New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DYN.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_DYN.tex @ 2349

Last change on this file since 2349 was 2349, checked in by gm, 13 years ago

v3.3beta: #658 phasing of the doc - key check + many minor changes

  • Property svn:executable set to *
File size: 64.2 KB
Line 
1% ================================================================
2% Chapter Ñ Ocean Dynamics (DYN)
3% ================================================================
4\chapter{Ocean Dynamics (DYN)}
5\label{DYN}
6\minitoc
7
8% add a figure for  dynvor ens, ene latices
9
10%\vspace{2.cm}
11$\ $\newline      %force an empty line
12
13Using the representation described in Chapter \ref{DOM}, several semi-discrete
14space forms of the dynamical equations are available depending on the vertical
15coordinate used and on the conservation properties of the vorticity term. In all
16the equations presented here, the masking has been omitted for simplicity.
17One must be aware that all the quantities are masked fields and that each time an
18average or difference operator is used, the resulting field is multiplied by a mask.
19
20The prognostic ocean dynamics equation can be summarized as follows:
21\begin{equation*}
22\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }
23                  {\text{COR} + \text{ADV}                       }
24         + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
25\end{equation*}
26NXT stands for next, referring to the time-stepping. The first group of terms on
27the rhs of this equation corresponds to the Coriolis and advection
28terms that are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG)
29and a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
30and advection part (COR+ADV) in the flux formulation. The terms following these
31are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient,
32and SPG, Surface Pressure Gradient); and contributions from lateral diffusion
33(LDF) and vertical diffusion (ZDF), which are added to the rhs in the \mdl{dynldf} 
34and \mdl{dynzdf} modules. The vertical diffusion term includes the surface and
35bottom stresses. The external forcings and parameterisations require complex
36inputs (surface wind stress calculation using bulk formulae, estimation of mixing
37coefficients) that are carried out in modules SBC, LDF and ZDF and are described
38in Chapters \ref{SBC}, \ref{LDF} and \ref{ZDF}, respectively.
39
40In the present chapter we also describe the diagnostic equations used to compute
41the horizontal divergence, curl of the velocities (\emph{divcur} module) and
42the vertical velocity (\emph{wzvmod} module).
43
44The different options available to the user are managed by namelist variables.
45For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
46where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
47If a CPP key is used for this term its name is \textbf{key\_ttt}. The corresponding
48code can be found in the \textit{dynttt\_xxx} module in the DYN directory, and it is
49usually computed in the \textit{dyn\_ttt\_xxx} subroutine.
50
51The user has the option of extracting and outputting each tendency term from the
523D momentum equations (\key{trddyn} defined), as described in
53Chap.\ref{MISC}.  Furthermore, the tendency terms associated with the 2D
54barotropic vorticity balance (when \key{trdvor} is defined) can be derived from the
553D terms.
56%%%
57\gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does
58MISC correspond to "extracting tendency terms" or "vorticity balance"?}
59
60$\ $\newline    % force a new ligne
61
62% ================================================================
63% Sea Surface Height evolution & Diagnostics variables
64% ================================================================
65\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
66\label{DYN_divcur_wzv}
67
68%--------------------------------------------------------------------------------------------------------------
69%           Horizontal divergence and relative vorticity
70%--------------------------------------------------------------------------------------------------------------
71\subsection   [Horizontal divergence and relative vorticity (\textit{divcur})]
72         {Horizontal divergence and relative vorticity (\mdl{divcur})}
73\label{DYN_divcur}
74
75The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows:
76\begin{equation} \label{Eq_divcur_cur}
77\zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta _{i+1/2} \left[ {e_{2v}\;v} \right]
78                          -\delta _{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
79\end{equation} 
80
81The horizontal divergence is defined at a $T$-point. It is given by:
82\begin{equation} \label{Eq_divcur_div}
83\chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
84      \left( {\delta _i \left[ {e_{2u}\,e_{3u}\,u} \right]
85             +\delta _j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
86\end{equation} 
87
88Note that although the vorticity has the same discrete expression in $z$-
89and $s$-coordinates, its physical meaning is not identical. $\zeta$ is a pseudo
90vorticity along $s$-surfaces (only pseudo because $(u,v)$ are still defined along
91geopotential surfaces, but are not necessarily defined at the same depth).
92
93The vorticity and divergence at the \textit{before} step are used in the computation
94of the horizontal diffusion of momentum. Note that because they have been
95calculated prior to the Asselin filtering of the \textit{before} velocities, the
96\textit{before} vorticity and divergence arrays must be included in the restart file
97to ensure perfect restartability. The vorticity and divergence at the \textit{now} 
98time step are used for the computation of the nonlinear advection and of the
99vertical velocity respectively.
100
101%--------------------------------------------------------------------------------------------------------------
102%           Sea Surface Height evolution
103%--------------------------------------------------------------------------------------------------------------
104\subsection   [Sea surface height evolution and vertical velocity (\textit{sshwzv})]
105         {Horizontal divergence and relative vorticity (\mdl{sshwzv})}
106\label{DYN_sshwzv}
107
108The sea surface height is given by :
109\begin{equation} \label{Eq_dynspg_ssh}
110\begin{aligned}
111\frac{\partial \eta }{\partial t}
112&\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{  \delta _i \left[ {e_{2u}\,e_{3u}\;u} \right]
113                                                                                  +\delta _j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right\} } 
114           -    \frac{\textit{emp}}{\rho _w }   \\
115&\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho _w }
116\end{aligned}
117\end{equation}
118where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
119expressed in Kg/m$^2$/s (which is equal to mm/s), and $\rho _w$=1,035~Kg/m$^3$ 
120is the reference density of sea water (Boussinesq approximation). If river runoff is
121expressed as a surface freshwater flux (see \S\ref{SBC}) then \textit{emp} can be
122written as the evaporation minus precipitation, minus the river runoff.
123The sea-surface height is evaluated using exactly the same time stepping scheme
124as the tracer equation \eqref{Eq_tra_nxt}:
125a leapfrog scheme in combination with an Asselin time filter, $i.e.$ the velocity appearing
126in \eqref{Eq_dynspg_ssh} is centred in time (\textit{now} velocity).
127This is of paramount importance. Replacing $T$ by the number $1$ in the tracer equation and summing
128over the water column must lead to the sea surface height equation otherwise tracer content
129will not be conserved \ref{Griffies_al_MWR01, LeclairMadec2009}.
130
131The vertical velocity is computed by an upward integration of the horizontal
132divergence starting at the bottom, taking into account the change of the thickness of the levels :
133\begin{equation} \label{Eq_wzv}
134\left\{   \begin{aligned}
135&\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }   \\
136&\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_
137                                         - \frac{1} {2 \rdt} \left\left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
138\end{aligned}   \right.
139\end{equation}
140
141In the case of a non-linear free surface (\key{vvl}), the top vertical velocity is $-\textit{emp}/\rho_w$,
142as changes in the divergence of the barotropic transport are absorbed into the change
143of the level thicknesses, re-orientated downward.
144\gmcomment{not sure of this...  to be modified with the change in emp setting}
145In the case of a linear free surface, the time derivative in \eqref{Eq_wzv} disappears.
