[10156] | 1 | MODULE vertical_movement_fabm |
---|
| 2 | !!====================================================================== |
---|
| 3 | !! *** MODULE vertical_movement_fabm *** |
---|
| 4 | !! TOP : Module for the vertical movement of the FABM tracers |
---|
| 5 | !!====================================================================== |
---|
| 6 | |
---|
| 7 | #if defined key_fabm |
---|
| 8 | !!---------------------------------------------------------------------- |
---|
| 9 | !! 'key_fabm' FABM tracers |
---|
| 10 | !!---------------------------------------------------------------------- |
---|
| 11 | !! compute_vertical_movement : compute vertical movement of FABM fields |
---|
| 12 | !!---------------------------------------------------------------------- |
---|
| 13 | USE par_trc |
---|
| 14 | USE oce_trc |
---|
| 15 | USE trc |
---|
| 16 | USE par_fabm |
---|
| 17 | USE fabm |
---|
| 18 | USE dom_oce |
---|
| 19 | #if defined key_trdtrc && defined key_iomput |
---|
| 20 | USE iom |
---|
| 21 | USE trdtrc_oce |
---|
| 22 | #endif |
---|
| 23 | |
---|
| 24 | IMPLICIT NONE |
---|
| 25 | |
---|
| 26 | # include "domzgr_substitute.h90" |
---|
| 27 | |
---|
| 28 | PRIVATE |
---|
| 29 | |
---|
| 30 | PUBLIC compute_vertical_movement |
---|
| 31 | |
---|
| 32 | ! Work arrays for vertical advection (residual movement/sinking/floating) |
---|
| 33 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:,:) :: w_ct |
---|
| 34 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: w_if |
---|
| 35 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: zwgt_if |
---|
| 36 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:) :: flux_if |
---|
| 37 | #if defined key_trdtrc && defined key_iomput |
---|
| 38 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, TARGET, DIMENSION(:,:,:,:) :: tr_vmv |
---|
| 39 | #endif |
---|
| 40 | |
---|
| 41 | CONTAINS |
---|
| 42 | |
---|
| 43 | SUBROUTINE compute_vertical_movement( kt ) |
---|
| 44 | !!---------------------------------------------------------------------- |
---|
| 45 | !! *** compute_vertical_movement *** |
---|
| 46 | !! |
---|
| 47 | !! ** Purpose : compute vertical movement of FABM tracers |
---|
| 48 | !! |
---|
| 49 | !! ** Method : Sets additional vertical velocity field and computes |
---|
| 50 | !! resulting advection using a conservative 3rd upwind |
---|
| 51 | !! scheme with QUICKEST TVD limiter, based on GOTM |
---|
| 52 | !! module adv_center.F90 (www.gotm.net). Currently assuming |
---|
| 53 | !! zero flux at sea surface and sea floor. |
---|
| 54 | !!---------------------------------------------------------------------- |
---|
| 55 | ! |
---|
| 56 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
| 57 | INTEGER :: ji,jj,jk,jn,k_floor,n_iter,n_count |
---|
| 58 | INTEGER,PARAMETER :: n_itermax=100 |
---|
| 59 | REAL(wp) :: cmax_no,z2dt |
---|
| 60 | REAL(wp),DIMENSION(jpk) :: tr_it,tr_u,tr_d,tr_c,tr_slope,c_no,flux_lim |
---|
| 61 | REAL(wp),DIMENSION(jpk) :: phi_lim,x_fac |
---|
| 62 | #if defined key_trdtrc |
---|
| 63 | CHARACTER (len=20) :: cltra |
---|
| 64 | #endif |
---|
| 65 | |
---|
| 66 | #if defined key_trdtrc && defined key_iomput |
---|
| 67 | IF( lk_trdtrc ) tr_vmv = 0.0_wp |
---|
| 68 | #endif |
---|
| 69 | |
---|
| 70 | IF( neuler == 0 .AND. kt == nittrc000 ) THEN |
---|
| 71 | z2dt = rdt ! set time step size (Euler) |
---|
| 72 | ELSE |
