New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in branches/devmercator2010_1/DOC/TexFiles/Biblio – NEMO

source: branches/devmercator2010_1/DOC/TexFiles/Biblio/Biblio.bib @ 2132

Last change on this file since 2132 was 2132, checked in by cbricaud, 14 years ago

add change from DEV_r1784_GLS

  • Property svn:executable set to *
File size: 83.9 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@STRING{RGSP = {Rev. Geophys. Space Phys.}
89
90@ARTICLE{Adcroft_Campin_OM04,
91  author = {A. Adcroft and J.-M. Campin},
92  title = {Re-scaled height coordinates for accurate representation of free-surface
93   flows in ocean circulation models},
94  journal = {Ocean Modelling},
95  year = {2004},
96  volume = {7},
97  owner = {gm},
98  timestamp = {2008.01.27}
99}
100
101@ARTICLE{Arakawa1966,
102  author = {A. Arakawa},
103  title = {Computational design for long term numerical integration of the equations
104   of fluid motion, two-dimensional incompressible flow, Part. I.},
105  journal = JCP,
106  year = {1966},
107  volume = {I},
108  pages = {119-149},
109  owner = {gm},
110  timestamp = {2007.08.04}
111}
112
113@ARTICLE{Arakawa1990,
114  author = {A. Arakawa and Y.-J. G. Hsu},
115  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
116   the Shallow Water Equations},
117  journal = MWR,
118  year = {1990},
119  volume = {118},
120  pages = {1960--1969
121   
122   },
123  number = {10},
124  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
125   water equations with no or arbitrarily small energy dissipation,
126   a family of finite-difference schemes have been derived with which
127   potential enstrophy is guaranteed to decrease while energy is conserved
128   (when the mass flux is nondivergent and time is continuous). Among
129   this family of schemes, there is a member that minimizes the spurious
130   impact of infinite potential vorticities associated with infinitesimal
131   fluid depth. The scheme is, therefore, useful for problems in which
132   the free surface may intersect with the lower boundary.},
133  date = {October 01, 1990},
134  owner = {gm},
135  timestamp = {2007.08.05}
136}
137
138@ARTICLE{Arakawa1981,
139  author = {Arakawa, Akio and Lamb, Vivian R.},
140  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
141   Water Equations},
142  journal = MWR,
143  year = {1981},
144  volume = {109},
145  pages = {18--36
146   
147   },
148  number = {1},
149  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
150   topography, a potential enstrophy and energy conserving scheme for
151   the shallow water equations is derived. It is pointed out that a
152   family of schemes can conserve total energy for general flow and
153   potential enstrophy for flow with no mass flux divergence. The newly
154   derived scheme is a unique member of this family, that conserves
155   both potential enstrophy and energy for general flow. Comparison
156   by means of numerical experiment with a scheme that conserves (potential)
157   enstrophy for purely horizontal nondivergent flow demonstrated the
158   considerable superiority of the newly derived potential enstrophy
159   and energy conserving scheme, not only in suppressing a spurious
160   energy cascade but also in determining the overall flow regime. The
161   potential enstrophy and energy conserving scheme for a spherical
162   grid is also presented.},
163  date = {January 01, 1981},
164  owner = {gm},
165  timestamp = {2007.08.05}
166}
167
168@ARTICLE{Arhan2006,
169  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
170  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
171   Atlantic Ocean from a general circulation model},
172  journal = JPO,
173  year = {2006},
174  volume = { 36},
175  pages = {1502-1522}
176}
177
178@ARTICLE{ASSELIN1972,
179  author = {R. Asselin},
180  title = {Frequency Filter for Time Integrations},
181  journal = MWR,
182  year = {1972},
183  volume = {100},
184  pages = {487-490},
185  number = {6},
186  abstract = {A simple filter for controlling high-frequency computational and physical
187   modes arising in time integrations is proposed. A linear analysis
188   of the filter with leapfrog, implicit, and semi-implicit, differences
189   is made. The filter very quickly removes the computational mode and
190   is also very useful in damping high-frequency physical waves. The
191   stability of the leapfrog scheme is adversely affected when a large
192   filter parameter is used, but the analysis shows that the use of
193   centered differences with frequency filter is still more advantageous
194   than the use of the Euler-backward method. An example of the use
195   of the filter in an actual forecast with the meteorological equations
196   is shown.},
197  date = {June 01, 1972},
198  owner = {gm},
199  timestamp = {2007.08.03}
200}
201
202@ARTICLE{Barnier_al_OD06,
203  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
204   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
205   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
206   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
207   and B. De Cuevas},
208  title = {Impact of partial steps and momentum advection schemes in a global
209   ocean circulation model at eddy-permitting resolution.},
210  journal = {Ocean Dyn.},
211  year = {2006},
212  pages = {doi: 10.1007/s10236-006-0082-1.},
213  owner = {gm},
214  timestamp = {2008.01.25}
215}
216
217@INCOLLECTION{Barnier1996,
218  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
219  title = {Modeling the ocean circulation in the South Atlantic: A strategy
220   for dealing with open boundaries},
221  booktitle = {The South Atlantic: Present and Past Circulation},
222  publisher = {Springer-Verlag, Berlin},
223  year = {1996},
224  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
225  pages = {289-304}
226}
227
228@ARTICLE{Barnier1998,
229  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
230   and M. Coulibaly},
231  title = {A sigma-coordinate primitive equation model for studying the circulation
232   in the South Atlantic I, Model configuration with error estimates},
233  journal = {Deep Sea Res.},
234  year = {1998},
235  volume = {45},
236  pages = {543-572}
237}
238
239@ARTICLE{Beckmann1998,
240  author = {A. Beckmann},
241  title = {The representation of bottom boundary layer processes in numerical
242   ocean circulation models.},
243  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
244   (eds.), NATO Science Series, Kluwer Academic Publishers},
245  year = {1998},
246  owner = {gm},
247  timestamp = {2007.08.04}
248}
249
250@ARTICLE{BeckDos1998,
251  author = {A. Beckmann and R. D\"{o}scher},
252  title = {A method for improved representation of dense water spreading over
253   topography in geopotential-coordinate models},
254  journal = JPO,
255  year = {1998},
256  volume = {27},
257  pages = {581-591},
258  owner = {gm},
259  timestamp = {2007.08.04}
260}
261
262@ARTICLE{Beckmann1993,
263  author = {A. Beckmann and D. B. Haidvogel},
264  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
265   I - Problem Formulation and Model Accuracy},
266  journal = {Journal of Physical Oceanography},
267  year = {1993},
268  volume = {23},
269  pages = {1736--1753
270   
271   },
272  number = {8},
273  abstract = {A sigma coordinate ocean circulation model is employed to study flow
274   trapped to a tall seamount in a periodic f-plane channel. In Part
275   I, errors arising from the pressure gradient formulation in the steep
276   topography/strong stratification limit are examined. To illustrate
277   the error properties, a linearized adiabatic version of the model
278   is considered, both with and without forcing, and starting from a
279   resting state with level isopycnals. The systematic discretization
280   errors from the horizontal pressure gradient terms are shown analytically
281   to increase with steeper topography (relative to a fixed horizontal
282   grid) and for stronger stratification (as measured by the Burger
283   number). For an initially quiescent unforced ocean, the pressure
284   gradient errors produce a spurious oscillating current that, at the
285   end of 10 days, is approximately 1 cm s−1 in amplitude. The
286   period of the spurious oscillation (about 0.5 days) is shown to be
287   a consequence of the particular form of the pressure gradient terms
288   in the sigma coordinate system. With the addition of an alongchannel
289   diurnal forcing, resonantly generated seamount-trapped waves are
290   observed to form. Error levels in these solutions are less than those
291   in the unforced cases; spurious time-mean currents are several orders
292   of magnitude less in amplitude than the resonant propagating waves.
293   However, numerical instability is encountered in a wider range of
294   parameter space. The properties of these resonantly generated waves
295   is explored in detail in Part II of this study. Several new formulations
296   of the pressure gradient terms are tested. Two of the formulations—constructed
297   to have additional conservation properties relative to the traditional
298   form of the pressure gradient terms (conservation of JEBAR and conservation
299   of energy)—are found to have error properties generally similar
300   to those of the traditional formulation. A corrected gradient algorithm,
301   based upon vertical interpolation of the pressure field, has a dramatically
302   reduced error level but a much more restrictive range of stable behavior.},
303  date = {August 01, 1993},
304  owner = {gm},
305  timestamp = {2007.08.03}
306}
307
308@ARTICLE{Blanke_al_JPO99,
309  author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
310  title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General
311   Circulation Model},
312  journal = JPO,
313  year = {1999},
314  volume = {29, 11},
315  pages = {2753-2768},
316  owner = {gm},
317  timestamp = {2008.05.27}
318}
319
320@ARTICLE{Blanke1993,
321  author = {B. Blanke and P. Delecluse},
322  title = {Low frequency variability of the tropical Atlantic ocean simulated
323   by a general circulation model with mixed layer physics},
324  journal = JPO,
325  year = {1993},
326  volume = {23},
327  pages = {1363-1388}
328}
329
330@ARTICLE{blanketal97,
331  author = {B. Blanke and J. D. Neelin and D. Gutzler},
332  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
333  journal = JC,
334  year = {1997},
335  volume = {10},
336  pages = {1473-1486},
337  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
338   and predictability is the role of random
339   
340   forcing by atmospheric variability with short correlation times, on
341   coupled variability with interannual timescales.
342   
343   The discussion of this question requires a quantitative assessment
344   of the stochastic component of the wind stress
345   
346   forcing. Self-consistent estimates of this noise (the stochastic forcing)
347   can be made quite naturally in an empirical
348   
349   atmospheric model that uses a statistical estimate of the relationship
350   between sea surface temperature (SST) and
351   
352   wind stress anomaly patterns as the deterministic feedback between
353   the ocean and the atmosphere. The authors
354   
355   use such an empirical model as the atmospheric component of a hybrid
356   coupled model, coupled to the GFDL
357   
358   ocean general circulation model. The authors define as residual the
359   fraction of the Florida State University wind
360   
361   stress not explained by the empirical atmosphere run from observed
362   SST, and a noise product is constructed by
363   
364   random picks among monthly maps of this residual.
365   
366   The impact of included or excluded noise is assessed with several
367   ensembles of simulations. The model is
368   
369   run in coupled regimes where, in the absence of noise, it is perfectly
370   periodic: in the presence of prescribed
371   
372   seasonal variability, the model is strongly frequency locked on a
373   2-yr period; in annual average conditions it
374   
375   has a somewhat longer inherent ENSO period (30 months). Addition of
376   noise brings an irregular behavior that
377   
378   is considerably richer in spatial patterns as well as in temporal
379   structures. The broadening of the model ENSO
380   
381   spectral peak is roughly comparable to observed. The tendency to frequency
382   lock to subharmonic resonances
383   
384   of the seasonal cycle tends to increase the broadening and to emphasize
385   lower frequencies. An inclination to
386   
387   phase lock to preferred seasons persists even in the presence of noise-induced
388   irregularity. Natural uncoupled
389   
390   atmospheric variability is thus a strong candidate for explaining
391   the observed aperiodicity in ENSO time series.