146The upper boundary condition applies at a fixed level $z=0$. The top vertical velocity
147is thus equal to the divergence of the barotropic transport ($i.e.$ the first term in the
148right-hand-side of \eqref{Eq_dynspg_ssh}).
149
150Note also that whereas the vertical velocity has the same discrete
151expression in $z$- and $s$-coordinates, its physical meaning is not the same:
152in the second case, $w$ is the velocity normal to the $s$-surfaces.
153Note also that the $k$-axis is re-orientated downwards in the \textsc{fortran} code compared
154to the indexing used in the semi-discrete equations such as \eqref{Eq_wzv} 
155(see  \S\ref{DOM_Num_Index_vertical}).
156
157
158% ================================================================
159% Coriolis and Advection terms: vector invariant form
160% ================================================================
161\section{Coriolis and Advection: vector invariant form}
162\label{DYN_adv_cor_vect}
163%-----------------------------------------nam_dynadv----------------------------------------------------
164\namdisplay{namdyn_adv} 
165%-------------------------------------------------------------------------------------------------------------
166
167The vector invariant form of the momentum equations is the one most
168often used in applications of the \NEMO ocean model. The flux form option
169(see next section) has been present since version $2$.
170Coriolis and momentum advection terms are evaluated using a leapfrog
171scheme, $i.e.$ the velocity appearing in these expressions is centred in
172time (\textit{now} velocity).
173At the lateral boundaries either free slip, no slip or partial slip boundary
174conditions are applied following Chap.\ref{LBC}.
175
176% -------------------------------------------------------------------------------------------------------------
177%        Vorticity term
178% -------------------------------------------------------------------------------------------------------------
179\subsection   [Vorticity term (\textit{dynvor}) ]
180         {Vorticity term (\mdl{dynvor})}
181\label{DYN_vor}
182%------------------------------------------nam_dynvor----------------------------------------------------
183\namdisplay{namdyn_vor} 
184%-------------------------------------------------------------------------------------------------------------
185
186Four discretisations of the vorticity term (\textit{ln\_dynvor\_xxx}=true) are available:
187conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ;
188conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for
189the relative vorticity term and horizontal kinetic energy for the planetary vorticity
190term (MIX scheme) ; or conserving both the potential enstrophy of horizontally non-divergent
191flow and horizontal kinetic energy (ENE scheme) (see  Appendix~\ref{Apdx_C_vor_zad}).
192The vorticity terms are all computed in dedicated routines that can be found in
193the \mdl{dynvor} module.
194
195%-------------------------------------------------------------
196%                 enstrophy conserving scheme
197%-------------------------------------------------------------
198\subsubsection{Enstrophy conserving scheme (\np{ln\_dynvor\_ens}=true)}
199\label{DYN_vor_ens}
200
201In the enstrophy conserving case (ENS scheme), the discrete formulation of the
202vorticity term provides a global conservation of the enstrophy
203($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent
204flow ($i.e.$ $\chi$=$0$), but does not conserve the total kinetic energy. It is given by:
205\begin{equation} \label{Eq_dynvor_ens}
206\left\{ 
207\begin{aligned}
208{+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i} 
209                                & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
210{- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j} 
211                                & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j} 
212\end{aligned} 
213 \right.
214\end{equation} 
215
216%-------------------------------------------------------------
217%                 energy conserving scheme
218%-------------------------------------------------------------
219\subsubsection{Energy conserving scheme (\np{ln\_dynvor\_ene}=true)}
220\label{DYN_vor_ene}
221
222The kinetic energy conserving scheme (ENE scheme) conserves the global
223kinetic energy but not the global enstrophy. It is given by:
224\begin{equation} \label{Eq_dynvor_ene}
225\left\{   \begin{aligned}
226{+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
227                            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
228{- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
229                            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
230\end{aligned}    \right.
231\end{equation} 
232
233%-------------------------------------------------------------
234%                 mix energy/enstrophy conserving scheme
235%-------------------------------------------------------------
236\subsubsection{Mixed energy/enstrophy conserving scheme (\np{ln\_dynvor\_mix}=true) }
237\label{DYN_vor_mix}
238
239For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the
240two previous schemes is used. It consists of the ENS scheme (\ref{Eq_dynvor_ens})
241for the relative vorticity term, and of the ENE scheme (\ref{Eq_dynvor_ene}) applied
242to the planetary vorticity term.
243\begin{equation} \label{Eq_dynvor_mix}
244\left\{ {     \begin{aligned}
245 {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i} 
246 \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
247 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
248 \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
249{-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
250 \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
251 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
252 \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
253\end{aligned}     } \right.
254\end{equation} 
255
256%-------------------------------------------------------------
257%                 energy and enstrophy conserving scheme
258%-------------------------------------------------------------
259\subsubsection{Energy and enstrophy conserving scheme (\np{ln\_dynvor\_een}=true) }
260\label{DYN_vor_een}
261
262In both the ENS and ENE schemes, it is apparent that the combination of $i$ and $j$ 
263averages of the velocity allows for the presence of grid point oscillation structures
264that will be invisible to the operator. These structures are \textit{computational modes} 
265that will be at least partly damped by the momentum diffusion operator ($i.e.$ the
266subgrid-scale advection), but not by the resolved advection term. The ENS and ENE schemes
267therefore do not contribute to dump any grid point noise in the horizontal velocity field.
268Such noise would result in more noise in the vertical velocity field, an undesirable feature.
269This is a well-known characteristic of $C$-grid discretization where $u$ and $v$ are located
270at different grid points, a price worth paying to avoid a double averaging in the pressure
271gradient term as in the $B$-grid.
272\gmcomment{ To circumvent this, Adcroft (ADD REF HERE)
273Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....}
274
275A very nice solution to the problem of double averaging was proposed by \citet{Arakawa_Hsu_MWR90}.
276The idea is to get rid of the double averaging by considering triad combinations of vorticity.
277It is noteworthy that this solution is conceptually quite similar to the one proposed by
278\citep{Griffies_al_JPO98} for the discretization of the iso-neutral diffusion operator (see App.\ref{Apdx_C}).
279
280The \citet{Arakawa_Hsu_MWR90} vorticity advection scheme for a single layer is modified
281for spherical coordinates as described by \citet{Arakawa_Lamb_MWR81} to obtain the EEN scheme.
282First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point:
283\begin{equation} \label{Eq_pot_vor}
284q  = \frac{\zeta +f} {e_{3f} }
285\end{equation}
286where the relative vorticity is defined by (\ref{Eq_divcur_cur}), the Coriolis parameter
287is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is:
288\begin{equation} \label{Eq_een_e3f}
289e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2}
290\end{equation}
291
292%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
293\begin{figure}[!ht] \label{Fig_DYN_een_triad}
294\begin{center}
295\includegraphics[width=0.70\textwidth]{./TexFiles/Figures/Fig_DYN_een_triad.pdf}
296\caption{Triads used in the energy and enstrophy conserving scheme (een) for
297$u$-component (upper panel) and $v$-component (lower panel).}
298\end{center}
299\end{figure}
300%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
301
302Note that a key point in \eqref{Eq_een_e3f} is that the averaging in the \textbf{i}- and
303\textbf{j}- directions uses the masked vertical scale factor but is always divided by
304$4$, not by the sum of the masks at the four $T$-points. This preserves the continuity of
305$e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and
306extends by continuity the value of $e_{3f}$ into the land areas. This feature is essential for
307the $z$-coordinate with partial steps.
