressure gradient and the Coriolis force, therefore providing the $t+\rdt$
796velocity.  The model time stepping scheme can then be achieved by a baroclinic
797leap-frog time step that carries the surface height from $t-\rdt$ to $t+\rdt$}
798\end{center}
799\end{figure}
800%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
801
802The split-explicit formulation has a damping effect on external gravity waves,
803which is weaker damping than that for the filtered free surface but still significant, as
804shown by \citet{Levier2007} in the case of an analytical barotropic Kelvin wave.
805
806%>>>>>===============
807\gmcomment{               %%% copy from griffies Book
808
809\textbf{title: Time stepping the barotropic system }
810
811Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$. Hence,
812we can update the surface height and vertically integrated velocity with a leap-frog
813scheme using the small barotropic time step $\rdt$. We have
814
815\begin{equation} \label{DYN_spg_ts_eta}
816\eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
817   = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
818\end{equation}
819\begin{multline} \label{DYN_spg_ts_u}
820\textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
821   = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
822   - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
823\end{multline}
824\
825
826In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with the barotropic time steps. The $\tau$ time label on $\eta^{(b)}$ 
827and $U^{(b)}$ denotes the baroclinic time at which the vertically integrated forcing $\textbf{M}(\tau)$ (note that this forcing includes the surface freshwater forcing), the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over a single cycle. This is also the time
828that sets the barotropic time steps via
829\begin{equation} \label{DYN_spg_ts_t}
830t_n=\tau+n\rdt   
831\end{equation}
832with $n$ an integer. The density scaled surface pressure is evaluated via
833\begin{equation} \label{DYN_spg_ts_ps}
834p_s^{(b)}(\tau,t_{n}) = \begin{cases}
835   g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_&      \text{non-linear case} \\
836   g \;\eta_s^{(b)}(\tau,t_{n}&      \text{linear case} 
837   \end{cases}
838\end{equation}
839To get started, we assume the following initial conditions
840\begin{equation} \label{DYN_spg_ts_eta}
841\begin{split}
842\eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}
843\\
844\eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} 
845\end{split}
846\end{equation}
847with
848\begin{equation} \label{DYN_spg_ts_etaF}
849 \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n})
850\end{equation}
851the time averaged surface height taken from the previous barotropic cycle. Likewise,
852\begin{equation} \label{DYN_spg_ts_u}
853\textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)}   \\
854\\
855\textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}   
856\end{equation}
857with
858\begin{equation} \label{DYN_spg_ts_u}
859 \overline{\textbf{U}^{(b)}(\tau)} 
860   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n})
861\end{equation}
862the time averaged vertically integrated transport. Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
863
864Upon reaching $t_{n=N} = \tau + 2\Delta \tau$ , the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at baroclinic time $\tau + \Delta \tau$ 
865\begin{equation} \label{DYN_spg_ts_u}
866\textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} 
867   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
868\end{equation}
869The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using the following form
870
871\begin{equation} \label{DYN_spg_ts_ssh}
872\eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] 
873\end{equation}
874
875 The use of this "big-leap-frog" scheme for the surface height ensures compatibility between the mass/volume budgets and the tracer budgets. More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
876 
877In general, some form of time filter is needed to maintain integrity of the surface
878height field due to the leap-frog splitting mode in equation \ref{DYN_spg_ts_ssh}. We
879have tried various forms of such filtering, with the following method discussed in
880\cite{Griffies_al_MWR01} chosen due to its stability and reasonably good maintenance of
881tracer conservation properties (see Section ??)
882
883\begin{equation} \label{DYN_spg_ts_sshf}
884\eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
885\end{equation}
886Another approach tried was
887
888\begin{equation} \label{DYN_spg_ts_sshf2}
889\eta^{F}(\tau-\Delta) = \eta(\tau)
890   + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt)
891                + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right]
892\end{equation}
893
894which is useful since it isolates all the time filtering aspects into the term multiplied
895by $\alpha$. This isolation allows for an easy check that tracer conservation is exact when
896eliminating tracer and surface height time filtering (see Section ?? for more complete discussion). However, in the general case with a non-zero $\alpha$, the filter \ref{DYN_spg_ts_sshf} was found to be more conservative, and so is recommended.