392   
393   Model–model hindcast experiments also suggest the importance of atmospheric
394   noise in setting limits to ENSO
395   
396   predictability.},
397  pdf = {Blanke_etal_JC97.pdf}
398}
399
400@ARTICLE{Blanke_Raynaud_JPO97,
401  author = {B. Blanke and S. Raynaud},
402  title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and
403   Lagrangian Approach from GCM Results},
404  journal = JPO,
405  year = {1997},
406  volume = {27, 6},
407  pages = {1038-1053},
408  owner = {gm},
409  timestamp = {2008.05.27}
410}
411
412@ARTICLE{Blayo2005,
413  author = {E. Blayo and L. Debreu},
414  title = {Revisiting open boundary conditions from the point of view of characteristic
415   variables},
416  journal = {Ocean Modelling},
417  year = {2005},
418  volume = {9},
419  pages = {231-252}
420}
421
422@ARTICLE{Bougeault1989,
423  author = {P. Bougeault and P. Lacarrere},
424  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
425   Model},
426  journal = MWR,
427  year = {1989},
428  volume = {117},
429  pages = {1872-1890},
430  number = {8},
431  abstract = {The possibility of extending existing techniques for turbulence parameterization
432   in the planetary boundary layer to attitude, orography-induced turbulence
433   events is examined. Starting from a well-tested scheme, we show that
434   it is possible to generalize the specification method of the length
435   scales, with no deterioration of the scheme performance in the boundary
436   layer. The new scheme is implemented in a two-dimensional version
437   of a limited-area, numerical model used for the simulation of mesobeta-scale
438   atmospheric flows. Three well-known cases of orographically induced
439   turbulence are studied. The comparison with observations and former
440   studies shows a satisfactory behavior of the new scheme.},
441  date = {August 01, 1989},
442  owner = {gm},
443  timestamp = {2007.08.06}
444}
445
446@ARTICLE{Brown1978,
447  author = {J. A. Brown and K. A. Campana},
448  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
449  journal = MWR,
450  year = {1978},
451  volume = {106},
452  pages = {1125-1136},
453  number = {8},
454  month = aug,
455  abstract = {A simple method for integrating the primitive equations is presented
456   which allows for a timestep increment up to twice that of the conventional
457   leapfrog scheme. It consists of a time-averaging operator, which
458   incorporates three consecutive time levels, on the pressure gradient
459   terms in the equations of motion. An attractive feature of the method
460   is its case in programming, since the resulting finite-difference
461   equations can he solved explicitly.Presented here are linear analyses
462   of the method applied to the barotropic and two-layer baroclinic
463   gravity waves. Also presented is an analysis of the method with a
464   time-damping device incorporated, which is an alternative in controlling
465   linearly amplifying computational modes.},
466  owner = {gm},
467  timestamp = {2007.08.05}
468}
469
470@ARTICLE{Bryan1997,
471  author = {K. Bryan},
472  title = {A Numerical Method for the Study of the Circulation of the World
473   Ocean},
474  journal = JCP,
475  year = {1997},
476  volume = {135, 2},
477  owner = {gm},
478  timestamp = {2007.08.10}
479}
480
481@ARTICLE{Bryan1984,
482  author = {K. Bryan},
483  title = {Accelerating the convergence to equilibrium of ocean-climate models},
484  journal = JPO,
485  year = {1984},
486  volume = {14},
487  owner = {gm},
488  timestamp = {2007.08.10}
489}
490
491@ARTICLE{Bryden1973,
492  author = {H. L. Bryden},
493  title = {New polynomials for thermal expansion, adiabatic temperature gradient
494   
495   and potential temperature of sea water},
496  journal = DSR,
497  year = {1973},
498  volume = {20},
499  pages = {401-408},
500  owner = {gm},
501  timestamp = {2007.08.04}
502}
503
504@ARTICLE{Campin2004,
505  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
506  title = {Conservation of properties in a free-surface model},
507  journal = {Ocean Modelling},
508  year = {2004},
509  volume = {6, 3-4},
510  pages = {221-244},
511  owner = {gm},
512  timestamp = {2007.08.04}
513}
514
515@ARTICLE{Campin_Goosse_Tel99,
516  author = {J. M. Campin and H. Goosse},
517  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
518   ocean model in z-coordinate},
519  journal = {Tellus},
520  year = {1999},
521  volume = {51},
522  pages = {412-430},
523  owner = {gm},
524  timestamp = {2008.01.20}
525}
526
527@ARTICLE{Canuto_2001,
528  author = {V. M. Canuto and A. Howard and Y. Cheng and M. S. Dubovikov},
529  title = {Ocean turbulence. PartI: One-point closure model-momentum and heat vertical diffusivities},
530  journal = JPO,
531  year = {2001},
532  volume = {24, 12},
533  pages = {2546-2559},
534  owner = {gr},
535  timestamp = {2010.09.09}
536}
537
538@ARTICLE{Cox1987,
539  author = {M. Cox},
540  title = {Isopycnal diffusion in a z-coordinate ocean model},
541  journal = {Ocean Modelling},
542  year = {1987},
543  volume = {74},
544  pages = {1-9},
545  owner = {gm},
546  timestamp = {2007.08.03}
547}
548
549@ARTICLE{Craig_Banner_1994,
550  author = {P. D. Banner and M. L. Banner},
551  title = {Modeling wave-enhanced turbulence in the ocean surface layer},
552  journal = JPO,
553  year = {1994},
554  volume = {24, 12},
555  pages = {2546-2559},
556  owner = {g5},
557  timestamp = {2010.09.09}
558}
559
560@ARTICLE{Dorscher_Beckmann_JAOT00,
561  author = {R. D\"{o}scher and A. Beckmann},
562  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
563   Model of the North Atlantic Ocean},
564  journal = JAOT,
565  year = {2000},
566  volume = {17},
567  pages = {698-707},
568  owner = {gm},
569  timestamp = {2008.01.23}
570}
571
572@ARTICLE{Debreu_al_CG2008,
573  author = {L. Debreu and C. Vouland and E. Blayo},
574  title = {AGRIF: Adaptive Grid Refinement In Fortran},
575  journal = {Computers and Geosciences},
576  year = {2008},
577  volume = {34},
578  pages = {8-13},
579  owner = {gm},
580  timestamp = {2008.02.03}
581}
582
583@ARTICLE{Delecluse_Madec_Bk00,
584  author = {P. Delecluse and G. Madec},
585  title = {Ocean modelling and the role of the ocean in the climate system},
586  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
587   Houches, Session, LXVII 1997,
588   
589   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
590  year = {2000},
591  pages = {237-313},
592  owner = {gm},
593  timestamp = {2008.02.03}
594}
595
596@ARTICLE{Dukowicz1994,
597  author = {J. K. Dukowicz and R. D. Smith},
598  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
599  journal = JGR,
600  year = {1994},
601  volume = {99},
602  pages = {7991-8014},
603  owner = {gm},
604  timestamp = {2007.08.03}
605}
606
607@INCOLLECTION{Durran2001,
608  author = {D.R. Durran },
609  title = {Open boundary conditions: fact and fiction},
610  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
611  publisher = {Kluwer Academic Publishers},
612  year = {2001},
613  editor = {P.F. Hodnett}
614}
615
616@ARTICLE{Dutay.J.C2004,
617  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
618   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
619   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
620  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
621   
622   with mantle helium-3},
623  journal = {Journal of Marine Systems},
624  year = {2004},
625  pages = {1-22},
626  abstract = {We compare simulations of the injection of mantle helium-3 into the
627   deep ocean from six global coarse resolution models which participated
628   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
629   discuss the results of a study carried out with one of the models,
630   which examines the effect of the subgrid-scale mixing parameterization.
631   These sensitivity tests provide useful information to interpret the
632   differences among the OCMIP models and between model simulations
633   and the data.
634   
635   We find that the OCMIP models, which parameterize subgrid-scale mixing
636   using an eddy-induced velocity, tend to
637   
638   underestimate the ventilation of the deep ocean, based on diagnostics
639   with d3He. In these models, this parameterization is implemented
640   with a constant thickness diffusivity coefficient. In future simulations,
641   we recommend using such a parameterization with spatially and temporally
642   varying coefficients in order to moderate its effect on stratification.
643   
644   The performance of the models with regard to the formation of AABW
645   confirms the conclusion from a previous evaluation with CFC-11. Models
646   coupled with a sea-ice model produce a substantial bottom water formation
647   in the Southern Ocean that tends to overestimate AABW ventilation,
648   while models that are not coupled with a sea-ice model systematically
649   underestimate the formation of AABW.