308
309Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as
310the following triad combinations of the neighbouring potential vorticities defined at f-points
311(Fig.~\ref{Fig_DYN_een_triad}):
312\begin{equation} \label{Q_triads}
313_i^j \mathbb{Q}^{i_p}_{j_p}
314= \frac{1}{12} \ \left(   q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p}  \right)
315\end{equation}
316where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$.
317
318Finally, the vorticity terms are represented as:
319\begin{equation} \label{Eq_dynvor_een}
320\left\{ {
321\begin{aligned}
322 +q\,e_3 \, v  &\equiv +\frac{1}{e_{1u} }   \sum_{\substack{i_p,\,k_p}} 
323                         {^{i+1/2-i_p}_j}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{1v}\,e_{3v} \;\right)^{i+1/2-i_p}_{j+j_p}   \\
324 - q\,e_3 \, u     &\equiv -\frac{1}{e_{2v} }    \sum_{\substack{i_p,\,k_p}} 
325                         {^i_{j+1/2-j_p}}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{2u}\,e_{3u} \;\right)^{i+i_p}_{j+1/2-j_p}   \\
326\end{aligned} 
327} \right.
328\end{equation} 
329
330This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes.
331It conserves both total energy and potential enstrophy in the limit of horizontally
332nondivergent flow ($i.e.$ $\chi$=$0$) (see  Appendix~\ref{Apdx_C_vor_zad}).
333Applied to a realistic ocean configuration, it has been shown that it leads to a significant
334reduction of the noise in the vertical velocity field \citep{Le_Sommer_al_OM09}.
335Furthermore, used in combination with a partial steps representation of bottom topography,
336it improves the interaction between current and topography, leading to a larger
337topostrophy of the flow  \citep{Barnier_al_OD06, Penduff_al_OS07}.
338
339%--------------------------------------------------------------------------------------------------------------
340%           Kinetic Energy Gradient term
341%--------------------------------------------------------------------------------------------------------------
342\subsection   [Kinetic Energy Gradient term (\textit{dynkeg})]
343         {Kinetic Energy Gradient term (\mdl{dynkeg})}
344\label{DYN_keg}
345
346As demonstrated in Appendix~\ref{Apdx_C}, there is a single discrete formulation
347of the kinetic energy gradient term that, together with the formulation chosen for
348the vertical advection (see below), conserves the total kinetic energy:
349\begin{equation} \label{Eq_dynkeg}
350\left\{ \begin{aligned}
351 -\frac{1}{2 \; e_{1u} }  & \ \delta _{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   \\
352 -\frac{1}{2 \; e_{2v} }  & \ \delta _{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   
353\end{aligned} \right.
354\end{equation} 
355
356%--------------------------------------------------------------------------------------------------------------
357%           Vertical advection term
358%--------------------------------------------------------------------------------------------------------------
359\subsection   [Vertical advection term (\textit{dynzad}) ]
360         {Vertical advection term (\mdl{dynzad}) }
361\label{DYN_zad}
362
363The discrete formulation of the vertical advection, together with the formulation
364chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
365energy. Indeed, the change of KE due to the vertical advection is exactly
366balanced by the change of KE due to the gradient of KE (see Appendix~\ref{Apdx_C}).
367\begin{equation} \label{Eq_dynzad}
368\left\{     \begin{aligned}
369-\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k}  \\
370-\frac{1} {e_{1v}\,e_{2v}\,e_{3v}}  &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k} 
371\end{aligned}         \right.
372\end{equation} 
373
374% ================================================================
375% Coriolis and Advection : flux form
376% ================================================================
377\section{Coriolis and Advection: flux form}
378\label{DYN_adv_cor_flux}
379%------------------------------------------nam_dynadv----------------------------------------------------
380\namdisplay{namdyn_adv} 
381%-------------------------------------------------------------------------------------------------------------
382
383In the flux form (as in the vector invariant form), the Coriolis and momentum
384advection terms are evaluated using a leapfrog scheme, $i.e.$ the velocity
385appearing in their expressions is centred in time (\textit{now} velocity). At the
386lateral boundaries either free slip, no slip or partial slip boundary conditions
387are applied following Chap.\ref{LBC}.
388
389
390%--------------------------------------------------------------------------------------------------------------
391%           Coriolis plus curvature metric terms
392%--------------------------------------------------------------------------------------------------------------
393\subsection   [Coriolis plus curvature metric terms (\textit{dynvor}) ]
394         {Coriolis plus curvature metric terms (\mdl{dynvor}) }
395\label{DYN_cor_flux}
396
397In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
398parameter has been modified to account for the "metric" term. This altered
399Coriolis parameter is thus discretised at $f$-points. It is given by:
400\begin{multline} \label{Eq_dyncor_metric}
401f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i}  -  u\frac{\partial e_1 }{\partial j}} \right\\
402   \equiv   f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta _{i+1/2} \left[ {e_{2u} } \right] 
403                                                                 -  \overline u ^{j+1/2}\delta _{j+1/2} \left[ {e_{1u} } \right]  }  \ \right)
404\end{multline} 
405
406Any of the (\ref{Eq_dynvor_ens}), (\ref{Eq_dynvor_ene}) and (\ref{Eq_dynvor_een})
407schemes can be used to compute the product of the Coriolis parameter and the
408vorticity. However, the energy-conserving scheme  (\ref{Eq_dynvor_een}) has
409exclusively been used to date. This term is evaluated using a leapfrog scheme,
410$i.e.$ the velocity is centred in time (\textit{now} velocity).
411
412%--------------------------------------------------------------------------------------------------------------
413%           Flux form Advection term
414%--------------------------------------------------------------------------------------------------------------
415\subsection   [Flux form Advection term (\textit{dynadv}) ]
416         {Flux form Advection term (\mdl{dynadv}) }
417\label{DYN_adv_flux}
418
419The discrete expression of the advection term is given by :
420\begin{equation} \label{Eq_dynadv}
421\left\{ 
422\begin{aligned}
423\frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 
424\left(      \delta _{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i       }  \ u_t      \right]   
425          + \delta _{j       } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2}  \ u_f      \right] \right\ \;   \\
426\left.   + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2}  \ u_{uw} \right] \right)   \\
427\\
428\frac{1}{e_{1v}\,e_{2v}\,e_{3v}} 
429\left(     \delta _{i       } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f       \right] 
430         + \delta _{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i       } \ v_t       \right] \right\ \, \, \\
431\left.  + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw}  \right] \right) \\
432\end{aligned}
433\right.
434\end{equation}
435
436Two advection schemes are available: a $2^{nd}$ order centered finite
437difference scheme, CEN2, or a $3^{rd}$ order upstream biased scheme, UBS.
438The latter is described in \citet{Shchepetkin_McWilliams_OM05}. The schemes are
439selected using the namelist logicals \np{ln\_dynadv\_cen2} and \np{ln\_dynadv\_ubs}.