897
898}            %%end gm comment (copy of griffies book)
899
900%>>>>>===============
901
902
903%--------------------------------------------------------------------------------------------------------------
904% Filtered free surface formulation
905%--------------------------------------------------------------------------------------------------------------
906\subsection{Filtered free surface (\key{dynspg\_flt})}
907\label{DYN_spg_fltp}
908
909The filtered formulation follows the \citet{Roullet_Madec_JGR00} implementation.
910The extra term introduced in the equations (see {\S}I.2.2) is solved implicitly.
911The elliptic solvers available in the code are documented in \S\ref{MISC}.
912
913%% gm %%======>>>>   given here the discrete eqs provided to the solver
914
915Note that in the linear free surface formulation (\key{vvl} not defined), the ocean depth
916is time-independent and so is the matrix to be inverted. It is computed once and for all and applies to all ocean time steps.
917
918% ================================================================
919% Lateral diffusion term
920% ================================================================
921\section  [Lateral diffusion term (\textit{dynldf})]
922      {Lateral diffusion term (\mdl{dynldf})}
923\label{DYN_ldf}
924%------------------------------------------nam_dynldf----------------------------------------------------
925\namdisplay{namdyn_ldf} 
926%-------------------------------------------------------------------------------------------------------------
927
928The options available for lateral diffusion are to use either laplacian
929(rotated or not) or biharmonic operators. The coefficients may be constant
930or spatially variable; the description of the coefficients is found in the chapter
931on lateral physics (Chap.\ref{LDF}). The lateral diffusion of momentum is
932evaluated using a forward scheme, $i.e.$ the velocity appearing in its expression
933is the \textit{before} velocity in time, except for the pure vertical component
934that appears when a tensor of rotation is used. This latter term is solved
935implicitly together with the vertical diffusion term (see \S\ref{DOM_nxt})
936
937At the lateral boundaries either free slip, no slip or partial slip boundary
938conditions are applied according to the user's choice (see Chap.\ref{LBC}).
939
940% ================================================================
941\subsection   [Iso-level laplacian operator (\np{ln\_dynldf\_lap}) ]
942         {Iso-level laplacian operator (\np{ln\_dynldf\_lap}=true)}
943\label{DYN_ldf_lap}
944
945For lateral iso-level diffusion, the discrete operator is:
946\begin{equation} \label{Eq_dynldf_lap}
947\left\{ \begin{aligned}
948 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta _{i+1/2} \left[ {A_T^{lm} 
949\;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta _j \left[
950{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
951\\
952 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta _{j+1/2} \left[ {A_T^{lm} 
953\;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta _i \left[
954{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
955\end{aligned} \right.
956\end{equation} 
957
958As explained in \S\ref{PE_ldf}, this formulation (as the gradient of a divergence
959and curl of the vorticity) preserves symmetry and ensures a complete
960separation between the vorticity and divergence parts of the momentum diffusion.
961Note that in the full step $z$-coordinate (\key{zco} is defined), $e_{3u} =e_{3v} =e_{3f}$ 
962so that they cancel in the rotational part of \eqref{Eq_dynldf_lap}.
963
964%--------------------------------------------------------------------------------------------------------------
965%           Rotated laplacian operator
966%--------------------------------------------------------------------------------------------------------------
967\subsection   [Rotated laplacian operator (\np{ln\_dynldf\_iso}) ]
968         {Rotated laplacian operator (\np{ln\_dynldf\_iso}=true)}
969\label{DYN_ldf_iso}
970
971A rotation of the lateral momentum diffusion operator is needed in several cases:
972for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}=true) and for
973either iso-neutral (\np{ln\_dynldf\_iso}=true) or geopotential
974(\np{ln\_dynldf\_hor}=true) diffusion in the $s$-coordinate. In the partial step
975case, coordinates are horizontal except at the deepest level and no
976rotation is performed when \np{ln\_dynldf\_hor}=true. The diffusion operator
977is defined simply as the divergence of down gradient momentum fluxes on each
978momentum component. It must be emphasized that this formulation ignores
979constraints on the stress tensor such as symmetry. The resulting discrete
980representation is:
981\begin{equation} \label{Eq_dyn_ldf_iso}
982\begin{split}
983 D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\
984&  \left\{\quad  {\delta _{i+1/2} \left[ {A_T^{lm}  \left(
985    {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta _{i}[u]
986   -e_{2t} \; r_{1t} \,\overline{\overline {\delta _{k+1/2}[u]}}^{\,i,\,k}}
987 \right)} \right]}   \right.