650   
651   We also analyze specific features of the deep 3He distribution (3He
652   plumes) that are particularly well depicted in the data and which
653   put severe constraints on the deep circulation. We show that all
654   the models fail to reproduce a correct propagation of these plumes
655   in the deep ocean. The resolution of the models may be too coarse
656   to reproduce the strong and narrow currents in the deep ocean, and
657   the models do not incorporate the geothermal heating that may also
658   contribute to the generation of these currents. We also use the context
659   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
660   to compare and evaluate modeled deep-ocean circulations. Although
661   the source function of mantle helium is known with a rather large
662   uncertainty, we find that the parameterization used for the injection
663   of mantle helium-3 is sufficient to generate realistic results, even
664   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
665   Res. 100 (1995) 3829] claimed this parameterization generates
666   
667   inadequate results. These results are supported by a multi-tracer
668   evaluation performed by considering the simulated distributions of
669   both helium-3 and natural 14C, and comparing the simulated tracer
670   fields with available data.},
671  owner = {sandra},
672  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
673  timestamp = {2006.10.17}
674}
675
676@ARTICLE{Eiseman1980,
677  author = {P. R. Eiseman and A. P. Stone},
678  title = {Conservation lows of fluid dynamics -- A survey},
679  journal = {SIAM Review},
680  year = {1980},
681  volume = {22},
682  pages = {12-27},
683  owner = {gm},
684  timestamp = {2007.08.03}
685}
686
687@ARTICLE{Emile-Geay_Madec_OSD08,
688  author = {J. Emile-Geay and G. Madec},
689  title = {Geothermal heating, diapycnal mixing and the abyssal circulation},
690  journal = {Ocean Sci. Discuss.},
691  year = {2008},
692  volume = {5},
693  pages = {281-325},
694  owner = {gm},
695  timestamp = {2008.07.16}
696}
697
698@PHDTHESIS{Farge1987,
699  author = {M. Farge},
700  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
701   de Saint Venant},
702  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
703  year = {1987},
704  owner = {gm},
705  timestamp = {2007.08.03}
706}
707
708@ARTICLE{Farrow1995,
709  author = {D. E. Farrow and D. P. Stevens},
710  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
711   models},
712  journal = JPO,
713  year = {1995},
714  volume = {25},
715  pages = {1731-1741.},
716  owner = {gm},
717  timestamp = {2007.08.04}
718}
719
720@ARTICLE{Fujio1991,
721  author = {S. Fujio and N. Imasato},
722  title = {Diagnostic calculation for circulation and water mass movement in
723   the deep Pacific},
724  journal = JGR,
725  year = {1991},
726  volume = {96},
727  pages = {759-774},
728  month = jan,
729  owner = {gm},
730  timestamp = {2007.08.04}
731}
732
733@ARTICLE{Galperin_1988,
734  author = {B. Galperin and L. H. Kantha and S. Hassid and A. Rosati},
735  title = {A quasi-equilibrium turbulent energy model for geophysical flows},
736  journal = JAS,
737  year = {1988},
738  volume = {45},
739  pages = {55-62},
740  owner = {gr},
741  timestamp = {2010.09.09}
742}
743
744@ARTICLE{Gargett1984,
745  author = {A. E. Gargett},
746  title = {Vertical eddy diffusivity in the ocean interior},
747  journal = JMR,
748  year = {1984},
749  volume = {42},
750  owner = {gm},
751  timestamp = {2007.08.06}
752}
753
754@ARTICLE{Gaspar1990,
755  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
756  title = {A simple eddy kinetic energy model for simulations of the oceanic
757   vertical mixing\: Tests at Station Papa and long-term upper ocean
758   study site},
759  journal = JGR,
760  year = {1990},
761  volume = {95(C9)},
762  owner = {gm},
763  timestamp = {2007.08.06}
764}
765
766@ARTICLE{Gent1990,
767  author = {P. R. Gent and J. C. Mcwilliams},
768  title = {Isopycnal Mixing in Ocean Circulation Models},
769  journal = JPO,
770  year = {1990},
771  volume = {20},
772  pages = {150-155},
773  number = {1},
774  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
775   is proposed for use in non-eddy-resolving ocean circulation models.
776   The mixing is applied in isopycnal coordinates to isopycnal layer
777   thickness, or inverse density gradient, as well as to passive scalars,
778   temperature and salinity. The transformation of these mixing forms
779   to physical coordinates is also presented.},
780  date = {January 01, 1990},
781  owner = {gm},
782  timestamp = {2007.08.03}
783}
784
785@ARTICLE{Gerdes1993a,
786  author = {R. Gerdes},
787  title = {A primitive equation ocean circulation model using a general vertical
788   coordinate transformation 1. Description and testing of the model},
789  journal = JGR,
790  year = {1993},
791  volume = {98},
792  owner = {gm},
793  timestamp = {2007.08.03}
794}
795
796@ARTICLE{Gerdes1993b,
797  author = {R. Gerdes},
798  title = {A primitive equation ocean circulation model using a general vertical
799   coordinate transformation 2. Application to an overflow problem},
800  journal = JGR,
801  year = {1993},
802  volume = {98},
803  pages = {14703-14726},
804  owner = {gm},
805  timestamp = {2007.08.03}
806}
807
808@TECHREPORT{Gibson_TR86,
809  author = {J. K. Gibson},
810  title = {Standard software development and maintenance},
811  institution = {Operational Dep., ECMWF, Reading, UK.},
812  year = {1986},
813  owner = {gm},
814  timestamp = {2008.02.03}
815}
816
817@BOOK{Gill1982,
818  title = {Atmosphere-Ocean Dynamics},
819  publisher = {International Geophysics Series, Academic Press, New-York},
820  year = {1982},
821  author = {A. E. Gill}
822}
823
824@ARTICLE{Goosse_al_JGR99,
825  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
826  title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization
827   of vertical mixing},
828  journal = JGR,
829  year = {1999},
830  volume = {104},
831  pages = {13,681-13,695},
832  owner = {gm},
833  timestamp = {2008.05.27}
834}
835
836@ARTICLE{Griffes2005,
837  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
838   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
839   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
840  title = {Formulation of an ocean model for global climate simulations},
841  journal = OS,
842  year = {2005},
843  pages = {165–246},
844  abstract = {This paper summarizes the formulation of the ocean component to the
845   Geophysical
846   
847   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
848   the 4th IPCC As- Assessment
849   
850   (AR4) of global climate change. In particular, it reviews elements
851   of ocean
852   
853   sessment climate models and how they are pieced together for use in
854   a state-of-the-art coupled 5
855   
856   model. Novel issues are also highlighted, with particular attention
857   given to sensitivity of
858   
859   the coupled simulation to physical parameterizations and numerical
860   methods. Features
861   
862   of the model described here include the following: (1) tripolar grid
863   to resolve the Arctic
864   
865   Ocean without polar filtering, (2) partial bottom step representation
866   of topography to
867   
868   better represent topographically influenced advective and wave processes,
869   (3) more 10
870   
871   accurate equation of state, (4) three-dimensional flux limited tracer
872   advection to reduce
873   
874   overshoots and undershoots, (5) incorporation of regional climatological
875   variability in
876   
877   shortwave penetration, (6) neutral physics parameterization for representation
878   of the
879   
880   pathways of tracer transport, (7) staggered time stepping for tracer
881   conservation and
882   
883   numerical eciency, (8) anisotropic horizontal viscosities for representation
884   of equato- 15
885   
886   rial currents, (9) parameterization of exchange with marginal seas,
887   (10) incorporation
888   
889   of a free surface that accomodates a dynamic ice model and wave propagation,
890   (11)
891   
892   transport of water across the ocean free surface to eliminate unphysical
893   “virtual tracer
894   
895   flux” methods, (12) parameterization of tidal mixing on continental
896   shelves.},
897  owner = {sandra},
898  pdf = {Griffies_al_OSD05.pdf},
899  timestamp = {2007.01.25}
900}
901
902@BOOK{Griffies2004,
903  title = {Fundamentals of ocean climate models},
904  publisher = {Princeton University Press, 434pp},
905  year = {2004},
906  author = {S. M. Griffies},
907  owner = {gm},
908  timestamp = {2007.08.05}
909}
910
911@ARTICLE{Griffies_JPO98,
912  author = {S. M. Griffies},
913  title = {The Gent-McWilliams skew-flux},
914  journal = JPO,
915  year = {1998},
916  volume = {28},
917  pages = {831–841},
918  owner = {gm},
919  timestamp = {2008.06.28}
920}
921
922@ARTICLE{Griffies1998,
923  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
924   Larichev and J. K. Dukowicz and R. D. Smith},
925  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
926  journal = JPO,
927  year = {1998},
928  volume = {28},
929  pages = {805-830},
930  number = {5},
931  abstract = {This paper considers the requirements that must be satisfied in order
932   to provide a stable and physically based isoneutral tracer diffusion
933   scheme in a z-coordinate ocean model. Two properties are emphasized:
934   1) downgradient orientation of the diffusive fluxes along the neutral
935   directions and 2) zero isoneutral diffusive flux of locally referenced
936   potential density. It is shown that the Cox diffusion scheme does
937   not respect either of these properties, which provides an explanation
938   for the necessity to add a nontrivial background horizontal diffusion
939   to that scheme. A new isoneutral diffusion scheme is proposed that
940   aims to satisfy the stated properties and is found to require no
941   horizontal background diffusion.},
942  date = {May 01, 1998},
943  owner = {gm},
944  timestamp = {2007.08.05}
945}
946
947@ARTICLE{Griffies2001,
948  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
949  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
950   Ocean Models},
951  journal = MWR,
952  year = {2001},
953  volume = {129},
954  pages = {1081-1098},
955  number = {5},
956  abstract = {This paper details a free surface method using an explicit time stepping
957   scheme for use in z-coordinate ocean models. One key property that
958   makes the method especially suitable for climate simulations is its
959   very stable numerical time stepping scheme, which allows for the
960   use of a long density time step, as commonly employed with coarse-resolution
961   rigid-lid models. Additionally, the effects of the undulating free
962   surface height are directly incorporated into the baroclinic momentum
963   and tracer equations. The novel issues related to local and global
964   tracer conservation when allowing for the top cell to undulate are
965   the focus of this work. The method presented here is quasi-conservative
966   locally and globally of tracer when the baroclinic and tracer time
967   steps are equal. Important issues relevant for using this method
968   in regional as well as large-scale climate models are discussed and
969   illustrated, and examples of scaling achieved on parallel computers
970   provided.},
971  date = {May 01, 2001},
972  owner = {gm},
973  timestamp = {2007.08.04}
974}
975
976@ARTICLE{Guily2001,
977  author = {E. Guilyardi and G. Madec and L. Terray},
978  title = {The role of lateral ocean physics in the upper ocean thermal balance
979   of a coupled ocean-atmosphere GCM},
980  journal = CD,
981  year = {2001},
982  volume = {17},
983  pages = {589-599},
984  number = {8},
985  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
986}
987
988@ARTICLE{Guyon_al_EP99,
989  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
990  title = {A Parallel ocean model for high resolution studies},
991  journal = {Lecture Notes in Computer Science},
992  year = {1999},
993  volume = {Euro-Par'99},
994  pages = {603-607},
995  owner = {gm},
996  timestamp = {2008.05.27}
997}
998
999@ARTICLE{Guyon_al_CalPar99,
1000  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut
1001   and P. Fronier},
1002  title = {Parallelization of the OPA ocean model},
1003  journal = {Calculateurs Paralleles},
1004  year = {1999},
1005  volume = {11, 4},
1006  pages = {499-517},
1007  owner = {gm},
1008  timestamp = {2008.05.27}
1009}
1010
1011@BOOK{Haltiner1980,
1012  title = {Numerical prediction and dynamic meteorology},
1013  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
1014  year = {1980},
1015  author = {G. J. Haltiner and R. T. Williams},
1016  owner = {gm},
1017  timestamp = {2007.08.03}
1018}
1019
1020@ARTICLE{Haney1991,
1021  author = {R. L. Haney},
1022  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
1023   Ocean Models},
1024  journal = JPO,
1025  year = {1991},
1026  volume = {21},
1027  pages = {610--619
1028   
1029   },
1030  number = {4},
1031  abstract = {The error in computing the pressure gradient force near steep topography
1032   using terms following (σ) coordinates is investigated in an
1033   ocean model using the family of vertical differencing schemes proposed
1034   by Arakawa and Suarez. The truncation error is estimated by substituting
1035   known buoyancy profiles into the finite difference hydrostatic and
1036   pressure gradient terms. The error due to “hydrostatic inconsistency,”
1037   which is not simply a space truncation error, is also documented.