440In flux form, the schemes differ by the choice of a space and time interpolation to
441define the value of $u$ and $v$ at the centre of each face of $u$- and $v$-cells,
442$i.e.$ at the $T$-, $f$-, and $uw$-points for $u$ and at the $f$-, $T$- and
443$vw$-points for $v$.
444
445%-------------------------------------------------------------
446%                 2nd order centred scheme
447%-------------------------------------------------------------
448\subsubsection{$2^{nd}$ order centred scheme (cen2) (\np{ln\_dynadv\_cen2}=true)}
449\label{DYN_adv_cen2}
450
451In the centered $2^{nd}$ order formulation, the velocity is evaluated as the
452mean of the two neighbouring points :
453\begin{equation} \label{Eq_dynadv_cen2}
454\left\{     \begin{aligned}
455 u_T^{cen2} &=\overline u^{i }       \quad &  u_F^{cen2} &=\overline u^{j+1/2}  \quad &  u_{uw}^{cen2} &=\overline u^{k+1/2}   \\
456 v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j      \quad &  v_{vw}^{cen2} &=\overline v ^{k+1/2}  \\
457\end{aligned}      \right.
458\end{equation} 
459
460The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
461($i.e.$ it may create false extrema). It is therefore notoriously noisy and must be
462used in conjunction with an explicit diffusion operator to produce a sensible solution.
463The associated time-stepping is performed using a leapfrog scheme in conjunction
464with an Asselin time-filter, so $u$ and $v$ are the \emph{now} velocities.
465
466%-------------------------------------------------------------
467%                 UBS scheme
468%-------------------------------------------------------------
469\subsubsection{Upstream Biased Scheme (UBS) (\np{ln\_dynadv\_ubs}=true)}
470\label{DYN_adv_ubs}
471
472The UBS advection scheme is an upstream biased third order scheme based on
473an upstream-biased parabolic interpolation. For example, the evaluation of
474$u_T^{ubs} $ is done as follows:
475\begin{equation} \label{Eq_dynadv_ubs}
476u_T^{ubs} =\overline u ^i-\;\frac{1}{6}   \begin{cases}
477      u"_{i-1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  \geqslant 0$ }    \\
478      u"_{i+1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  < 0$ }
479\end{cases}
480\end{equation}
481where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta _i \left[ u \right]} \right]$. This results
482in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error \citep{Shchepetkin_McWilliams_OM05}.
483The overall performance of the advection scheme is similar to that reported in
484\citet{Farrow1995}. It is a relatively good compromise between accuracy and
485smoothness. It is not a \emph{positive} scheme, meaning that false extrema are
486permitted. But the amplitudes of the false extrema are significantly reduced over
487those in the centred second order method. As the scheme already includes
488a diffusion component, it can be used without explicit  lateral diffusion on momentum
489($i.e.$ \np{ln\_dynldf\_lap}=\np{ln\_dynldf\_bilap}=false), and it is recommended to do so.
490
491The UBS scheme is not used in all directions. In the vertical, the centred $2^{nd}$ 
492order evaluation of the advection is preferred, $i.e.$ $u_{uw}^{ubs}$ and
493$u_{vw}^{ubs}$ in \eqref{Eq_dynadv_cen2} are used. UBS is diffusive and is
494associated with vertical mixing of momentum. \gmcomment{ gm  pursue the
495sentence:Since vertical mixing of momentum is a source term of the TKE equation...  }
496
497For stability reasons,  the first term in (\ref{Eq_dynadv_ubs}), which corresponds
498to a second order centred scheme, is evaluated using the \textit{now} velocity
499(centred in time), while the second term, which is the diffusion part of the scheme,
500is evaluated using the \textit{before} velocity (forward in time). This is discussed
501by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme.
502
503Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
504schemes only differ by one coefficient. Replacing $1/6$ by $1/8$ in
505(\ref{Eq_dynadv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
506This option is not available through a namelist parameter, since the $1/6$ coefficient
507is hard coded. Nevertheless it is quite easy to make the substitution in the
508\mdl{dynadv\_ubs} module and obtain a QUICK scheme.
509
510Note also that in the current version of \mdl{dynadv\_ubs}, there is also the
511possibility of using a $4^{th}$ order evaluation of the advective velocity as in
512ROMS. This is an error and should be suppressed soon.
513%%%
514\gmcomment{action :  this have to be done}
515%%%
516
517% ================================================================
518%           Hydrostatic pressure gradient term
519% ================================================================
520\section  [Hydrostatic pressure gradient (\textit{dynhpg})]
521      {Hydrostatic pressure gradient (\mdl{dynhpg})}
522\label{DYN_hpg}
523%------------------------------------------nam_dynhpg---------------------------------------------------
524\namdisplay{namdyn_hpg} 
525%-------------------------------------------------------------------------------------------------------------
526
527The key distinction between the different algorithms used for the hydrostatic
528pressure gradient is the vertical coordinate used, since HPG is a \emph{horizontal} 
529pressure gradient, $i.e.$ computed along geopotential surfaces. As a result, any
530tilt of the surface of the computational levels will require a specific treatment to
531compute the hydrostatic pressure gradient.
532
533The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
534$i.e.$ the density appearing in its expression is centred in time (\emph{now} $\rho$), or
535a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial slip
536boundary conditions are applied.
537
538%--------------------------------------------------------------------------------------------------------------
539%           z-coordinate with full step
540%--------------------------------------------------------------------------------------------------------------
541\subsection   [$z$-coordinate with full step (\np{ln\_dynhpg\_zco}) ]
542         {$z$-coordinate with full step (\np{ln\_dynhpg\_zco}=true)}
543\label{DYN_hpg_zco}
544
545The hydrostatic pressure can be obtained by integrating the hydrostatic equation
546vertically from the surface. However, the pressure is large at great depth while its
547horizontal gradient is several orders of magnitude smaller. This may lead to large
548truncation errors in the pressure gradient terms. Thus, the two horizontal components
549of the hydrostatic pressure gradient are computed directly as follows:
550
551for $k=km$ (surface layer, $jk=1$ in the code)
552\begin{equation} \label{Eq_dynhpg_zco_surf}
553\left\{ \begin{aligned}
554               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k=km} 
555&= \frac{1}{2} g \   \left. \delta _{i+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
556                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k=km} 
557&= \frac{1}{2} g \   \left. \delta _{j+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
558\end{aligned} \right.
559\end{equation} 
560
561for $1<k<km$ (interior layer)
562\begin{equation} \label{Eq_dynhpg_zco}
563\left\{ \begin{aligned}
564               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k} 
565&=             \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k-1} 
566+    \frac{1}{2}\;g\;   \left. \delta _{i+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
567                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k} 
568&=                \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k-1} 
569+    \frac{1}{2}\;g\;   \left. \delta _{j+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
570\end{aligned} \right.
571\end{equation} 
572
573Note that the $1/2$ factor in (\ref{Eq_dynhpg_zco_surf}) is adequate because of
574the definition of $e_{3w}$ as the vertical derivative of the scale factor at the surface
575level ($z=0$). Note also that in case of variable volume level (\key{vvl} defined), the
576surface pressure gradient is included in \eqref{Eq_dynhpg_zco_surf} and \eqref{Eq_dynhpg_zco} 
577through the space and time variations of the vertical scale factor $e_{3w}$.
