New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_CFG.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_CFG.tex @ 2376

Last change on this file since 2376 was 2376, checked in by gm, 13 years ago

v3.3beta: better TKE description, CFG a new Chapter, and correction of Fig references

  • Property svn:executable set to *
File size: 14.7 KB
Line 
1% ================================================================
2% Chapter Ñ Configurations
3% ================================================================
4\chapter{Configurations}
5\label{MISC}
6\minitoc
7
8\newpage
9$\ $\newline    % force a new ligne
10
11% ================================================================
12% Introduction
13% ================================================================
14\section{Introduction}
15\label{CFG_intro}
16
17
18The purpose of this part of the manual is to introduce the \NEMO predefined configuration.
19These configurations are offered as means to explore various numerical and physical options,
20thus allowing the user to verify that the code is performing in a manner consistent with that
21we are running. This form of verification is critical as one adopts the code for his or her particular
22research purposes. The test cases also provide a sense for some of the options available
23in the code, though by no means are all options exercised in the predefined configurations.
24
25
26%There is several predefined ocean configuration which use is controlled by a specific CPP key.
27
28%The key set the domain sizes (\jp{jpiglo}, \jp{jpjglo}, \jp{jpk}), the mesh and the bathymetry,
29%and, in some cases, add to the model physics some specific treatments.
30
31
32% ================================================================
33% 1D model functionality
34% ================================================================
35\section{Water column model: 1D model (\key{c1d})}
36\label{CFG_c1d}
37
38The 1D model option simulates a stand alone water column within the 3D \NEMO system.
39It can be applied to the ocean alone or to the ocean-ice system and can include passive tracers
40or a biogeochemical model. It is set up by defining the \key{c1d} CPP key.
41The 1D model is a very useful tool 
42\textit{(a)} to learn about the physics and numerical treatment of vertical mixing processes ;
43\textit{(b)} to investigate suitable parameterisations of unresolved turbulence (wind steering,
44langmuir circulation, skin layers, ...) ;
45\textit{(c)} to compare the behaviour of different vertical mixing schemes  ;
46\textit{(d)} to perform sensitivity studies on the vertical diffusion at a particular point of an ocean domain ;
47\textit{(d)} to produce extra diagnostics, without the large memory requirement of the full 3D model.
48
49The methodology is based on the use of the zoom functionality over the smallest possible
50domain : a 3 x 3 domain centred on the grid point of interest (see \S\ref{MISC_zoom}),
51with some extra routines. There is no need to define a new mesh, bathymetry,
52initial state or forcing, since the 1D model will use those of the configuration it is a zoom of.
53The chosen grid point is set in par\_oce.F90 module by setting the jpizoom and jpjzoom
54parameters to the indices of the location of the chosen grid point.
55
56
57% ================================================================
58% ORCA family configurations
59% ================================================================
60\section{ORCA family: global ocean with tripolar grid}
61\label{CFG_orca}
62
63The ORCA family is a series of global ocean configurations that are run together with
64the LIM sea-ice model (ORCA-LIM) and possibly with PISCES biogeochemical model
65(ORCA-LIM-PISCES), using various resolutions.
66
67% -------------------------------------------------------------------------------------------------------------
68%       ORCA tripolar grid
69% -------------------------------------------------------------------------------------------------------------
70\subsection{ORCA tripolar grid}
71\label{CFG_orca_grid}
72
73The ORCA grid is a tripolar is based on the semi-analytical method of \citet{Madec_Imbard_CD96}.
74It allows to construct a global orthogonal curvilinear ocean mesh which has no singularity point inside
75the computational domain since two north mesh poles are introduced and placed on lands.
76The method involves defining an analytical set of mesh parallels in the stereographic polar plan,
77computing the associated set of mesh meridians, and projecting the resulting mesh onto the sphere.
78The set of mesh parallels used is a series of embedded ellipses which foci are the two mesh north
79poles (Fig.~\ref{Fig_MISC_ORCA_msh}). The resulting mesh presents no loss of continuity in
80either the mesh lines or the scale factors, or even the scale factor derivatives over the whole
81ocean domain, as the mesh is not a composite mesh.
82
83The method is applied to Mercator grid ($i.e.$ same zonal and meridional grid spacing) poleward
84of $20\deg$N, so that the Equator is a mesh line, which provides a better numerical solution
85for equatorial dynamics. The choice of the series of embedded ellipses (position of the foci and
86variation of the ellipses) is a compromise between maintaining  the ratio of mesh anisotropy
87($e_1 / e_2$) close to one in the ocean (especially in area of strong eddy activities such as
88the Gulf Stream) and keeping the smallest scale factor in the northern hemisphere larger
89than the smallest one in the southern hemisphere.
90The resulting mesh is shown in Fig.~\ref{Fig_MISC_ORCA_msh} and \ref{Fig_MISC_ORCA_e1e2} 
91for a half a degree grid (ORCA\_R05). The smallest ocean scale factor is found in along 
92Antarctica, while the ratio of anisotropy remains close to one except near the Victoria Island
93in the Canadian Archipelago.