988\\ 
989& \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} 
990}\,\delta _{j+1/2} [u] - e_{1f}\, r_{2f} 
991\,\overline{\overline {\delta _{k+1/2} [u]}} ^{\,j+1/2,\,k}} 
992\right)} \right]
993\\ 
994&\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline 
995{\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} } 
996\right.} \right.
997\\ 
998&  \ \qquad \qquad \qquad \quad\
999- e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2}
1000\\ 
1001& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1002+\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2} 
1003\right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} 
1004\\
1005\\
1006 D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} }    \\
1007&  \left\{\quad  {\delta _{i+1/2} \left[ {A_f^{lm}  \left(
1008    {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta _{i+1/2}[v]
1009   -e_{2f} \; r_{1f} \,\overline{\overline {\delta _{k+1/2}[v]}}^{\,i+1/2,\,k}}
1010 \right)} \right]}   \right.
1011\\ 
1012& \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} 
1013}\,\delta _{j} [v] - e_{1t}\, r_{2t} 
1014\,\overline{\overline {\delta _{k+1/2} [v]}} ^{\,j,\,k}} 
1015\right)} \right]
1016\\ 
1017& \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline 
1018{\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right.
1019\\
1020&  \ \qquad \qquad \qquad \quad\
1021- e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2}
1022\\ 
1023& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1024+\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2} 
1025\right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\} 
1026 \end{split}
1027\end{equation}
1028where $r_1$ and $r_2$ are the slopes between the surface along which the
1029diffusion operator acts and the surface of computation ($z$- or $s$-surfaces).
1030The way these slopes are evaluated is given in the lateral physics chapter
1031(Chap.\ref{LDF}).
1032
1033%--------------------------------------------------------------------------------------------------------------
1034%           Iso-level bilaplacian operator
1035%--------------------------------------------------------------------------------------------------------------
1036\subsection   [Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap})]
1037         {Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap}=true)}
1038\label{DYN_ldf_bilap}
1039
1040The lateral fourth order operator formulation on momentum is obtained by
1041applying \eqref{Eq_dynldf_lap} twice. It requires an additional assumption on
1042boundary conditions: the first derivative term normal to the coast depends on
1043the free or no-slip lateral boundary conditions chosen, while the third
1044derivative terms normal to the coast are set to zero (see Chap.\ref{LBC}).
1045%%%
1046\gmcomment{add a remark on the the change in the position of the coefficient}
1047%%%
1048
1049% ================================================================
1050%           Vertical diffusion term
1051% ================================================================
1052\section  [Vertical diffusion term (\mdl{dynzdf})]
1053      {Vertical diffusion term (\mdl{dynzdf})}
1054\label{DYN_zdf}
1055%----------------------------------------------namzdf------------------------------------------------------
1056\namdisplay{namzdf} 
1057%-------------------------------------------------------------------------------------------------------------
1058
1059The large vertical diffusion coefficient found in the surface mixed layer together
1060with high vertical resolution implies that in the case of explicit time stepping there
1061would be too restrictive a constraint on the time step. Two time stepping schemes
1062can be used for the vertical diffusion term : $(a)$ a forward time differencing
1063scheme (\np{ln\_zdfexp}=true) using a time splitting technique
1064(\np{nn\_zdfexp} $>$ 1) or $(b)$ a backward (or implicit) time differencing scheme
1065(\np{ln\_zdfexp}=false) (see \S\ref{DOM_nxt}). Note that namelist variables
1066\np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics.
1067
1068The formulation of the vertical subgrid scale physics is the same whatever
1069the vertical coordinate is. The vertical diffusion operators given by
1070\eqref{Eq_PE_zdf} take the following semi-discrete space form:
1071\begin{equation} \label{Eq_dynzdf}
1072\left\{   \begin{aligned}
1073D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta _k \left[ \frac{A_{uw}^{vm} }{e_{3uw} }
1074                              \ \delta _{k+1/2} [\,u\,]         \right]     \\
1075\\
1076D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta _k \left[ \frac{A_{vw}^{vm} }{e_{3vw} }
1077                              \ \delta _{k+1/2} [\,v\,]         \right]
1078\end{aligned}   \right.