578
579%--------------------------------------------------------------------------------------------------------------
580%           z-coordinate with partial step
581%--------------------------------------------------------------------------------------------------------------
582\subsection   [$z$-coordinate with partial step (\np{ln\_dynhpg\_zps})]
583         {$z$-coordinate with partial step (\np{ln\_dynhpg\_zps}=true)}
584\label{DYN_hpg_zps}
585
586With partial bottom cells, tracers in horizontally adjacent cells generally live at
587different depths. Before taking horizontal gradients between these tracer points,
588a linear interpolation is used to approximate the deeper tracer as if it actually lived
589at the depth of the shallower tracer point.
590
591Apart from this modification, the horizontal hydrostatic pressure gradient evaluated
592in the $z$-coordinate with partial step is exactly as in the pure $z$-coordinate case.
593As explained in detail in section \S\ref{TRA_zpshde}, the nonlinearity of pressure
594effects in the equation of state is such that it is better to interpolate temperature and
595salinity vertically before computing the density. Horizontal gradients of temperature
596and salinity are needed for the TRA modules, which is the reason why the horizontal
597gradients of density at the deepest model level are computed in module \mdl{zpsdhe} 
598located in the TRA directory and described in \S\ref{TRA_zpshde}.
599
600%--------------------------------------------------------------------------------------------------------------
601%           s- and s-z-coordinates
602%--------------------------------------------------------------------------------------------------------------
603\subsection{$s$- and $z$-$s$-coordinates}
604\label{DYN_hpg_sco}
605
606Pressure gradient formulations in an $s$-coordinate have been the subject of a vast
607number of papers ($e.g.$, \citet{Song1998, Shchepetkin_McWilliams_OM05}).
608A number of different pressure gradient options are coded, but they are not yet fully
609documented or tested.
610
611$\bullet$ Traditional coding (see for example \citet{Madec_al_JPO96}: (\np{ln\_dynhpg\_sco}=true,
612\np{ln\_dynhpg\_hel}=true)
613\begin{equation} \label{Eq_dynhpg_sco}
614\left\{ \begin{aligned}
615 - \frac{1}                   {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  p^h  \right] 
616+ \frac{g\; \overline {\rho}^{i+1/2}}  {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  z_t   \right]    \\
617 - \frac{1}                   {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  p^h  \right] 
618+ \frac{g\; \overline {\rho}^{j+1/2}}  {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  z_t   \right]    \\
619\end{aligned} \right.
620\end{equation} 
621
622Where the first term is the pressure gradient along coordinates, computed as in
623\eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of
624the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point
625($e_{3w}$). The version \np{ln\_dynhpg\_hel}=true has been added by Aike
626Beckmann and involves a redefinition of the relative position of $T$-points relative
627to $w$-points.
628
629$\bullet$ Weighted density Jacobian (WDJ) \citep{Song1998} (\np{ln\_dynhpg\_wdj}=true)
630
631$\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{Shchepetkin_McWilliams_OM05} 
632(\np{ln\_dynhpg\_djc}=true)
633
634$\bullet$ Rotated axes scheme (rot) \citep{Thiem_Berntsen_OM06} (\np{ln\_dynhpg\_rot}=true)
635
636Note that expression \eqref{Eq_dynhpg_sco} is used when the variable volume
637formulation is activated (\key{vvl}) because in that case, even with a flat bottom,
638the coordinate surfaces are not horizontal but follow the free surface
639\citep{Levier2007}. The other pressure gradient options are not yet available.
640
641%--------------------------------------------------------------------------------------------------------------
642%           Time-scheme
643%--------------------------------------------------------------------------------------------------------------
644\subsection   [Time-scheme (\np{ln\_dynhpg\_imp}) ]
645         {Time-scheme (\np{ln\_dynhpg\_imp}= true/false)}
646\label{DYN_hpg_imp}
647
648The default time differencing scheme used for the horizontal pressure gradient is
649a leapfrog scheme and therefore the density used in all discrete expressions given
650above is the  \textit{now} density, computed from the \textit{now} temperature and
651salinity. In some specific cases (usually high resolution simulations over an ocean
652domain which includes weakly stratified regions) the physical phenomenon that
653controls the time-step is internal gravity waves (IGWs). A semi-implicit scheme for
654doubling the stability limit associated with IGWs can be used \citep{Brown_Campana_MWR78,
655Maltrud1998}. It involves the evaluation of the hydrostatic pressure gradient as an
656average over the three time levels $t-\rdt$, $t$, and $t+\rdt$ ($i.e.$ 
657\textit{before}\textit{now} and  \textit{after} time-steps), rather than at the central
658time level $t$ only, as in the standard leapfrog scheme.
659
660$\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}=true):
661
662\begin{equation} \label{Eq_dynhpg_lf}
663\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
664   -\frac{1}{\rho _o \,e_{1u} }\delta _{i+1/2} \left[ {p_h^t } \right]
665\end{equation}
666
667$\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}=true):
668\begin{equation} \label{Eq_dynhpg_imp}
669\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
670   -\frac{1}{4\,\rho _o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt}  \right]
671\end{equation}
672
673The semi-implicit time scheme \eqref{Eq_dynhpg_imp} is made possible without
674significant additional computation since the density can be updated to time level
675$t+\rdt$ before computing the horizontal hydrostatic pressure gradient. It can
676be easily shown that the stability limit associated with the hydrostatic pressure
677gradient doubles using \eqref{Eq_dynhpg_imp} compared to that using the
678standard leapfrog scheme \eqref{Eq_dynhpg_lf}. Note that \eqref{Eq_dynhpg_imp} 
679is equivalent to applying a time filter to the pressure gradient to eliminate high
680frequency IGWs. Obviously, when using \eqref{Eq_dynhpg_imp}, the doubling of
681the time-step is achievable only if no other factors control the time-step, such as
682the stability limits associated with advection or diffusion.
683
684In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}=true.
685In this case, we choose to apply the time filter to temperature and salinity used in
686the equation of state, instead of applying it to the hydrostatic pressure or to the
687density, so that no additional storage array has to be defined. The density used to
688compute the hydrostatic pressure gradient (whatever the formulation) is evaluated
689as follows:
690\begin{equation} \label{Eq_rho_flt}
691   \rho^t = \rho( \widetilde{T},\widetilde {S},z_t)
692 \quad     \text{with}  \quad 
693   \widetilde{X} = 1 / 4 \left(  X^{t+\rdt} +2 \,X^t + X^{t-\rdt}  \right)
694\end{equation}
695
696Note that in the semi-implicit case, it is necessary to save the filtered density, an
697extra three-dimensional field, in the restart file to restart the model with exact
698reproducibility. This option is controlled by  \np{nn\_dynhpg\_rst}, a namelist parameter.