1038   The results show that the pressure gradient error is spread throughout
1039   the water column, and it is sensitive to the vertical resolution
1040   and to the placement of the grid points relative to the vertical
1041   structure of the buoyancy field being modeled. Removing a reference
1042   state, as suggested for the atmosphere by Gary, reduces the truncation
1043   error associated with the two lowest vertical modes by a factor of
1044   2 to 3. As an example, the error in computing the pressure gradient
1045   using a standard 10-level primitive equation model applied to buoyancy
1046   profiles and topographic slopes typical of the California Current
1047   region corresponds to a false geostrophic current of the order of
1048   10–12 cm s−1. The analogous error in a hydrostatically
1049   consistent 30-level model with the reference state removed is about
1050   an order of magnitude smaller.},
1051  date = {April 01, 1991},
1052  owner = {gm},
1053  timestamp = {2007.08.03}
1054}
1055
1056@ARTICLE{Hsu1990,
1057  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
1058  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
1059   Coordinate},
1060  journal = MWR,
1061  year = {1990},
1062  volume = {118},
1063  pages = {1933--1959
1064   
1065   },
1066  number = {10},
1067  abstract = {In constructing a numerical model of the atmosphere, we must choose
1068   an appropriate vertical coordinate. Among the various possibilities,
1069   isentropic vertical coordinates such as the θ-coordinate seem
1070   to have the greatest potential, in spite of the technical difficulties
1071   in treating the intersections of coordinate surfaces with the lower
1072   boundary. The purpose of this paper is to describe the θ-coordinate
1073   model we have developed and to demonstrate its potential through
1074   simulating the nonlinear evolution of a baroclinic wave.In the model
1075   we have developed, vertical discretization maintains important integral
1076   constraints, such as conservation of the angular momentum and total
1077   energy. In treating the intersections of coordinate surfaces with
1078   the lower boundary, we have followed the massless-layer approach
1079   in which the intersecting coordinate surfaces are extended along
1080   the boundary by introducing massless layers. Although this approach
1081   formally eliminates the intersection problem, it raises other computational
1082   problems. Horizontal discretization of the continuity and momentum
1083   equations in the model has been carefully designed to overcome these
1084   problems.Selected results from a 10-day integration with the 25-layer,
1085   β-plane version of the model are presented. It seems that the
1086   model can simulate the nonlinear evolution of a baroclinic wave and
1087   associated dynamical processes without major computational difficulties.},
1088  date = {October 01, 1990},
1089  owner = {gm},
1090  timestamp = {2007.08.05}
1091}
1092
1093@ARTICLE{JackMcD1995,
1094  author = {D. R. Jackett and T. J. McDougall},
1095  title = {Minimal adjustment of hydrographic data to achieve static stability},
1096  journal = JAOT,
1097  year = {1995},
1098  volume = {12},
1099  pages = {381-389},
1100  owner = {gm},
1101  timestamp = {2007.08.04}
1102}
1103
1104@BOOK{Jerlov1968,
1105  title = {Optical Oceanography},
1106  publisher = {194pp},
1107  year = {1968},
1108  author = {N. G. Jerlov},
1109  owner = {gm},
1110  timestamp = {2007.08.04}
1111}
1112
1113@BOOK{Jerlov_Bk1968,
1114  publisher = {Elsevier},
1115  year = {1968},
1116  author = {N. G. Jerlov},
1117  pages = {194pp},
1118  owner = {gm},
1119  timestamp = {2008.08.31}
1120}
1121
1122@ARTICLE{Kantha_Clayson_1994,
1123  author = {L. H. Kantha and C. A. Clayson},
1124  title = {An improved mixed layer model for geophysical applications},
1125  journal = JGR,
1126  year = {1994},
1127  volume = {99},
1128  pages = {25235-25266},
1129  owner = {gr},
1130  timestamp = {2010.09.09}
1131}
1132
1133@INPROCEEDINGS{Killworth1989,
1134  author = {P. D. Killworth},
1135  title = {On the parameterization of deep convection in ocean models},
1136  booktitle = {Parameterization of small-scale processes},
1137  year = {1989},
1138  editor = {Hawaiian winter workshop},
1139  month = {January 17-20},
1140  organization = {University of Hawaii at Manoa},
1141  owner = {gm},
1142  timestamp = {2007.08.06}
1143}
1144
1145@ARTICLE{Killworth1992,
1146  author = {P. D. Killworth},
1147  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1148  journal = JPO,
1149  year = {1992},
1150  volume = {22},
1151  pages = {1379-1387}
1152}
1153
1154@ARTICLE{Killworth1991,
1155  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
1156   S. M.},
1157  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1158  journal = JPO,
1159  year = {1991},
1160  volume = {21},
1161  pages = {1333--1348},
1162  number = {9},
1163  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1164   circulation model, adapted to include a free surface, is described.
1165   The model is designed for the following uses: tidal studies
1166   (a tidal option is explicitly included); assimilation of altimetric
1167   data (since the surface elevation is now a prognostic variable);
1168   and in situations where accurate relaxation to obtain the streamfunction
1169   in the original model is too time consuming. Comparison is made between
1170   a 300-year run of the original model and the free-surface version,
1171   using a very coarse North Atlantic calculation as the basis. The
1172   results are very similar, differing only in the streamfunction over
1173   topography; this is to be expected, since the treatment of topographic
1174   torques on the barotropic flow differs because of the nature of the
1175   modifications.},
1176  date = {September 01, 1991},
1177  owner = {gm},
1178  timestamp = {2007.08.03}
1179}
1180
1181@ARTICLE{Kolmogorov1942,
1182  author = {A. N. Kolmogorov},
1183  title = {The equation of turbulent motion in an incompressible fluid},
1184  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1185  year = {1942},
1186  volume = {6},
1187  pages = {56-58},
1188  owner = {gm},
1189  timestamp = {2007.08.06}
1190}
1191
1192@PHDTHESIS{Levy1996,
1193  author = {M. L\'{e}vy},
1194  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1195   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1196  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1197  year = {1996},
1198  owner = {gm},
1199  timestamp = {2007.08.04}
1200}
1201
1202@ARTICLE{Levy2001,
1203  author = {M. L\'{e}vy and A. Estubier and G Madec},
1204  title = {Choice of an advection scheme for biogeochemical models},
1205  journal = GRL,
1206  year = {2001},
1207  volume = {28},
1208  owner = {gm},
1209  timestamp = {2007.08.04}
1210}
1211
1212@ARTICLE{Levy1998,
1213  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1214  title = {The onset of a bloom after deep winter convection in the Northwestern
1215   Mediterranean Sea: mesoscale
1216   
1217   process study with a primitive equation model},
1218  journal = JMS,
1219  year = {1998},
1220  volume = {16/1-2},
1221  owner = {gm},
1222  timestamp = {2007.08.10}
1223}
1224
1225@BOOK{LargeYeager2004,
1226  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1227   data sets and flux climatologies},
1228  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1229   Center for Atmospheric Research},
1230  year = {2004},
1231  author = {W. Large and S. Yeager},
1232  owner = {gm},
1233  timestamp = {2007.08.06}
1234}
1235
1236@ARTICLE{Large_al_RG94,
1237  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1238  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1239   layer parameterization},
1240  journal = {Reviews of Geophysics},
1241  year = {1994},
1242  volume = {32},
1243  pages = {363-404},
1244  doi = {10.1029/94RG01872},
1245  owner = {gm},
1246  timestamp = {2007.08.03}
1247}
1248
1249@PHDTHESIS{Lazar1997,
1250  author = {A. Lazar},
1251  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1252   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1253   id\'{e}alis\'{e}e},
1254  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1255  year = {1997},
1256  owner = {gm},
1257  timestamp = {2007.08.06}
1258}
1259
1260@ARTICLE{Lazar1999,
1261  author = {A. Lazar and G. Madec and P. Delecluse},
1262  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1263   Tracer Transport Parameterizations in an OGCM},
1264  journal = JPO,
1265  year = {1999},
1266  volume = {29},
1267  pages = {2945-2961},
1268  number = {11},
1269  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1270   a vast interior downwelling and a companion intense western boundary
1271   layer upwelling at midlatitude below the thermocline. These features,
1272   related to the so-called Veronis effect, are poorly rationalized
1273   and depart strongly from the classical vision of the deep circulation
1274   where upwelling is considered to occur in the interior. Furthermore,
1275   they significantly alter results of ocean general circulation models
1276   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1277   showed that the parameterization for mesoscale eddy effects formulated
1278   by Gent and McWilliams allows integral quantities like the streamfunction
1279   and meridional heat transport to be free of these undesired effects.
1280   In this paper, an idealized OGCM is used to validate an analytical
1281   rationalization of the processes at work and help understand the
1282   physics. The results show that the features associated with the Veronis
1283   effect can be related quantitatively to three different width scales
1284   that characterize the baroclinic structure of the deep western boundary
1285   current. In addition, since one of these scales may be smaller than
1286   the Munk barotropic layer, usually considered to determine the minimum
1287   resolution and horizontal viscosity for numerical models, the authors
1288   recommend that it be taken into account. Regarding the introduction
1289   of the new parameterization, diagnostics in terms of heat balances
1290   underline some interesting similarities between local heat fluxes
1291   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1292   when a common large diffusivity (here 2000 m2 s−1) is used.
1293   The near-quasigeostrophic character of the flow explains these results.
1294   As a consequence, the response of the Eulerian-mean circulation is
1295   locally similar for runs using either of the two parameterizations.