94
95
96%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
97\begin{figure}[!t]   \begin{center}
98\includegraphics[width=0.98\textwidth]{./TexFiles/Figures/Fig_ORCA_NH_mesh.pdf}
99\caption{  \label{Fig_MISC_ORCA_msh}     
100ORCA mesh conception. The departure from an isotropic Mercator grid start poleward of 20\deg N.
101The two "north pole" are the foci of a series of embedded ellipses (blue curves)
102which are determined analytically and form the i-lines of the ORCA mesh (pseudo latitudes).
103Then, following \citet{Madec_Imbard_CD96}, the normal to the series of ellipses (red curves) is computed
104which provide the j-lines of the mesh (pseudo longitudes).  }
105\end{center}   \end{figure}
106%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
107
108
109%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
110\begin{figure}[!tbp]  \begin{center}
111\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_ORCA_NH_msh05_e1_e2.pdf}
112\includegraphics[width=0.80\textwidth]{./TexFiles/Figures/Fig_ORCA_aniso.pdf}
113\caption {  \label{Fig_MISC_ORCA_e1e2}
114\textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and
115\textit{Bottom}: ratio of anisotropy ($e_1 / e_2$)
116for ORCA 0.5\deg ~mesh. South of 20\deg N a Mercator grid is used ($e_1 = e_2$)
117so that the anisotropy ratio is 1. Poleward of 20\deg N, the two "north pole"
118introduce a weak anisotropy over the ocean areas ($< 1.2$) except in vicinity of Victoria Island
119(Canadian Arctic Archipelago). }
120\end{center}   \end{figure}
121%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
122
123
124
125% -------------------------------------------------------------------------------------------------------------
126%       ORCA-LIM(-PISCES) configurations
127% -------------------------------------------------------------------------------------------------------------
128\subsection{ORCA-LIM(-PISCES) configurations}
129\label{CFG_orca_grid}
130
131
132The NEMO system is provided with four built-in ORCA configurations which differ in the
133horizontal resolution
134\footnote{the value of the resolution is given by the resolution at the Equator expressed in degrees.} 
135used:
136\begin{description}
137\item[\key{orca\_r4}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~4
138\item[\key{orca\_r2}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~2
139%\item[\key{orca\_r1}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~1
140\item[\key{orca\_r05}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~05
141\item[\key{orca\_r025}]  \jp{cp\_cfg}~=~orca ; \jp{jp\_cfg}~=~025
142\end{description}
143
144The ORCA\_R2 configuration has the following specificity : starting from a 2\deg~ORCA mesh,
145local mesh refinements were applied to the Mediterranean, Red, Black and Caspian Seas,
146so that the resolution is $1\deg \time 1\deg$ there. A local transformation were also applied
147with in the Tropics in order to refine the meridional resolution up to 0.5\deg at the Equator.
148
149The ORCA\_R1 configuration has only a local tropical transformation  to refine the meridional
150resolution up to 1/3\deg~at the Equator. Note that the tropical mesh refinements in ORCA\_R2
151and R1 strongly increases the mesh anisotropy there.
152
153The ORCA\_R05 configuration and higher ones does not incorporate any regional refinements. 
154
155Only the ORCA\_R2 is provided with all its input files in the \NEMO distribution.
156It is very similar to that used as part of the climate model developed at IPSL for the 4th IPCC
157assessment of climate change (Marti et al., 2009). It is also the basis for the \NEMO contribution
158to the Coordinate Ocean-ice Reference Experiments (COREs) documented in \citet{Griffies_al_OM09}.
159
160This version of ORCA\_R2 has 31 levels in the vertical, with the highest resolution (10m)
161in the upper 150m. The bottom topography and the coastlines are derived
162from the global atlas of Smith and Sandwell (1997). The default forcing employ the boundary
163forcing from \citet{Large_Yeager_Rep04} (see \S\ref{SBC_blk_core}),
164which was developed for the purpose of running global coupled ocean-ice simulations
165without an interactive atmosphere. This \citet{Large_Yeager_Rep04} dataset is available
166through the GFDL web site \footnote{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}.
167The "normal year" of \citet{Large_Yeager_Rep04} has been chosen of the \NEMO distribution
168since release v3.3.
169
170The vertical resolution can be increased by a factor of 10 by defining the \key{orca\_lev10} CPP key.
171It can also be run with an AGRIF zoom over the Agulhas current area ( \key{agrif}  defined).
172Also available are to keys, \key{arctic} and \key{antarctic}, which allows to run a regional Arctic
173or peri-Antarctic configuration extracted from an ORCA configuration. (This does not work with ORCA\_R4 and R1).