699
700% ================================================================
701% Surface Pressure Gradient
702% ================================================================
703\section  [Surface pressure gradient (\textit{dynspg}) ]
704      {Surface pressure gradient (\mdl{dynspg})}
705\label{DYN_spg}
706%-----------------------------------------nam_dynspg----------------------------------------------------
707\namdisplay{namdyn_spg} 
708%------------------------------------------------------------------------------------------------------------
709
710$\ $\newline      %force an empty line
711
712%%%
713The surface pressure gradient term is related to the representation of the free surface (\S\ref{PE_hor_pg}). The main distinction is between the fixed volume case (linear free surface) and the variable volume case (nonlinear free surface, \key{vvl} is defined). In the linear free surface case (\S\ref{PE_free_surface}) the vertical scale factors $e_{3}$ are fixed in time, while they are time-dependent in the nonlinear case (\S\ref{PE_free_surface}). With both linear and nonlinear free surface, external gravity waves are allowed in the equations, which imposes a very small time step when an explicit time stepping is used. Two methods are proposed to allow a longer time step for the three-dimensional equations: the filtered free surface, which is a modification of the continuous equations (see \eqref{Eq_PE_flt}), and the split-explicit free surface described below. The extra term introduced in the filtered method is calculated implicitly, so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
714
715%%%
716
717
718The form of the surface pressure gradient term depends on how the user wants to handle
719the fast external gravity waves that are a solution of the analytical equation (\S\ref{PE_hor_pg}).
720Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx):
721an explicit formulation which requires a small time step ;
722a filtered free surface formulation which allows a larger time step by adding a filtering
723term into the momentum equation ;
724and a split-explicit free surface formulation, described below, which also allows a larger time step.
725
726The extra term introduced in the filtered method is calculated
727implicitly, so that a solver is used to compute it. As a consequence the update of the $next$ 
728velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
729
730
731
732%--------------------------------------------------------------------------------------------------------------
733% Explicit free surface formulation
734%--------------------------------------------------------------------------------------------------------------
735\subsection{Explicit free surface (\key{dynspg\_exp})}
736\label{DYN_spg_exp}
737
738In the explicit free surface formulation (\key{dynspg\_exp} defined), the model time step
739is chosen to be small enough to resolve the external gravity waves (typically a few tens of seconds).
740The surface pressure gradient, evaluated using a leap-frog scheme ($i.e.$ centered in time),
741is thus simply given by :
742\begin{equation} \label{Eq_dynspg_exp}
743\left\{ \begin{aligned}
744 - \frac{1}{e_{1u}\,\rho_o} \;   \delta _{i+1/2} \left[  \,\rho \,\eta\,  \right]   \\
745 - \frac{1}{e_{2v}\,\rho_o} \;   \delta _{j+1/2} \left[  \,\rho \,\eta\,  \right] 
746\end{aligned} \right.
747\end{equation} 
748
749Note that in the non-linear free surface case ($i.e.$ \key{vvl} defined), the surface pressure
750gradient is already included in the momentum tendency  through the level thickness variation
751allowed in the computation of the hydrostatic pressure gradient. Thus, nothing is done in the \mdl{dynspg\_exp} module.
752
753%--------------------------------------------------------------------------------------------------------------
754% Split-explict free surface formulation
755%--------------------------------------------------------------------------------------------------------------
756\subsection{Split-Explicit free surface (\key{dynspg\_ts})}
757\label{DYN_spg_ts}
758
759The split-explicit free surface formulation used in \NEMO (\key{dynspg\_ts} defined),
760also called the time-splitting formulation, follows the one
761proposed by \citet{Griffies_Bk04}. The general idea is to solve the free surface
762equation and the associated barotropic velocity equations with a smaller time
763step than $\rdt$, the time step used for the three dimensional prognostic
764variables (Fig.~\ref{Fig_DYN_dynspg_ts}).
765The size of the small time step, $\rdt_e$ (the external mode or barotropic time step)
766 is provided through the \np{nn\_baro} namelist parameter as:
767$\rdt_e = \rdt / nn\_baro$.
768 
769
770%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
771\begin{figure}[!t] \label{Fig_DYN_dynspg_ts}
772\begin{center}
773\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_DYN_dynspg_ts.pdf}
774\caption{Schematic of the split-explicit time stepping scheme for the external
775and internal modes. Time increases to the right.
776Internal mode time steps (which are also the model time steps) are denoted
777by $t-\rdt$, $t, t+\rdt$, and $t+2\rdt$.
778The curved line represents a leap-frog time step, and the smaller time
779steps $N \rdt_e=\frac{3}{2}\rdt$ are denoted by the zig-zag line.
780The vertically integrated forcing \textbf{M}(t) computed at the model time step $t$ 
781represents the interaction between the external and internal motions.
782While keeping \textbf{M} and freshwater forcing field fixed, a leap-frog
783integration carries the external mode variables (surface height and vertically
784integrated velocity) from $t$ to $t+\frac{3}{2} \rdt$ using N external time
785steps of length $\rdt_e$. Time averaging the external fields over the
786$\frac{2}{3}N+1$ time steps (endpoints included) centers the vertically integrated
787velocity and the sea surface height at the model timestep $t+\rdt$.
788These averaged values are used to update \textbf{M}(t) with both the surface
789pressure gradient and the Coriolis force, therefore providing the $t+\rdt$
790velocity.  The model time stepping scheme can then be achieved by a baroclinic
791leap-frog time step that carries the surface height from $t-\rdt$ to $t+\rdt$}
792\end{center}
793\end{figure}
794%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
795
796The split-explicit formulation has a damping effect on external gravity waves,
797which is weaker damping than that for the filtered free surface but still significant, as
798shown by \citet{Levier2007} in the case of an analytical barotropic Kelvin wave.
799
800%>>>>>===============
801\gmcomment{               %%% copy from griffies Book
802
803\textbf{title: Time stepping the barotropic system }
804
805Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$. Hence,
806we can update the surface height and vertically integrated velocity with a leap-frog
807scheme using the small barotropic time step $\rdt$. We have
808
809\begin{equation} \label{DYN_spg_ts_eta}
810\eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
811   = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
812\end{equation}
813\begin{multline} \label{DYN_spg_ts_u}
814\textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
815   = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
816   - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
817\end{multline}
818\
819
820In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with the barotropic time steps. The $\tau$ time label on $\eta^{(b)}$ 
821and $U^{(b)}$ denotes the baroclinic time at which the vertically integrated forcing $\textbf{M}(\tau)$ (note that this forcing includes the surface freshwater forcing), the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over a single cycle. This is also the time
822that sets the barotropic time steps via
823\begin{equation} \label{DYN_spg_ts_t}
824t_n=\tau+n\rdt   
825\end{equation}
826with $n$ an integer. The density scaled surface pressure is evaluated via
827\begin{equation} \label{DYN_spg_ts_ps}
828p_s^{(b)}(\tau,t_{n}) = \begin{cases}
829   g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_&      \text{non-linear case} \\
830   g \;\eta_s^{(b)}(\tau,t_{n}&      \text{linear case} 
831   \end{cases}
832\end{equation}
833To get started, we assume the following initial conditions
834\begin{equation} \label{DYN_spg_ts_eta}
835\begin{split}
836\eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}
837\\
838\eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} 
839\end{split}
840\end{equation}
841with
842\begin{equation} \label{DYN_spg_ts_etaF}
843 \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n})
844\end{equation}
845the time averaged surface height taken from the previous barotropic cycle. Likewise,
846\begin{equation} \label{DYN_spg_ts_u}
847\textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)}   \\
848\\
849\textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}   
850\end{equation}
851with
852\begin{equation} \label{DYN_spg_ts_u}
853 \overline{\textbf{U}^{(b)}(\tau)} 
854   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n})
855\end{equation}
856the time averaged vertically integrated transport. Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
857
858Upon reaching $t_{n=N} = \tau + 2\rdt \tau$ , the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at baroclinic time $\tau + \rdt \tau$ 
859\begin{equation} \label{DYN_spg_ts_u}
860\textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} 
861   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
862\end{equation}
863The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using the following form
864
865\begin{equation} \label{DYN_spg_ts_ssh}
866\eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] 
867\end{equation}
868
869 The use of this "big-leap-frog" scheme for the surface height ensures compatibility between the mass/volume budgets and the tracer budgets. More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
870 
871In general, some form of time filter is needed to maintain integrity of the surface
872height field due to the leap-frog splitting mode in equation \ref{DYN_spg_ts_ssh}. We
873have tried various forms of such filtering, with the following method discussed in
874\cite{Griffies_al_MWR01} chosen due to its stability and reasonably good maintenance of
875tracer conservation properties (see Section ??)