---|
| 73 | z2dt = 2._wp * rdt ! set time step size (Leapfrog) |
---|
| 74 | ENDIF |
---|
| 75 | ! Compute interior vertical velocities and include them in source array. |
---|
| 76 | DO jj=1,jpj ! j-loop |
---|
| 77 | ! Get vertical velocities at layer centres (entire 1:jpi,1:jpk slice). |
---|
| 78 | DO jk=1,jpk |
---|
| 79 | CALL fabm_get_vertical_movement(model,1,jpi,jj,jk,w_ct(:,jk,:)) |
---|
| 80 | END DO |
---|
| 81 | |
---|
| 82 | DO ji=1,jpi ! i-loop |
---|
| 83 | ! Only process this horizontal point (ji,jj) if number of layers exceeds 1 |
---|
| 84 | IF (mbkt(ji,jj)>1) THEN ! Level check |
---|
| 85 | k_floor=mbkt(ji,jj) |
---|
| 86 | ! Linearly interpolate to velocities at the interfaces between layers |
---|
| 87 | ! Note: |
---|
| 88 | ! - interface k sits between cell centre k and k-1, |
---|
| 89 | ! - k [1,jpk] increases downwards |
---|
| 90 | ! - upward velocity is positive, downward velocity is negative |
---|
| 91 | zwgt_if(1,:)=0._wp ! surface |
---|
| 92 | w_if(1,:)=0._wp ! surface |
---|
| 93 | zwgt_if(2:k_floor,:)=spread(& |
---|
| 94 | fse3t(ji,jj,2:k_floor)/ (fse3t(ji,jj,1:k_floor-1)+fse3t(ji,jj,2:k_floor))& |
---|
| 95 | ,2,jp_fabm) |
---|
| 96 | w_if(2:k_floor,:) = zwgt_if(2:k_floor,:)*w_ct(ji,1:k_floor-1,:)& |
---|
| 97 | +(1._wp-zwgt_if(1:k_floor-1,:))*w_ct(ji,2:k_floor,:) |
---|
| 98 | zwgt_if(k_floor+1:,:)=0._wp ! sea floor and below |
---|
| 99 | w_if(k_floor+1:,:)=0._wp ! sea floor and below |
---|
| 100 | |
---|
| 101 | ! Advect: |
---|
| 102 | DO jn=1,jp_fabm ! State loop |
---|
| 103 | ! get maximum Courant number: |
---|
| 104 | c_no(2:k_floor)=abs(w_if(2:k_floor,jn))*z2dt/ & |
---|
| 105 | ( 0.5_wp*(fse3t(ji,jj,2:k_floor) + & |
---|
| 106 | fse3t(ji,ji,1:k_floor-1)) ) |
---|
| 107 | cmax_no=MAXVAL(c_no(2:k_floor)) |
---|
| 108 | |
---|
| 109 | ! number of iterations: |
---|
| 110 | n_iter=min(n_itermax,int(cmax_no)+1) |
---|
| 111 | IF (ln_ctl.AND.(n_iter .gt. 1)) THEN |
---|
| 112 | WRITE(numout,*) 'vertical_movement_fabm():' |
---|
| 113 | WRITE(numout,*) ' Maximum Courant number is ',cmax_no,'.' |
---|
| 114 | WRITE(numout,*) ' ',n_iter,' iterations used for vertical advection.' |
---|
| 115 | ENDIF |
---|
| 116 | |
---|
| 117 | ! effective Courant number: |
---|
| 118 | c_no=c_no/n_iter |
---|
| 119 | |
---|
| 120 | tr_it(1:k_floor)=trb(ji,jj,1:k_floor,jp_fabm_m1+jn) |
---|
| 121 | DO n_count=1,n_iter ! Iterative loop |
---|
| 122 | !Compute slope ratio |
---|
| 123 | IF (k_floor.gt.2) THEN !More than 2 vertical wet points |
---|
| 124 | IF (k_floor.gt.3) THEN |
---|
| 125 | WHERE (w_if(3:k_floor-1,jn).ge.0._wp) !upward movement |
---|
| 126 | tr_u(3:k_floor-1)=tr_it(4:k_floor) |
---|
| 127 | tr_c(3:k_floor-1)=tr_it(3:k_floor-1) |
---|
| 128 | tr_d(3:k_floor-1)=tr_it(2:k_floor-2) |
---|
| 129 | ELSEWHERE !downward movement |
---|
| 130 | tr_u(3:k_floor-1)=tr_it(1:k_floor-3) |
---|
| 131 | tr_c(3:k_floor-1)=tr_it(2:k_floor-2) |
---|
| 132 | tr_d(3:k_floor-1)=tr_it(3:k_floor-1) |
---|
| 133 | ENDWHERE |
---|
| 134 | ENDIF |
---|
| 135 | IF (w_if(2,jn).ge.0._wp) THEN |
---|
| 136 | tr_u(2)=tr_it(3) |
---|
| 137 | tr_c(2)=tr_it(2) |
---|
| 138 | tr_d(2)=tr_it(1) |
---|
| 139 | ELSE |
---|
| 140 | tr_u(2)=tr_it(1) |
---|
| 141 | tr_c(2)=tr_it(1) |
---|
| 142 | tr_d(2)=tr_it(2) |
---|
| 143 | ENDIF |
---|
| 144 | IF (w_if(k_floor,jn).ge.0._wp) THEN |
---|
| 145 | tr_u(k_floor)=tr_it(k_floor) |