174
175
176%--------------------------------------------------TABLE--------------------------------------------------
177\begin{table}[htbp]     \begin{center}
178\begin{tabular}{ccccc}
179key                         & \jp{jp\_cfg} &  \jp{jpiglo} & \jp{jpiglo} &       \\ 
180\hline  \hline
181\key{orca\_r4}        &        4         &         92     &      76      &       \\
182\key{orca\_r2}       &        2         &       182     &    149      &        \\
183%\key{orca\_r1}       &        1         &       362     &     511     &        \\
184\key{orca\_r05}     &        05       &       722     &     261     &        \\
185\key{orca\_r025}   &        025     &      1442    &   1021     &        \\
186%\key{orca\_r8}       &        8         &      2882    &   2042     &        \\
187%\key{orca\_r12}     &      12         &      4322    &   3062      &       \\
188\hline
189\hline
190\end{tabular}
191\caption{ \label{Tab_ORCA}   
192Set of predefined ORCA parameters. }
193\end{center}
194\end{table}
195%--------------------------------------------------------------------------------------------------------------
196
197
198% -------------------------------------------------------------------------------------------------------------
199%       GYRE family: double gyre basin
200% -------------------------------------------------------------------------------------------------------------
201\section{GYRE family: double gyre basin (\key{gyre})}
202\label{MISC_config_gyre}
203
204The GYRE configuration \citep{Levy_al_OM10} have been built to simulated
205the seasonal cycle of a double-gyre box model. It consist in an idealized domain
206similar to that used in the studies of \citet{Drijfhout_JPO94} and \citet{Hazeleger_Drijfhout_JPO98,
207Hazeleger_Drijfhout_JPO99, Hazeleger_Drijfhout_JGR00, Hazeleger_Drijfhout_JPO00},
208over which an analytical seasonal forcing is applied. This allows to investigate the
209spontaneous generation of a large number of interacting, transient mesoscale eddies
210and their contribution to the large scale circulation.
211
212The domain geometry is a closed rectangular basin on the $\beta$-plane centred
213at $\sim 30\deg$N and rotated by 45\deg, 3180~km long, 2120~km wide
214and 4~km deep (Fig.~\ref{Fig_MISC_strait_hand}).
215The domain is bounded by vertical walls and by a ßat bottom. The configuration is
216meant to represent an idealized North Atlantic or North Pacific basin.
217The circulation is forced by analytical profiles of wind and buoyancy ßuxes.
218The applied forcings vary seasonally in a sinusoidal manner between winter
219and summer extrema \citep{Levy_al_OM10}.
220The wind stress is zonal and its curl changes sign at 22\deg N and 36\deg N.
221It forces a subpolar gyre in the north, a subtropical gyre in the wider part of the domain
222and a small recirculation gyre in the southern corner.
223The net heat ßux takes the form of a restoring toward a zonal apparent air
224temperature profile. A portion of the net heat ßux which comes from the solar radiation
225is allowed to penetrate within the water column.
226The fresh water ßux is also prescribed and varies zonally.
227It is determined such as, at each time step, the basin-integrated ßux is zero.
228The basin is initialised at rest with vertical profiles of temperature and salinity
229uniformly applied to the whole domain.
230
231The GYRE configuration is set through the \key{gyre} CPP key. Its horizontal resolution
232(and thus the size of the domain) is determined by setting \jp{jp\_cfg} in \hf{par\_GYRE} file: \\
233\jp{jpiglo} $= 30 \times$ \jp{jp\_cfg} + 2   \\
234\jp{jpjglo} $= 20 \times$ \jp{jp\_cfg} + 2   \\
235Obviously, the namelist parameters have to be adjusted to the chosen resolution.
236In the vertical, GYRE uses the default 30 ocean levels (\jp{jpk}=31) (Fig.~\ref{Fig_zgr}).
237
238The GYRE configuration is also used in benchmark test as it is very simple to increase
239its resolution and as it does not requires any input file. For example, keeping a same model size
240on each processor while increasing the number of processor used is very easy, even though the
241physical integrity of the solution can be compromised.
242
243%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
244\begin{figure}[!t]   \begin{center}
245\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_GYRE.pdf}
246\caption{  \label{Fig_GYRE}   
247Snapshot of relative vorticity at the surface of the model domain
248in GYRE R9, R27 and R54. From \citet{Levy_al_OM10}.}
249\end{center}   \end{figure}
250%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
251
252% -------------------------------------------------------------------------------------------------------------
253%       EEL family configuration
254% -------------------------------------------------------------------------------------------------------------
255\section{EEL family: periodic channel}
256\label{MISC_config_EEL}
257
258\begin{description}
259\item[\key{eel\_r2}]  to be described....
260\item[\key{eel\_r5}] 
261\item[\key{eel\_r6}] 
262\end{description}
263
264% -------------------------------------------------------------------------------------------------------------
265%       POMME configuration
266% -------------------------------------------------------------------------------------------------------------
267\section{POMME: mid-latitude sub-domain}
268\label{MISC_config_POMME}
269
270
271\key{pomme\_r025} : to be described....
272
273
274
Note: See TracBrowser for help on using the repository browser.