876
877\begin{equation} \label{DYN_spg_ts_sshf}
878\eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
879\end{equation}
880Another approach tried was
881
882\begin{equation} \label{DYN_spg_ts_sshf2}
883\eta^{F}(\tau-\Delta) = \eta(\tau)
884   + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt)
885                + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right]
886\end{equation}
887
888which is useful since it isolates all the time filtering aspects into the term multiplied
889by $\alpha$. This isolation allows for an easy check that tracer conservation is exact when
890eliminating tracer and surface height time filtering (see Section ?? for more complete discussion). However, in the general case with a non-zero $\alpha$, the filter \ref{DYN_spg_ts_sshf} was found to be more conservative, and so is recommended.
891
892}            %%end gm comment (copy of griffies book)
893
894%>>>>>===============
895
896
897%--------------------------------------------------------------------------------------------------------------
898% Filtered free surface formulation
899%--------------------------------------------------------------------------------------------------------------
900\subsection{Filtered free surface (\key{dynspg\_flt})}
901\label{DYN_spg_fltp}
902
903The filtered formulation follows the \citet{Roullet_Madec_JGR00} implementation.
904The extra term introduced in the equations (see {\S}I.2.2) is solved implicitly.
905The elliptic solvers available in the code are documented in \S\ref{MISC}.
906
907%% gm %%======>>>>   given here the discrete eqs provided to the solver
908
909Note that in the linear free surface formulation (\key{vvl} not defined), the ocean depth
910is time-independent and so is the matrix to be inverted. It is computed once and for all and applies to all ocean time steps.
911
912% ================================================================
913% Lateral diffusion term
914% ================================================================
915\section  [Lateral diffusion term (\textit{dynldf})]
916      {Lateral diffusion term (\mdl{dynldf})}
917\label{DYN_ldf}
918%------------------------------------------nam_dynldf----------------------------------------------------
919\namdisplay{namdyn_ldf} 
920%-------------------------------------------------------------------------------------------------------------
921
922The options available for lateral diffusion are to use either laplacian
923(rotated or not) or biharmonic operators. The coefficients may be constant
924or spatially variable; the description of the coefficients is found in the chapter
925on lateral physics (Chap.\ref{LDF}). The lateral diffusion of momentum is
926evaluated using a forward scheme, $i.e.$ the velocity appearing in its expression
927is the \textit{before} velocity in time, except for the pure vertical component
928that appears when a tensor of rotation is used. This latter term is solved
929implicitly together with the vertical diffusion term (see \S\ref{DOM_nxt})
930
931At the lateral boundaries either free slip, no slip or partial slip boundary
932conditions are applied according to the user's choice (see Chap.\ref{LBC}).
933
934% ================================================================
935\subsection   [Iso-level laplacian operator (\np{ln\_dynldf\_lap}) ]
936         {Iso-level laplacian operator (\np{ln\_dynldf\_lap}=true)}
937\label{DYN_ldf_lap}
938
939For lateral iso-level diffusion, the discrete operator is:
940\begin{equation} \label{Eq_dynldf_lap}
941\left\{ \begin{aligned}
942 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta _{i+1/2} \left[ {A_T^{lm} 
943\;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta _j \left[
944{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
945\\
946 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta _{j+1/2} \left[ {A_T^{lm} 
947\;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta _i \left[
948{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
949\end{aligned} \right.
950\end{equation} 
951
952As explained in \S\ref{PE_ldf}, this formulation (as the gradient of a divergence
953and curl of the vorticity) preserves symmetry and ensures a complete
954separation between the vorticity and divergence parts of the momentum diffusion.
955
956%--------------------------------------------------------------------------------------------------------------
957%           Rotated laplacian operator
958%--------------------------------------------------------------------------------------------------------------
959\subsection   [Rotated laplacian operator (\np{ln\_dynldf\_iso}) ]
960         {Rotated laplacian operator (\np{ln\_dynldf\_iso}=true)}
961\label{DYN_ldf_iso}
962
963A rotation of the lateral momentum diffusion operator is needed in several cases:
964for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}=true) and for
965either iso-neutral (\np{ln\_dynldf\_iso}=true) or geopotential
966(\np{ln\_dynldf\_hor}=true) diffusion in the $s$-coordinate. In the partial step
967case, coordinates are horizontal except at the deepest level and no
968rotation is performed when \np{ln\_dynldf\_hor}=true. The diffusion operator
969is defined simply as the divergence of down gradient momentum fluxes on each
970momentum component. It must be emphasized that this formulation ignores
971constraints on the stress tensor such as symmetry. The resulting discrete
972representation is:
973\begin{equation} \label{Eq_dyn_ldf_iso}
974\begin{split}
975 D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\
976&  \left\{\quad  {\delta _{i+1/2} \left[ {A_T^{lm}  \left(
977    {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta _{i}[u]
978   -e_{2t} \; r_{1t} \,\overline{\overline {\delta _{k+1/2}[u]}}^{\,i,\,k}}
979 \right)} \right]}   \right.
980\\ 
981& \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} 
982}\,\delta _{j+1/2} [u] - e_{1f}\, r_{2f} 
983\,\overline{\overline {\delta _{k+1/2} [u]}} ^{\,j+1/2,\,k}} 
984\right)} \right]
985\\ 
986&\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline 
987{\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} } 
988\right.} \right.
989\\ 
990&  \ \qquad \qquad \qquad \quad\
991- e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2}
992\\ 
993& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
994+\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2} 
995\right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} 
996\\
997\\
998 D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} }    \\
999&  \left\{\quad  {\delta _{i+1/2} \left[ {A_f^{lm}  \left(
1000    {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta _{i+1/2}[v]
1001   -e_{2f} \; r_{1f} \,\overline{\overline {\delta _{k+1/2}[v]}}^{\,i+1/2,\,k}}
1002 \right)} \right]}   \right.
1003\\ 
1004& \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} 
1005}\,\delta _{j} [v] - e_{1t}\, r_{2t} 
1006\,\overline{\overline {\delta _{k+1/2} [v]}} ^{\,j,\,k}} 
1007\right)} \right]
1008\\ 
1009& \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline 
1010{\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right.