1296   However, it is shown that the advective nature of the eddy-induced
1297   heat fluxes results in a very different effective circulation, which
1298   is the one felt by tracers.},
1299  date = {November 01, 1999},
1300  owner = {gm},
1301  timestamp = {2007.08.06}
1302}
1303
1304@ARTICLE{Lengaigne_al_JGR03,
1305  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1306  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
1307   on tracer and dynamics},
1308  journal = JGR,
1309  year = {2003},
1310  volume = {108 (C11)},
1311  pages = {3345, doi:10.1029/2002JC001704},
1312  owner = {gm},
1313  timestamp = {2008.01.26}
1314}
1315
1316@ARTICLE{Leonard1991,
1317  author = {B. P. Leonard},
1318  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1319   advection},
1320  journal = {Computer Methods in Applied Mechanics and Engineering},
1321  year = {1991},
1322  pages = {17-74},
1323  owner = {gm},
1324  timestamp = {2007.08.04}
1325}
1326
1327@TECHREPORT{Leonard1988,
1328  author = {B. P. Leonard},
1329  title = {Universal limiter for transient interpolation modelling of the advective
1330   transport equations},
1331  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1332  year = {1988},
1333  owner = {gm},
1334  timestamp = {2007.08.04}
1335}
1336
1337@ARTICLE{Leonard1979,
1338  author = {B. P. Leonard},
1339  title = {A stable and accurate convective modelling procedure based on quadratic
1340   upstream interpolation},
1341  journal = {Computer Methods in Applied Mechanics and Engineering},
1342  year = {1979},
1343  volume = {19},
1344  pages = {59-98},
1345  month = jun,
1346  owner = {gm},
1347  timestamp = {2007.08.04}
1348}
1349
1350@TECHREPORT{Levier2007,
1351  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1352  title = {Free surface and variable volume in the NEMO code},
1353  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1354   NEMO web site},
1355  year = {2007},
1356  owner = {gm},
1357  timestamp = {2007.08.03}
1358}
1359
1360@BOOK{levitus82,
1361  title = {Climatological Atlas of the world ocean},
1362  publisher = {NOAA professional paper No. 13, 174pp},
1363  year = {1982},
1364  author = {S Levitus },
1365  note = {173 p.}
1366}
1367
1368@TECHREPORT{Lott1989,
1369  author = {F. Lott and G. Madec},
1370  title = {Implementation of bottom topography in the Ocean General Circulation
1371   Model OPA of the LODYC: formalism and experiments.},
1372  institution = {LODYC, France, 36pp.},
1373  year = {1989},
1374  number = {3},
1375  owner = {gm},
1376  timestamp = {2007.08.03}
1377}
1378
1379@ARTICLE{Lott1990,
1380  author = {F. Lott and G. Madec and J. Verron},
1381  title = {Topographic experiments in an Ocean General Circulation Model},
1382  journal = {Ocean Modelling},
1383  year = {1990},
1384  volume = {88},
1385  pages = {1-4},
1386  owner = {gm},
1387  timestamp = {2007.08.03}
1388}
1389
1390@BOOK{Madec_Bk08,
1391  title = {NEMO ocean engine},
1392  publisher = {Note du P\^ole de mod\'{e}lisation, Institut Pierre-
1393   
1394   Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619},
1395  year = {2008},
1396  author = {G. Madec},
1397  owner = {gm},
1398  timestamp = {2008.07.05}
1399}
1400
1401@PHDTHESIS{Madec1990,
1402  author = {G. Madec},
1403  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1404   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1405  school = {Universit\'{e}Pierre et Marie Curie, Paris, France, 194pp.},
1406  year = {1990},
1407  owner = {gm},
1408  timestamp = {2007.08.10}
1409}
1410
1411@ARTICLE{Madec1991a,
1412  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1413  title = {Effect of thermohaline forcing variability on deep water formation
1414   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1415   study},
1416  journal = DAO,
1417  year = {1991},
1418  owner = {gm},
1419  timestamp = {2007.08.06}
1420}
1421
1422@ARTICLE{Madec1991b,
1423  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1424  title = {A three-dimensional numerical study of deep water formation in the
1425   
1426   
1427   Northwestern Mediterranean Sea .},
1428  journal = JPO,
1429  year = {1991},
1430  volume = {21},
1431  owner = {gm},
1432  timestamp = {2007.08.06}
1433}
1434
1435@INBOOK{Madec1991c,
1436  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1437   Sea},
1438  title = {Deep convection and deep water formation in the oceans},
1439  publisher = {Elsevier Oceanographic Series},
1440  year = {1991},
1441  author = {G. Madec and M. Cr\'{e}pon},
1442  owner = {gm},
1443  timestamp = {2007.08.06}
1444}
1445
1446@ARTICLE{Madec1997,
1447  author = {G. Madec and P. Delecluse},
1448  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1449  journal = {Int. WOCE Newsletter},
1450  year = {1997},
1451  volume = {26},
1452  pages = {12-15},
1453  owner = {gm},
1454  timestamp = {2007.08.06}
1455}
1456
1457@TECHREPORT{Madec1998,
1458  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1459  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1460  institution = {LODYC/IPSL Note 11},
1461  year = {1998}
1462}
1463
1464@ARTICLE{MadecImb1996,
1465  author = {G Madec and M Imbard},
1466  title = {A global ocean mesh to overcome the north pole singularity},
1467  journal = CD,
1468  year = {1996},
1469  volume = {12},
1470  pages = {381-388}
1471}
1472
1473@ARTICLE{Madec1996,
1474  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1475  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1476   Mediterranean Sea},
1477  journal = JPO,
1478  year = {1996},
1479  volume = {26},
1480  pages = {1393-1408},
1481  number = {8},
1482  month = aug,
1483  abstract = {The large-scale processes preconditioning the winter deep-water formation
1484   in the northwestern Mediterranean Sea are investigated with a primitive
1485   equation numerical model where convection is parameterized by a non-penetrative
1486   convective adjustment algorithm. The ocean is forced by momentum
1487   and buoyancy fluxes that have the gross features of mean winter forcing
1488   found in the MEDOC area. The wind-driven barotropic circulation appears
1489   to be a major ingredient of the preconditioning phase of deep-water
1490   formation. After three months, the ocean response is dominated by
1491   a strong barotropic cyclonic vortex located under the forcing area,
1492   which fits the Sverdrup balance away from the northern coast. In
1493   the vortex center, the whole water column remains trapped under the
1494   forcing area all winter. This trapping enables the thermohaline forcing
1495   to drive deep-water formation efficiently. Sensitivity studies show
1496   that, β effect and bottom topography play a paramount role and
1497   confirm that deep convection occurs only in areas that combine a
1498   strong surface thermohaline forcing and a weak barotropic advection
1499   so that water masses are submitted to the negative buoyancy fluxes
1500   for a much longer time. In particular, the impact of the Rhône
1501   Deep Sea Fan on the barotropic circulation dominates the β effect:
1502   the barotropic flow is constrained to follow the bathymetric contours
1503   and the cyclonic vortex is shifted southward so that the fluid above
1504   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1505   above the fan in agreement with observations. The selection of the
1506   area of deep-water formation through the defection of the barotropic
1507   circulation by the topography seems a more efficient mechanism than
1508   those associated with the wind- driven barotropic vortex. This is
1509   due to its permanency, while the latter may be too sensitive to time
1510   and space variations of the forcing.},
1511  owner = {gm},
1512  timestamp = {2007.08.03}
1513}
1514
1515@ARTICLE{Madec1988,
1516  author = {G. Madec and C. Rahier and M. Chartier},
1517  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1518   streamfunction in a multilevel OGCM},
1519  journal = {Ocean Modelling},
1520  year = {1988},
1521  volume = {78},
1522  owner = {gm},
1523  timestamp = {2007.08.10}
1524}
1525
1526@ARTICLE{Maltrud1998,
1527  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1528  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1529   winds},
1530  journal = JGR,
1531  year = {1998},
1532  volume = {103(C13)},
1533  pages = {30,825-30,854},
1534  owner = {gm},
1535  timestamp = {2007.08.05}
1536}
1537
1538@ARTICLE{Marchesiello2001,
1539  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
1540  title = {Open boundary conditions for long-term integrations of Regional Oceanic
1541   Models},
1542  journal = {Ocean Modelling},
1543  year = {2001},
1544  volume = {3},
1545  pages = {1-20}
1546}
1547
1548@BOOK{MIT-GCM_2004,
1549  title = {MIT-gcm User Manual},
1550  year = {2004},
1551  editor = {MIT Department of EAPS},
1552  author = {J. Marshall and A. Adcroft and J.-M. Campin and P. Heimbach and A.
1553   Molod and S. Dutkiewicz and H. Hill and M. Losch and B. Fox-Kemper
1554   and D. Menemenlis and D. Ferreira and E. Hill and M. Follows and
1555   C. Hill and C. Evangelinos and G. Forget},
1556  owner = {gm},
1557  timestamp = {2008.07.04}
1558}
1559
1560@PHDTHESIS{MartiTh1992,
1561  author = {O. Marti},
1562  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1563   et du transport de traceurs anthropog\'{e}niques},
1564  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1565  year = {1992},
1566  owner = {gm},
1567  timestamp = {2007.08.04}
1568}
1569
1570@ARTICLE{Marti1992,
1571  author = {O. Marti and G. Madec and P. Delecluse},
1572  title = {Comment on "Net diffusivity in ocean general circulation models with
1573   nonuniform grids" by F. L. Yin and I. Y. Fung},
1574  journal = JGR,
1575  year = {1992},
1576  volume = {97},
1577  pages = {12763-12766},
1578  month = aug,
1579  owner = {gm},
1580  timestamp = {2007.08.03}
1581}
1582
1583@ARTICLE{McDougall1987,
1584  author = {T. J. McDougall},
1585  title = {Neutral Surfaces},
1586  journal = {Journal of Physical Oceanography},
1587  year = {1987},
1588  volume = {17},
1589  pages = {1950-1964},
1590  number = {11},
1591  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1592   rather efficiently by mesoscale eddies and two-dimensional turbulence
1593   along “neutral surfaces”, defined such that when water
1594   parcels are moved small distances in the neutral surface, they experience
1595   no buoyant restoring forces. By contrast, work would have to be done
1596   on a moving fluid parcel in order to keep it on a potential density
1597   surface. The differences between neutral surfaces and potential density
1598   surfaces are due to the variation of α/β with pressure
1599   (where α is the thermal expansion coefficient and β is
1600   the saline contraction coefficient). By regarding the equation of
1601   state of seawater as a function of salinity, potential temperature,
1602   and pressure, rather than in terms of salinity, temperature, and
1603   pressure, it is possible to quantify the differences between neutral
1604   surfaces and potential density surfaces. In particular, the spatial
1605   gradients of scalar properties (e.g., S, θ, tritium or potential
1606   vorticity) on a neutral surface can be quite different to the corresponding
1607   gradients in a potential density surface. For example, at a potential
1608   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1609   of potential temperature in a potential density surface (referenced
1610   to sea level) is too large by between 50% and 350% (depending
1611   on the stability ratio Rp of the water column) compared with the
1612   physically relevant gradient of potential temperature on the neutral
1613   surface. Three-examples of neutral surfaces are presented, based
1614   on the Levitus atlas of the North Atlantic.},
1615  date = {November 01, 1987},
1616  owner = {gm},
1617  timestamp = {2007.08.04}
1618}
1619
1620@ARTICLE{McDougall_Taylor_JMR84,
1621  author = {T. J. McDougall and J. R. Taylor},
1622  title = {Flux measurements across a finger interface at low values of the
1623   stability ratio},
1624  journal = {Journal of Marine Research},
1625  year = {1984},
1626  volume = {42},
1627  pages = {1-14},
1628  owner = {gm},
1629  timestamp = {2008.05.20}
1630}
1631
1632@ARTICLE{Mellor_Yamada_1982,
1633  author = {G. L. Mellor and T. Yamada},