---|
| 146 | tr_c(k_floor)=tr_it(k_floor) |
---|
| 147 | tr_d(k_floor)=tr_it(k_floor-1) |
---|
| 148 | ELSE |
---|
| 149 | tr_u(k_floor)=tr_it(k_floor-2) |
---|
| 150 | tr_c(k_floor)=tr_it(k_floor-1) |
---|
| 151 | tr_d(k_floor)=tr_it(k_floor) |
---|
| 152 | ENDIF |
---|
| 153 | ELSE !only 2 vertical wet points, i.e. only 1 interface |
---|
| 154 | IF (w_if(k_floor,jn).ge.0._wp) THEN |
---|
| 155 | tr_u(2)=tr_it(2) |
---|
| 156 | tr_c(2)=tr_it(2) |
---|
| 157 | tr_d(2)=tr_it(1) |
---|
| 158 | ELSE |
---|
| 159 | tr_u(2)=tr_it(1) |
---|
| 160 | tr_c(2)=tr_it(1) |
---|
| 161 | tr_d(2)=tr_it(2) |
---|
| 162 | ENDIF |
---|
| 163 | ENDIF |
---|
| 164 | WHERE (abs(tr_d(2:k_floor)-tr_c(2:k_floor)).gt.1.e-10_wp) |
---|
| 165 | tr_slope(2:k_floor)= & |
---|
| 166 | (tr_c(2:k_floor)-tr_u(2:k_floor))/ & |
---|
| 167 | (tr_d(2:k_floor)-tr_c(2:k_floor)) |
---|
| 168 | ELSEWHERE |
---|
| 169 | tr_slope(2:k_floor)=SIGN(1._wp,w_if(2:k_floor,jn))* & |
---|
| 170 | (tr_c(2:k_floor)-tr_u(2:k_floor))*1.e10_wp |
---|
| 171 | ENDWHERE |
---|
| 172 | |
---|
| 173 | !QUICKEST flux limiter: |
---|
| 174 | x_fac(2:k_floor)=(1._wp-2._wp*c_no(2:k_floor))/6._wp |
---|
| 175 | phi_lim(2:k_floor)=(0.5_wp+x_fac(2:k_floor)) + & |
---|
| 176 | (0.5_wp-x_Fac(2:k_floor))*tr_slope(2:k_floor) |
---|
| 177 | flux_lim(2:k_floor)=max( 0._wp, & |
---|
| 178 | min( phi_lim(2:k_floor),2._wp/(1._wp-c_no(2:k_floor)), & |
---|
| 179 | 2._wp*tr_slope(2:k_floor)/(c_no(2:k_floor)+1.e-10_wp)) ) |
---|
| 180 | |
---|
| 181 | ! Compute limited flux: |
---|
| 182 | flux_if(2:k_floor,jn) = w_if(2:k_floor,jn)* & |
---|
| 183 | ( tr_c(2:k_floor) + & |
---|
| 184 | 0.5_wp*flux_lim(2:k_floor)*(1._wp-c_no(2:k_floor))* & |
---|
| 185 | (tr_d(2:k_floor)-tr_c(2:k_floor)) ) |
---|
| 186 | |
---|
| 187 | ! Compute pseudo update for trend aggregation: |
---|
| 188 | tr_it(1:k_floor-1) = tr_it(1:k_floor-1) + & |
---|
| 189 | z2dt/float(n_iter)/fse3t(ji,jj,1:k_floor-1)* & |
---|
| 190 | flux_if(2:k_floor,jn) |
---|
| 191 | tr_it(2:k_floor) = tr_it(2:k_floor) - & |
---|
| 192 | z2dt/float(n_iter)/fse3t(ji,jj,2:k_floor)* & |
---|
| 193 | flux_if(2:k_floor,jn) |
---|
| 194 | |
---|
| 195 | ENDDO ! Iterative loop |
---|
| 196 | |
---|
| 197 | ! Estimate rate of change from pseudo state updates (source |
---|
| 198 | ! splitting): |
---|
| 199 | tra(ji,jj,1:k_floor,jp_fabm_m1+jn) = & |
---|
| 200 | tra(ji,jj,1:k_floor,jp_fabm_m1+jn) + & |
---|
| 201 | (tr_it(1:k_floor) - trb(ji,jj,1:k_floor,jp_fabm_m1+jn))/z2dt |
---|
| 202 | #if defined key_trdtrc && defined key_iomput |
---|
| 203 | IF( lk_trdtrc .AND. ln_trdtrc( jp_fabm_m1+jn ) ) THEN |
---|
| 204 | tr_vmv(ji,jj,1:k_floor,jn)=(tr_it(1:k_floor) - trb(ji,jj,1:k_floor,jn))/z2dt |
---|
| 205 | END IF |
---|
| 206 | #endif |
---|
| 207 | ENDDO ! State loop |
---|
| 208 | END IF ! Level check |
---|
| 209 | END DO ! i-loop |
---|
| 210 | END DO ! j-loop |
---|
| 211 | #if defined key_trdtrc && defined key_iomput |
---|
| 212 | DO jn=1,jp_fabm ! State loop |
---|
| 213 | IF( lk_trdtrc .AND. ln_trdtrc(jp_fabm_m1+jn) ) THEN |
---|
| 214 | cltra = 'VMV_'//TRIM(ctrcnm(jp_fabm_m1+jn)) |
---|
| 215 | CALL iom_put( cltra, tr_vmv(:,:,:,jn) ) |
---|
| 216 | END IF |
---|
| 217 | ENDDO |
---|
| 218 | #endif |
---|
| 219 | |
---|
| 220 | END SUBROUTINE compute_vertical_movement |
---|
| 221 | |
---|
| 222 | #endif |
---|
| 223 | END MODULE |
---|