1011\\
1012&  \ \qquad \qquad \qquad \quad\
1013- e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2}
1014\\ 
1015& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1016+\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2} 
1017\right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\} 
1018 \end{split}
1019\end{equation}
1020where $r_1$ and $r_2$ are the slopes between the surface along which the
1021diffusion operator acts and the surface of computation ($z$- or $s$-surfaces).
1022The way these slopes are evaluated is given in the lateral physics chapter
1023(Chap.\ref{LDF}).
1024
1025%--------------------------------------------------------------------------------------------------------------
1026%           Iso-level bilaplacian operator
1027%--------------------------------------------------------------------------------------------------------------
1028\subsection   [Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap})]
1029         {Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap}=true)}
1030\label{DYN_ldf_bilap}
1031
1032The lateral fourth order operator formulation on momentum is obtained by
1033applying \eqref{Eq_dynldf_lap} twice. It requires an additional assumption on
1034boundary conditions: the first derivative term normal to the coast depends on
1035the free or no-slip lateral boundary conditions chosen, while the third
1036derivative terms normal to the coast are set to zero (see Chap.\ref{LBC}).
1037%%%
1038\gmcomment{add a remark on the the change in the position of the coefficient}
1039%%%
1040
1041% ================================================================
1042%           Vertical diffusion term
1043% ================================================================
1044\section  [Vertical diffusion term (\mdl{dynzdf})]
1045      {Vertical diffusion term (\mdl{dynzdf})}
1046\label{DYN_zdf}
1047%----------------------------------------------namzdf------------------------------------------------------
1048\namdisplay{namzdf} 
1049%-------------------------------------------------------------------------------------------------------------
1050
1051The large vertical diffusion coefficient found in the surface mixed layer together
1052with high vertical resolution implies that in the case of explicit time stepping there
1053would be too restrictive a constraint on the time step. Two time stepping schemes
1054can be used for the vertical diffusion term : $(a)$ a forward time differencing
1055scheme (\np{ln\_zdfexp}=true) using a time splitting technique
1056(\np{nn\_zdfexp} $>$ 1) or $(b)$ a backward (or implicit) time differencing scheme
1057(\np{ln\_zdfexp}=false) (see \S\ref{DOM_nxt}). Note that namelist variables
1058\np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics.
1059
1060The formulation of the vertical subgrid scale physics is the same whatever
1061the vertical coordinate is. The vertical diffusion operators given by
1062\eqref{Eq_PE_zdf} take the following semi-discrete space form:
1063\begin{equation} \label{Eq_dynzdf}
1064\left\{   \begin{aligned}
1065D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta _k \left[ \frac{A_{uw}^{vm} }{e_{3uw} }
1066                              \ \delta _{k+1/2} [\,u\,]         \right]     \\
1067\\
1068D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta _k \left[ \frac{A_{vw}^{vm} }{e_{3vw} }
1069                              \ \delta _{k+1/2} [\,v\,]         \right]
1070\end{aligned}   \right.
1071\end{equation} 
1072where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and
1073diffusivity coefficients. The way these coefficients are evaluated
1074depends on the vertical physics used (see \S\ref{ZDF}).
1075
1076The surface boundary condition on momentum is the stress exerted by
1077the wind. At the surface, the momentum fluxes are prescribed as the boundary
1078condition on the vertical turbulent momentum fluxes,
1079\begin{equation} \label{Eq_dynzdf_sbc}
1080\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1}
1081    = \frac{1}{\rho _o} \binom{\tau _u}{\tau _v }
1082\end{equation}
1083where $\left( \tau _u ,\tau _v \right)$ are the two components of the wind stress
1084vector in the (\textbf{i},\textbf{j}) coordinate system. The high mixing coefficients
1085in the surface mixed layer ensure that the surface wind stress is distributed in
1086the vertical over the mixed layer depth. If the vertical mixing coefficient
1087is small (when no mixed layer scheme is used) the surface stress enters only
1088the top model level, as a body force. The surface wind stress is calculated
1089in the surface module routines (SBC, see Chap.\ref{SBC})
1090
1091The turbulent flux of momentum at the bottom of the ocean is specified through
1092a bottom friction parameterisation (see \S\ref{ZDF_bfr})
1093
1094% ================================================================
1095% External Forcing
1096% ================================================================
1097\section{External Forcings}
1098\label{DYN_forcing}
1099
1100Besides the surface and bottom stresses (see the above section) which are
1101introduced as boundary conditions on the vertical mixing, two other forcings
1102enter the dynamical equations.
1103
1104One is the effect of atmospheric pressure on the ocean dynamics.
1105Another forcing term is the tidal potential.
1106Both of which will be introduced into the reference version soon.
1107
1108\gmcomment{atmospheric pressure is there!!!!    include its description }
1109
1110% ================================================================
1111% Time evolution term
1112% ================================================================
1113\section  [Time evolution term (\textit{dynnxt})]
1114      {Time evolution term (\mdl{dynnxt})}
1115\label{DYN_nxt}
1116
1117%----------------------------------------------namdom----------------------------------------------------
1118\namdisplay{namdom} 
1119%-------------------------------------------------------------------------------------------------------------
1120
1121The general framework for dynamics time stepping is a leap-frog scheme,
1122$i.e.$ a three level centred time scheme associated with an Asselin time filter
1123(cf. Chap.\ref{STP}). The scheme is applied to the velocity, except when using
1124the flux form of momentum advection (cf. \S\ref{DYN_adv_cor_flux}) in the variable
1125volume case (\key{vvl} defined), where it has to be applied to the thickness
1126weighted velocity (see \S\ref{Apdx_A_momentum}
1127
1128$\bullet$ vector invariant form or linear free surface (\np{ln\_dynhpg\_vec}=true ; \key{vvl} not defined):
1129\begin{equation} \label{Eq_dynnxt_vec}
1130\left\{   \begin{aligned}
1131&u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt  \ \text{RHS}_u^t     \\
1132&u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right]
1133\end{aligned}   \right.
1134\end{equation} 
1135
1136$\bullet$ flux form and nonlinear free surface (\np{ln\_dynhpg\_vec}=false ; \key{vvl} defined):
1137\begin{equation} \label{Eq_dynnxt_flux}
1138\left\{   \begin{aligned}
1139&\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t     \\
1140&\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t
1141  +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right]
1142\end{aligned}   \right.
1143\end{equation} 
1144where RHS is the right hand side of the momentum equation, the subscript $f$ 
1145denotes filtered values and $\gamma$ is the Asselin coefficient. $\gamma$ is
1146initialized as \np{nn\_atfp} (namelist parameter). Its default value is \np{nn\_atfp} = $10^{-3}$.
1147In both cases, the modified Asselin filter is not applied since perfect conservation
1148is not an issue for the momentum equations.
1149
1150Note that with the filtered free surface, the update of the \textit{after} velocities
1151is done in the \mdl{dynsp\_flt} module, and only array swapping
1152and Asselin filtering is done in \mdl{dynnxt}.
1153
1154% ================================================================
Note: See TracBrowser for help on using the repository browser.