1634  title = {Development of a turbulence closure model for geophysical fluid problems},
1635  journal = RGSP,
1636  year = {1982},
1637  volume = {20},
1638  pages = {851-875},
1639  owner = {gr},
1640  timestamp = {2010.09.09}
1641}
1642
1643@ARTICLE{Merryfield1999,
1644  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1645  title = {A Global Ocean Model with Double-Diffusive Mixing},
1646  journal = JPO,
1647  year = {1999},
1648  volume = {29},
1649  pages = {1124-1142},
1650  number = {6},
1651  abstract = {A global ocean model is described in which parameterizations of diapycnal
1652   mixing by double-diffusive fingering and layering are added to a
1653   stability-dependent background turbulent diffusivity. Model runs
1654   with and without double-diffusive mixing are compared for annual-mean
1655   and seasonally varying surface forcing. Sensitivity to different
1656   double-diffusive mixing parameterizations is considered. In all cases,
1657   the locales and extent of salt fingering (as diagnosed from buoyancy
1658   ratio Rρ) are grossly comparable to climatology, although fingering
1659   in the models tends to be less intense than observed. Double-diffusive
1660   mixing leads to relatively minor changes in circulation but exerts
1661   significant regional influences on temperature and salinity.},
1662  date = {June 01, 1999},
1663  owner = {gm},
1664  timestamp = {2007.08.06}
1665}
1666
1667@BOOK{Mesinger_Arakawa_Bk76,
1668  title = {Numerical methods used in Atmospheric models},
1669  publisher = {GARP Publication Series No 17},
1670  year = {1976},
1671  author = {F. Mesinger and A. Arakawa},
1672  owner = {gm},
1673  timestamp = {2008.02.09}
1674}
1675
1676@ARTICLE{Murray1996,
1677  author = {R. J. Murray},
1678  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1679  journal = JCP,
1680  year = {1996},
1681  volume = {126},
1682  pages = {251-273},
1683  number = {2},
1684  month = {July},
1685  owner = {gm},
1686  timestamp = {2007.08.03}
1687}
1688
1689@PHDTHESIS{OlivierPh2001,
1690  author = {F. Olivier},
1691  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1692   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1693  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1694  year = {2001},
1695  owner = {gm},
1696  timestamp = {2007.08.14}
1697}
1698
1699@ARTICLE{PacPhil1981,
1700  author = {R.C. Pacanowski and S.G.H. Philander},
1701  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1702   Oceans},
1703  journal = JPO,
1704  year = {1981},
1705  volume = {11},
1706  pages = {1443-1451},
1707  number = {11},
1708  abstract = {Measurements indicate that mixing processes are intense in the surface
1709   layers of the ocean but weak below the thermocline, except for the
1710   region below the core of the Equatorial Undercurrent where vertical
1711   temperature gradients are small and the shear is large. Parameterization
1712   of these mixing processes by means of coefficients of eddy mixing
1713   that are Richardson-number dependent, leads to realistic simulations
1714   of the response of the equatorial oceans to different windstress
1715   patterns. In the case of eastward winds results agree well with measurements
1716   in the Indian Ocean. In the case of westward winds it is of paramount
1717   importance that the nonzero heat flux into the ocean be taken into
1718   account. This beat flux stabilizes the upper layers and reduces the
1719   intensity of the mixing, especially in the cast. With an appropriate
1720   surface boundary condition, the results are relatively insensitive
1721   to values assigned to constants in the parameterization formula.},
1722  date = {November 01, 1981},
1723  owner = {gm},
1724  timestamp = {2007.08.03}
1725}
1726
1727@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
1728  author = {R. C. Pacanowski and A. Gnanadesikan},
1729  title = {Transient response in a z-level ocean model that resolves topography
1730   
1731   
1732   with partial-cells},
1733  journal = MWR,
1734  year = {1998},
1735  volume = {126},
1736  pages = {3248-3270},
1737  owner = {gm},
1738  timestamp = {2008.01.26}
1739}
1740
1741@ARTICLE{Paulson1977,
1742  author = {C. A. Paulson and J. J. Simpson},
1743  title = {Irradiance Measurements in the Upper Ocean},
1744  journal = JPO,
1745  year = {1977},
1746  volume = {7},
1747  pages = {952-956},
1748  number = {6},
1749  abstract = {Observations were made of downward solar radiation as a function of
1750   depth during an experiment in the North Pacific (35°N, 155°W).
1751   The irradiance meter employed was sensitive to solar radiation of
1752   wavelength 400–1000 nm arriving from above at a horizontal
1753   surface. Because of selective absorption of the short and long wavelengths,
1754   the irradiance decreases much faster than exponential in the upper
1755   few meters, falling to one-third of the incident value between 2
1756   and 3 m depth. Below 10 m the decrease was exponential at a rate
1757   characteristic of moderately clear water of Type IA. Neglecting one
1758   case having low sun altitude, the observations are well represented
1759   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1760   where I is the irradiance at depth −z, I0 is the irradiance
1761   at the surface less reflected solar radiation, R=0.62, ζ1
1762   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1763   and z is the vertical space coordinate, positive upward with the
1764   origin at mean sea level. The depth at which the irradiance falls
1765   to 10% of its surface value is nearly the same as observations
1766   of Secchi depth when cases with high wind speed or low solar altitude
1767   are neglected. Parameters R, ζ1, and ζ2 are computed for
1768   the entire range of oceanic water types.},
1769  date = {November 01, 1977},
1770  owner = {gm},
1771  timestamp = {2007.08.04}
1772}
1773
1774@ARTICLE{Penduff2000,
1775  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
1776  title = { Self-adapting open boundaries for a regional model of the eastern
1777   North Atlantic},
1778  journal = JGR,
1779  year = {2000},
1780  volume = {105},
1781  pages = {11,279-11,297}
1782}
1783
1784@ARTICLE{Penduff2007,
1785  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
1786   J. Molines and G. Madec},
1787  title = {Influence of numerical schemes on current-topography interactions
1788   in 1/4$^{\circ}$ global ocean simulations},
1789  journal = {Ocean Science},
1790  year = {2007},
1791  volume = {?},
1792  pages = {in revision}
1793}
1794
1795@ARTICLE{Phillips1959,
1796  author = {R. S. Phillips},
1797  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1798   Equations},
1799  journal = {Transactions of the American Mathematical Society},
1800  year = {1959},
1801  volume = {90(2)},
1802  pages = {193-254},
1803  doi = {doi:10.2307/1993202},
1804  owner = {gm},
1805  timestamp = {2007.08.10}
1806}
1807
1808@ARTICLE{Redi_JPO82,
1809  author = {M. H. Redi},
1810  title = {Oceanic isopycnal mixing by coordinate rotation},
1811  journal = JPO,
1812  year = {1982},
1813  volume = {13},
1814  pages = {1154-1158},
1815  owner = {gm},
1816  timestamp = {2008.02.02}
1817}
1818
1819@ARTICLE{Reverdin1991,
1820  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1821   Morli\`{e}re and J. M. Verstraete},
1822  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1823   numerical simulation and a data analysis},
1824  journal = PO,
1825  year = {1991},
1826  volume = {27},
1827  pages = {273-340},
1828  owner = {gm},
1829  timestamp = {2007.08.04}
1830}
1831
1832@BOOK{Richtmyer1967,
1833  title = {Difference methods for initial-value problems},
1834  publisher = {Interscience Publisher, Second Edition, 405pp},
1835  year = {1967},
1836  author = {R. D. Richtmyer and K. W. Morton},
1837  owner = {gm},
1838  timestamp = {2007.08.04}
1839}
1840
1841@ARTICLE{Robert1966,
1842  author = {A. J. Robert},
1843  title = {The integration of a Low order spectral form of the primitive meteorological
1844   equations},
1845  journal = {J. Meteo. Soc. Japan},
1846  year = {1966},
1847  volume = {44, 2},
1848  owner = {gm},
1849  timestamp = {2007.08.04}
1850}
1851
1852@ARTICLE{Rodi_1987,
1853  author = {W. Rodi},
1854  title = {Examples of calculation methods for flow and mixing in stratified fluids},
1855  journal = JGR,
1856  year = {1987},
1857  volume = {92, C5},
1858  pages = {5305-5328},
1859  owner = {gr},
1860  timestamp = {2010.09.09}
1861}
1862
1863@INCOLLECTION{Roed1986,
1864  author = {L.P. Roed and C.K. Cooper},
1865  title = {Open boundary conditions in numerical ocean models},
1866  booktitle = {Advanced Physical Oceanography Numerical Modelling},
1867  publisher = { NATO ASI Series, vol. 186.},
1868  year = {1986},
1869  editor = {J.J. O'Brien}
1870}
1871
1872@ARTICLE{Roullet2000,
1873  author = {G. Roullet and G. Madec},
1874  title = {salt conservation, free surface, and varying levels: a new formulation
1875   for ocean general circulation models},
1876  journal = JGR,
1877  year = {2000},
1878  volume = {105},
1879  pages = {23,927-23,942},
1880  owner = {sandra},
1881  pdf = {Roullet_Madec_JGR00.pdf},
1882  timestamp = {2007.03.22}
1883}
1884
1885@ARTICLE{Sadourny1975,
1886  author = {R. Sadourny},
1887  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1888  journal = JAS,
1889  year = {1975},
1890  volume = {32},
1891  pages = {680-689},
1892  number = {4},
1893  abstract = {Two simple numerical models of the shallow-water equations identical
1894   in all respects but for their con-servation properties have been
1895   tested regarding their internal mixing processes. The experiments
1896   show that violation of enstrophy conservation results in a spurious
1897   accumulation of rotational energy in the smaller scales, reflected
1898   by an unrealistic increase of enstrophy, which ultimately produces
1899   a finite rate of energy dissipation in the zero viscosity limit,
1900   thus violating the well-known dynamics of two-dimensional flow. Further,
1901   the experiments show a tendency to equipartition of the kinetic energy
1902   of the divergent part of the flow in the inviscid limit, suggesting
1903   the possibility of a divergent energy cascade in the physical system,
1904   as well as a possible influence of the energy mixing on the process
1905   of adjustment toward balanced flow.},
1906  date = {April 01, 1975},
1907  owner = {gm},
1908  timestamp = {2007.08.05}
1909}
1910
1911@ARTICLE{Sarmiento1982,
1912  author = {J. L. Sarmiento and K. Bryan},
1913  title = {Ocean transport model for the North Atlantic},
1914  journal = JGR,
1915  year = {1982},
1916  volume = {87},
1917  pages = {394-409},
1918  owner = {gm},
1919  timestamp = {2007.08.04}
1920}
1921
1922@ARTICLE{Sacha2005,
1923  author = {A. F. Shchepetkin and J. C. McWilliams},
1924  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1925   topography-following-coordinate oceanic modelr},
1926  journal = {Ocean Modelling},
1927  year = {2005},
1928  volume = {9, 4},
1929  pages = {347-404},
1930  owner = {gm},
1931  timestamp = {2007.08.04}
1932}
1933
1934@ARTICLE{Sacha2003,
1935  author = {A. F. Shchepetkin and J. C. McWilliams},
1936  title = {A method for computing horizontal pressure-gradient force in an oceanic
1937   model with a nonaligned
1938   
1939   vertical coordinate},
1940  journal = JGR,
1941  year = {2003},
1942  volume = {108(C3)},
1943  pages = {3090, doi:10.1029/2001JC001047},
1944  owner = {gm},
1945  timestamp = {2007.08.05}
1946}
1947
1948@ARTICLE{Shchepetkin1996,
1949  author = {A. F. Shchepetkin and J. J. O'Brien},
1950  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1951   Equation Ocean Models},
1952  journal = MWR,
1953  year = {1996},
1954  volume = {124},
1955  pages = {1285-1300},
1956  number = {6},
1957  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1958   processes in which the friction is physically relevant and to prevent
1959   numerical instability by suppressing accumulation of energy in the
1960   smallest resolved scales. This study shows that even for the latter
1961   case the form of the friction term should be chosen in a physically
1962   consistent way. Violation of fundamental physical principles reduces
1963   the fidelity of the numerical solution, even if the friction is small.