1079\end{equation} 
1080where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and
1081diffusivity coefficients. The way these coefficients are evaluated
1082depends on the vertical physics used (see \S\ref{ZDF}).
1083
1084The surface boundary condition on momentum is the stress exerted by
1085the wind. At the surface, the momentum fluxes are prescribed as the boundary
1086condition on the vertical turbulent momentum fluxes,
1087\begin{equation} \label{Eq_dynzdf_sbc}
1088\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1}
1089    = \frac{1}{\rho _o} \binom{\tau _u}{\tau _v }
1090\end{equation}
1091where $\left( \tau _u ,\tau _v \right)$ are the two components of the wind stress
1092vector in the (\textbf{i},\textbf{j}) coordinate system. The high mixing coefficients
1093in the surface mixed layer ensure that the surface wind stress is distributed in
1094the vertical over the mixed layer depth. If the vertical mixing coefficient
1095is small (when no mixed layer scheme is used) the surface stress enters only
1096the top model level, as a body force. The surface wind stress is calculated
1097in the surface module routines (SBC, see Chap.\ref{SBC})
1098
1099The turbulent flux of momentum at the bottom of the ocean is specified through
1100a bottom friction parameterisation (see \S\ref{ZDF_bfr})
1101
1102% ================================================================
1103% External Forcing
1104% ================================================================
1105\section{External Forcings}
1106\label{DYN_forcing}
1107
1108Besides the surface and bottom stresses (see the above section) which are
1109introduced as boundary conditions on the vertical mixing, two other forcings
1110enter the dynamical equations.
1111
1112One is the effect of atmospheric pressure on the ocean dynamics.
1113Another forcing term is the tidal potential.
1114Both of which will be introduced into the reference version soon.
1115
1116% ================================================================
1117% Time evolution term
1118% ================================================================
1119\section  [Time evolution term (\textit{dynnxt})]
1120      {Time evolution term (\mdl{dynnxt})}
1121\label{DYN_nxt}
1122
1123%----------------------------------------------namdom----------------------------------------------------
1124\namdisplay{namdom} 
1125%-------------------------------------------------------------------------------------------------------------
1126
1127The general framework for dynamics time stepping is a leap-frog scheme,
1128$i.e.$ a three level centred time scheme associated with an Asselin time filter
1129(cf. Chap.\ref{STP}). The scheme is applied to the velocity, except when using
1130the flux form of momentum advection (cf. \S\ref{DYN_adv_cor_flux}) in the variable
1131volume case (\key{vvl} defined), where it has to be applied to the thickness
1132weighted velocity (see \S\ref{Apdx_A_momentum}
1133
1134$\bullet$ vector invariant form or linear free surface (\np{ln\_dynhpg\_vec}=true ; \key{vvl} not defined):
1135\begin{equation} \label{Eq_dynnxt_vec}
1136\left\{   \begin{aligned}
1137&u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt  \ \text{RHS}_u^t     \\
1138&u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right]
1139\end{aligned}   \right.
1140\end{equation} 
1141
1142$\bullet$ flux form and nonlinear free surface (\np{ln\_dynhpg\_vec}=false ; \key{vvl} defined):
1143\begin{equation} \label{Eq_dynnxt_flux}
1144\left\{   \begin{aligned}
1145&\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t     \\
1146&\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t
1147  +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right]
1148\end{aligned}   \right.
1149\end{equation} 
1150where RHS is the right hand side of the momentum equation, the subscript $f$ 
1151denotes filtered values and $\gamma$ is the Asselin coefficient. $\gamma$ is
1152initialized as \np{nn\_atfp} (namelist parameter). Its default value is \np{nn\_atfp} = $10^{-3}$.
1153In both cases, the modified Asselin filter is not applied since perfect conservation
1154is not an issue for the momentum equations.
1155
1156Note that with the filtered free surface, the update of the \textit{after} velocities
1157is done in the \mdl{dynsp\_flt} module, and only array swapping
1158and Asselin filtering is done in \mdl{dynnxt}.
1159
1160
1161
1162% ================================================================
Note: See TracBrowser for help on using the repository browser.