1964   Several forms of the lateral friction, commonly used in numerical
1965   ocean models, are discussed in the context of shallow-water equations
1966   with nonuniform layer thickness. It is shown that in a numerical
1967   model tuned for the minimal dissipation, the improper form of the
1968   friction term creates finite artificial vorticity sources that do
1969   not vanish with increased resolution, even if the viscous coefficient
1970   is reduced consistently with resolution. An alternative numerical
1971   implementation of the no-slip boundary conditions for an arbitrary
1972   coast line is considered. It was found that the quality of the numerical
1973   solution may be considerably improved by discretization of the viscous
1974   stress tensor in such a way that the numerical boundary scheme approximates
1975   not only the stress tensor to a certain order of accuracy but also
1976   simulates the truncation error of the numerical scheme used in the
1977   interior of the domain. This ensures error cancellation during subsequent
1978   use of the elements of the tensor in the discrete version of the
1979   momentum equations, allowing for approximation of them without decrease
1980   in the order of accuracy near the boundary.},
1981  date = {June 01, 1996},
1982  owner = {gm},
1983  timestamp = {2007.08.14}
1984}
1985
1986@ARTICLE{Simmons2003,
1987  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1988  title = {Tidally driven mixing in a numerical model of the
1989   
1990   ocean general circulation},
1991  journal = OM,
1992  year = {2003},
1993  pages = {1-19},
1994  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1995   tidal energy is dissipated in the
1996   
1997   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1998   energy is converted from the barotropic
1999   
2000   to internal tides in the deep ocean, predominantly around regions
2001   of rough topography such as midocean
2002   
2003   ridges. Aglobal tidal model is used to compute turbulent energy levels
2004   associated with the dissipation
2005   
2006   of internal tides, and the diapycnal mixing supported by this energy
2007   ?ux is computed using a simple parameterization.
2008   
2009   The mixing parameterization has been incorporated into a coarse resolution
2010   numerical model of the
2011   
2012   global ocean. This parameterization o?ers an energetically consistent
2013   and practical means of improving the
2014   
2015   representation of ocean mixing processes in climate models. Novel
2016   features of this implementation are that
2017   
2018   the model explicitly accounts for the tidal energy source for mixing,
2019   and that the mixing evolves both
2020   
2021   spatially and temporally with the model state. At equilibrium, the
2022   globally averaged di?usivity pro?le
2023   
2024   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
2025   abyss with a depth average of 0.9
2026   
2027   cm2 s1, in close agreement with inferences from global balances.
2028   Water properties are strongly in?uenced
2029   
2030   by the combination of weak mixing in the main thermocline and enhanced
2031   mixing in the deep ocean.
2032   
2033   Climatological comparisons show that the parameterized mixing scheme
2034   results in a substantial reduction},
2035  owner = {sandra},
2036  pdf = {Simmons_mixing_OM2003.pdf},
2037  timestamp = {2007.03.22}
2038}
2039
2040@ARTICLE{Song1994,
2041  author = {Y. Song and D. Haidvogel},
2042  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
2043   Coordinate System
2044   
2045   Authors:},
2046  journal = JCP,
2047  year = {1994},
2048  volume = {115, 1},
2049  owner = {gm},
2050  timestamp = {2007.08.04}
2051}
2052
2053@ARTICLE{Song1998,
2054  author = {Y. T. Song},
2055  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
2056   Scheme Design and Diagnostic Analysis},
2057  journal = MWR,
2058  year = {1998},
2059  volume = {126},
2060  pages = {3213-3230},
2061  number = {12},
2062  abstract = {A Jacobian formulation of the pressure gradient force for use in models
2063   with topography-following coordinates is proposed. It can be used
2064   in conjunction with any vertical coordinate system and is easily
2065   implemented. Vertical variations in the pressure gradient are expressed
2066   in terms of a vertical integral of the Jacobian of density and depth
2067   with respect to the vertical computational coordinate. Finite difference
2068   approximations are made on the density field, consistent with piecewise
2069   linear and continuous fields, and accurate pressure gradients are
2070   obtained by vertically integrating the discrete Jacobian from sea
2071   surface.Two discrete schemes are derived and examined in detail:
2072   the first using standard centered differencing in the generalized
2073   vertical coordinate and the second using a vertical weighting such
2074   that the finite differences are centered with respect to the Cartesian
2075   z coordinate. Both schemes achieve second-order accuracy for any
2076   vertical coordinate system and are significantly more accurate than
2077   conventional schemes based on estimating the pressure gradients by
2078   finite differencing a previously determined pressure field.The standard
2079   Jacobian formulation is constructed to give exact pressure gradient
2080   results, independent of the bottom topography, if the buoyancy field
2081   varies bilinearly with horizontal position, x, and the generalized
2082   vertical coordinate, s, over each grid cell. Similarly, the weighted
2083   Jacobian scheme is designed to achieve exact results, when the buoyancy
2084   field varies linearly with z and arbitrarily with x, that is, b(x,z)
2085   = b0(x) + b1(x)z.When horizontal resolution cannot be made
2086   fine enough to avoid hydrostatic inconsistency, errors can be substantially
2087   reduced by the choice of an appropriate vertical coordinate. Tests
2088   with horizontally uniform, vertically varying, and with horizontally
2089   and vertically varying buoyancy fields show that the standard Jacobian
2090   formulation achieves superior results when the condition for hydrostatic
2091   consistency is satisfied, but when coarse horizontal resolution causes
2092   this condition to be strongly violated, the weighted Jacobian may
2093   give superior results.},
2094  date = {December 01, 1998},
2095  owner = {gm},
2096  timestamp = {2007.08.05}
2097}
2098
2099@ARTICLE{SongWright1998,
2100  author = {Y. T. Song and D. G. Wright},
2101  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
2102   - Energy, Momentum, and Bottom Torque Consistency},
2103  journal = MWR,
2104  year = {1998},
2105  volume = {126},
2106  pages = {3231-3247},
2107  number = {12},
2108  abstract = {A new formulation of the pressure gradient force for use in models
2109   with topography-following coordinates is proposed and diagnostically
2110   analyzed in Part I. Here, it is shown that important properties of
2111   the continuous equations are retained by the resulting numerical
2112   schemes, and their performance in prognostic simulations is examined.
2113   Numerical consistency is investigated with respect to global energy
2114   conservation, depth-integrated momentum changes, and the representation
2115   of the bottom pressure torque. The performances of the numerical
2116   schemes are tested in prognostic integrations of an ocean model to
2117   demonstrate numerical accuracy and long-term integral stability.
2118   Two typical geometries, an isolated tall seamount and an unforced
2119   basin with sloping boundaries, are considered for the special case
2120   of no external forcing and horizontal isopycnals to test numerical
2121   accuracy. These test problems confirm that the proposed schemes yield
2122   accurate approximations to the pressure gradient force. Integral
2123   consistency conditions are verified and the energetics of the “advective
2124   elimination” of the pressure gradient error (Mellor et al)
2125   is considered.A large-scale wind-driven basin with and without topography
2126   is used to test the model’s long-term integral performance
2127   and the effects of bottom pressure torque on the transport in western
2128   boundary currents. Integrations are carried out for 10 years in each
2129   case and results show that the schemes are stable, and the steep
2130   topography causes no obvious numerical problems. A realistic meandering
2131   western boundary current is well developed with detached cold cyclonic
2132   and warm anticyclonic eddies as it extends across the basin. In addition,
2133   the results with topography show earlier separation and enhanced
2134   transport in the western boundary currents due to the bottom pressure
2135   torque.},
2136  date = {December 01, 1998},
2137  owner = {gm},
2138  timestamp = {2007.08.05}
2139}
2140
2141@PHDTHESIS{Speich1992,
2142  author = {S. Speich},
2143  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
2144   par les d\'{e}troits - cas de la mer d'Alboran},
2145  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
2146  year = {1992},
2147  owner = {gm},
2148  timestamp = {2007.08.06}
2149}
2150
2151@ARTICLE{Speich1996,
2152  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
2153  title = {The circulation in the Alboran Sea - a sensitivity study},
2154  journal = JPO,
2155  year = {1996},
2156  volume = {26},
2157  owner = {gm},
2158  timestamp = {2007.08.06}
2159}
2160
2161@ARTICLE{Steele2001,
2162  author = {M. Steele and R. Morley and W. Ermold},
2163  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
2164  journal = {Journal of Climate},
2165  year = {2001},
2166  volume = {14},
2167  pages = {2079--2087
2168   
2169   },
2170  number = {9},
2171  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
2172   Climatology (PHC), has been created that merges the 1998 version
2173   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
2174   The result is a global climatology for temperature and salinity that
2175   contains a good description of the Arctic Ocean and its environs.
2176   Monthly, seasonal, and annual average products have been generated.
2177   How the original datasets were prepared for merging, how the optimal
2178   interpolation procedure was performed, and characteristics of the
2179   resulting dataset are discussed, followed by a summary and discussion
2180   of future plans.},
2181  date = {May 01, 2001},
2182  owner = {gm},
2183  timestamp = {2007.08.06}
2184}
2185
2186@ARTICLE{Stein1992,
2187  author = {C. A. Stein and S. Stein},
2188  title = {A model for the global variation in oceanic depth and heat flow with
2189   lithospheric age},
2190  journal = {Nature},
2191  year = {1992},
2192  volume = {359},
2193  pages = {123-129},
2194  owner = {gm},
2195  timestamp = {2007.08.04}
2196}
2197
2198@ARTICLE{Thiem2006,
2199  author = {O. Thiem and J. Berntsen},
2200  title = {Internal pressure errors in sigma-coordinate ocean models due to
2201   anisotropy},
2202  journal = {Ocean Modelling},
2203  year = {2006},
2204  volume = {12, 1-2},
2205  owner = {gm},
2206  timestamp = {2007.08.05}
2207}
2208
2209@ARTICLE{Timmermann_al_OM05,
2210  author = {R. Timmermann and H. Goosse and G. Madec and T. Fichefet, and C.
2211   Ethe and V. Duli\`{e}re},
2212  title = {On the representation of high latitude processes in the ORCA-LIM
2213   global coupled
2214   
2215   sea ice-ocean model.},
2216  journal = {Ocean Modelling},
2217  year = {2005},
2218  volume = {8},
2219  pages = {175–201},
2220  owner = {gm},
2221  timestamp = {2008.07.05}
2222}
2223
2224@ARTICLE{Treguier1992,
2225  author = {A.M. Tr\'{e}guier},
2226  title = {Kinetic energy analysis of an eddy resolving, primitive equation
2227   North Atlantic model},
2228  journal = JGR,
2229  year = {1992},
2230  volume = {97},
2231  pages = {687-701}
2232}
2233
2234@ARTICLE{Treguier2001,
2235  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
2236   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
2237   and S. Michel},
2238  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
2239   open boundary conditions},
2240  journal = JGR,
2241  year = {2001},
2242  volume = {106},
2243  pages = {22115-22129}
2244}
2245
2246@ARTICLE{Treguier1996,
2247  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
2248  title = {Properties of nonuniform grids used in ocean general circulation
2249   models},
2250  journal = JGR,
2251  year = {1996},
2252  volume = {101},
2253  pages = {20877-20881},
2254  owner = {gm},
2255  timestamp = {2007.08.03}
2256}
2257
2258@ARTICLE{Treguier1997,
2259  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
2260  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
2261   Ocean Models},
2262  journal = JPO,
2263  year = {1997},
2264  volume = {27},
2265  pages = {567-580},
2266  number = {4},
2267  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
2268   consistent with the fact that the ocean interior is nearly adiabatic.
2269   Gent and McWilliams have described a framework in which this can
2270   be approximated in z-coordinate primitive equation models by incorporating
2271   the effects of eddies on the buoyancy field through an eddy-induced
2272   velocity. It is also natural to base a parameterization on the simple
2273   picture of the mixing of potential vorticity in the interior and
2274   the mixing of buoyancy at the surface. The authors discuss the various
2275   constraints imposed by these two requirements and attempt to clarify
2276   the appropriate boundary conditions on the eddy-induced velocities
2277   at the surface. Quasigeostrophic theory is used as a guide to the
2278   simplest way of satisfying these constraints.},
2279  date = {April 01, 1997},
2280  owner = {gm},
2281  timestamp = {2007.08.03}
2282}
2283
2284@ARTICLE{Umlauf_Burchard_2003,
2285  author = {L. Umlauf and H. Burchard},
2286  title = {A generic length-scale equation for geophysical turbulence models},
2287  journal = {Journal of Marine Systems},
2288  year = {2003},
2289  volume = {61},
2290  pages = {235-265},
2291  number = {2},
2292  owner = {gr},
2293  timestamp = {2010.09.09}
2294}
2295
2296@BOOK{UNESCO1983,
2297  title = {Algorithms for computation of fundamental property of sea water},
2298  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
2299  year = {1983},
2300  author = {UNESCO},
2301  owner = {gm},
2302  timestamp = {2007.08.04}
2303}
2304
2305@TECHREPORT{OASIS2006,
2306  author = {S. Valcke},
2307  title = {OASIS3 User Guide (prism\_2-5)},
2308  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
2309   64 pp},
2310  year = {2006},
2311  owner = {gm},
2312  timestamp = {2007.08.05}
2313}
2314
2315@TECHREPORT{valal00,
2316  author = {S. Valcke and L. Terray and A. Piacentini },
2317  title = {The OASIS Coupled User Guide Version 2.4},
2318  institution = {CERFACS},
2319  year = {2000},
2320  number = {TR/CMGC/00-10}
2321}
2322
2323@ARTICLE{Vancoppenolle_al_OM08,
2324  author = {M. Vancoppenolle and T. Fichefet and H. Goosse and S. Bouillon and
2325   G. Madec and M. A. Morales Maqueda},
2326  title = {Simulating the mass balance and salinity of Arctic and Antarctic
2327   sea ice. 1. Model description and validation},
2328  journal = {Ocean Modelling},
2329  year = {2008},
2330  volume = {in press},
2331  owner = {gm},
2332  timestamp = {2008.07.05}
2333}
2334
2335@ARTICLE{Weatherly1984,
2336  author = {G. L. Weatherly},
2337  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
2338  journal = JMR,
2339  year = {1984},
2340  volume = {42, 2},
2341  pages = {289-301},
2342  owner = {gm},
2343  timestamp = {2007.08.06}
2344}
2345
2346@ARTICLE{Weaver1997,
2347  author = {A. J. Weaver and M. Eby},
2348  title = {On the numerical implementation of advection schemes for use in conjuction
2349   with various mixing
2350   
2351   parameterizations in the GFDL ocean model},
2352  journal = JPO,
2353  year = {1997},
2354  volume = {27},
2355  owner = {gm},
2356  timestamp = {2007.08.06}
2357}
2358
2359@ARTICLE{Webb1998,
2360  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
2361  title = {Improved Advection Schemes for Ocean Models},
2362  journal = JAOT,
2363  year = {1998},
2364  volume = {15},
2365  pages = {1171-1187},
2366  number = {5},
2367  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
2368   ocean model, based on a control volume form of the advection equation.
2369   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
2370   forward time-stepping schemes used by the ocean model. Farrow and
2371   Stevens overcame the problem by implementing a predictor–corrector
2372   time-stepping scheme, but this is computationally expensive to run.
2373   The present paper shows that the problem can be overcome by splitting
2374   the QUICK operator into an O(δx2) advective term and a velocity
2375   dependent biharmonic diffusion term. These can then be time-stepped
2376   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
2377   ocean model, leading to a significant increase in model efficiency.
2378   A small change in the advection operator coefficients may also be
2379   made leading to O(δx4) accuracy. Tests of the improved schemes
2380   are carried out making use of a global eddy-permitting ocean model.
2381   Results are presented from cases where the schemes were applied to
2382   only the tracer fields and also from cases where they were applied
2383   to both the tracer and velocity fields. It is found that the new
2384   schemes have the most effect in the western boundary current regions,
2385   where, for example, the warm core of the Agulhas Current is no longer
2386   broken up by numerical noise.},
2387  date = {October 01, 1998},
2388  owner = {gm},
2389  timestamp = {2007.08.04}
2390}
2391
2392@ARTICLE{Wilcox_1988,
2393  author = {D. C. Wilcox},
2394  title = {Reassessment of the scale-determining equation for advanced turbulence models},
2395  journal = {AIAA journal},
2396  year = {1988},
2397  volume = {26, 11},
2398  pages = {1299-1310},
2399  owner = {gr},
2400  timestamp = {2010.09.09}
2401}
2402
2403@ARTICLE{Willebrand2001,
2404  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
2405   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
2406   L. New},
2407  title = {Circulation characteristics in three eddy-permitting models of the
2408   North Atlantic},
2409  journal = {Progress in Oceanography},
2410  year = {2001},
2411  volume = {48, 2},
2412  pages = {123-161},
2413  owner = {gm},
2414  timestamp = {2007.08.04}
2415}
2416
2417@ARTICLE{Zalesak1979,
2418  author = {S. T. Zalesak},
2419  title = {Fully multidimensional flux corrected transport algorithms for fluids},
2420  journal = JCP,
2421  year = {1979},
2422  volume = {31},
2423  owner = {gm},
2424  timestamp = {2007.08.04}
2425}
2426
2427@ARTICLE{Zhang1992,
2428  author = {Zhang, R.-H. and Endoh, M.},
2429  title = {A free surface general circulation model for the tropical Pacific
2430   Ocean},
2431  journal = JGR,
2432  year = {1992},
2433  volume = {97},
2434  pages = {11237-11255},
2435  month = jul,
2436  owner = {gm}
2437}
2438
2439@comment{jabref-meta: groupsversion:3;}
2440
2441@comment{jabref-meta: groupstree:
24420 AllEntriesGroup:;
24431 ExplicitGroup:El Nino\;2\;blanketal97\;;
24442 ExplicitGroup:97/98 event\;0\;;
24452 ExplicitGroup:Forecast\;0\;;
24462 ExplicitGroup:GHG change\;0\;;
24472 ExplicitGroup:in GCMs\;0\;;
24482 ExplicitGroup:in MIPs\;0\;;
24492 ExplicitGroup:momentum balance\;0\;;
24502 ExplicitGroup:Obs analysis\;0\;;
24512 ExplicitGroup:Paleo\;0\;;
24522 ExplicitGroup:Previous events\;0\;;
24532 ExplicitGroup:Reviews\;0\;;
24542 ExplicitGroup:Simple models\;0\;Zhang1992\;;
24552 ExplicitGroup:SPL, SC, mean\;0\;;
24562 ExplicitGroup:Teleconnections\;0\;;
24572 ExplicitGroup:Low freq\;0\;;
24582 ExplicitGroup:Theory\;0\;;
24592 ExplicitGroup:Energetics\;0\;;
24601 ExplicitGroup:Diurnal in tropics\;0\;;
24611 ExplicitGroup:Indian\;0\;;
24621 ExplicitGroup:Atlantic\;0\;;
24631 ExplicitGroup:MJO, IO, TIW\;2\;;
24642 ExplicitGroup:Obs\;0\;;
24652 ExplicitGroup:GCM\;0\;;
24662 ExplicitGroup:Mechanims\;0\;;
24672 ExplicitGroup:TIW\;0\;;
24681 ExplicitGroup:Observations\;2\;;
24692 ExplicitGroup:ERBE\;0\;;
24702 ExplicitGroup:Tropical\;0\;;
24712 ExplicitGroup:Global\;0\;;
24722 ExplicitGroup:Clouds\;0\;;
24732 ExplicitGroup:Scale interactions\;0\;;
24741 ExplicitGroup:Mechanisms\;2\;;
24752 ExplicitGroup:CRF\;0\;;
24762 ExplicitGroup:Water vapor\;0\;;
24772 ExplicitGroup:Atmos mechanisms\;0\;;
24781 ExplicitGroup:GCMs\;2\;;
24792 ExplicitGroup:Uncertainty\;0\;;
24802 ExplicitGroup:Momentum balance\;0\;;
24811 ExplicitGroup:Climate change\;0\;;
24822 ExplicitGroup:IPCC AR4\;0\;;
24831 ExplicitGroup:Analysis tools\;0\;;
24841 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2485}
2486
Note: See TracBrowser for help on using the repository browser.