New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in tags/nemo_v3_beta/DOC/TexFiles/Biblio – NEMO

source: tags/nemo_v3_beta/DOC/TexFiles/Biblio/Biblio.bib @ 9309

Last change on this file since 9309 was 994, checked in by gm, 16 years ago

trunk - add steven correction + several other things + rename BETA into TexFiles?

  • Property svn:executable set to *
File size: 79.6 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@ARTICLE{Adcroft_Campin_OM04,
89  author = {A. Adcroft and J.-M. Campin},
90  title = {Re-scaled height coordinates for accurate representation of free-surface
91   flows in ocean circulation models},
92  journal = {Ocean Modelling},
93  year = {2004},
94  volume = {7},
95  owner = {gm},
96  timestamp = {2008.01.27}
97}
98
99@ARTICLE{Arakawa1966,
100  author = {A. Arakawa},
101  title = {Computational design for long term numerical integration of the equations
102   of fluid motion, two-dimensional incompressible flow, Part. I.},
103  journal = JCP,
104  year = {1966},
105  volume = {I},
106  pages = {119-149},
107  owner = {gm},
108  timestamp = {2007.08.04}
109}
110
111@ARTICLE{Arakawa1990,
112  author = {A. Arakawa and Y.-J. G. Hsu},
113  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
114   the Shallow Water Equations},
115  journal = MWR,
116  year = {1990},
117  volume = {118},
118  pages = {1960--1969
119   
120   },
121  number = {10},
122  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
123   water equations with no or arbitrarily small energy dissipation,
124   a family of finite-difference schemes have been derived with which
125   potential enstrophy is guaranteed to decrease while energy is conserved
126   (when the mass flux is nondivergent and time is continuous). Among
127   this family of schemes, there is a member that minimizes the spurious
128   impact of infinite potential vorticities associated with infinitesimal
129   fluid depth. The scheme is, therefore, useful for problems in which
130   the free surface may intersect with the lower boundary.},
131  date = {October 01, 1990},
132  owner = {gm},
133  timestamp = {2007.08.05}
134}
135
136@ARTICLE{Arakawa1981,
137  author = {Arakawa, Akio and Lamb, Vivian R.},
138  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
139   Water Equations},
140  journal = MWR,
141  year = {1981},
142  volume = {109},
143  pages = {18--36
144   
145   },
146  number = {1},
147  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
148   topography, a potential enstrophy and energy conserving scheme for
149   the shallow water equations is derived. It is pointed out that a
150   family of schemes can conserve total energy for general flow and
151   potential enstrophy for flow with no mass flux divergence. The newly
152   derived scheme is a unique member of this family, that conserves
153   both potential enstrophy and energy for general flow. Comparison
154   by means of numerical experiment with a scheme that conserves (potential)
155   enstrophy for purely horizontal nondivergent flow demonstrated the
156   considerable superiority of the newly derived potential enstrophy
157   and energy conserving scheme, not only in suppressing a spurious
158   energy cascade but also in determining the overall flow regime. The
159   potential enstrophy and energy conserving scheme for a spherical
160   grid is also presented.},
161  date = {January 01, 1981},
162  owner = {gm},
163  timestamp = {2007.08.05}
164}
165
166@ARTICLE{Arhan2006,
167  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
169   Atlantic Ocean from a general circulation model},
170  journal = JPO,
171  year = {2006},
172  volume = { 36},
173  pages = {1502-1522}
174}
175
176@ARTICLE{ASSELIN1972,
177  author = {R. Asselin},
178  title = {Frequency Filter for Time Integrations},
179  journal = MWR,
180  year = {1972},
181  volume = {100},
182  pages = {487-490},
183  number = {6},
184  abstract = {A simple filter for controlling high-frequency computational and physical
185   modes arising in time integrations is proposed. A linear analysis
186   of the filter with leapfrog, implicit, and semi-implicit, differences
187   is made. The filter very quickly removes the computational mode and
188   is also very useful in damping high-frequency physical waves. The
189   stability of the leapfrog scheme is adversely affected when a large
190   filter parameter is used, but the analysis shows that the use of
191   centered differences with frequency filter is still more advantageous
192   than the use of the Euler-backward method. An example of the use
193   of the filter in an actual forecast with the meteorological equations
194   is shown.},
195  date = {June 01, 1972},
196  owner = {gm},
197  timestamp = {2007.08.03}
198}
199
200@ARTICLE{Barnier_al_OD06,
201  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
202   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
203   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
204   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
205   and B. De Cuevas},
206  title = {Impact of partial steps and momentum advection schemes in a global
207   ocean circulation model at eddy-permitting resolution.},
208  journal = {Ocean Dyn.},
209  year = {2006},
210  pages = {doi: 10.1007/s10236-006-0082-1.},
211  owner = {gm},
212  timestamp = {2008.01.25}
213}
214
215@INCOLLECTION{Barnier1996,
216  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
217  title = {Modeling the ocean circulation in the South Atlantic: A strategy
218   for dealing with open boundaries},
219  booktitle = {The South Atlantic: Present and Past Circulation},
220  publisher = {Springer-Verlag, Berlin},
221  year = {1996},
222  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
223  pages = {289-304}
224}
225
226@ARTICLE{Barnier1998,
227  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
228   and M. Coulibaly},
229  title = {A sigma-coordinate primitive equation model for studying the circulation
230   in the South Atlantic I, Model configuration with error estimates},
231  journal = {Deep Sea Res.},
232  year = {1998},
233  volume = {45},
234  pages = {543-572}
235}
236
237@ARTICLE{Beckmann1998,
238  author = {A. Beckmann},
239  title = {The representation of bottom boundary layer processes in numerical
240   ocean circulation models.},
241  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
242   (eds.), NATO Science Series, Kluwer Academic Publishers},
243  year = {1998},
244  owner = {gm},
245  timestamp = {2007.08.04}
246}
247
248@ARTICLE{BeckDos1998,
249  author = {A. Beckmann and R. D\"{o}scher},
250  title = {A method for improved representation of dense water spreading over
251   topography in geopotential-coordinate models},
252  journal = JPO,
253  year = {1998},
254  volume = {27},
255  pages = {581-591},
256  owner = {gm},
257  timestamp = {2007.08.04}
258}
259
260@ARTICLE{Beckmann1993,
261  author = {A. Beckmann and D. B. Haidvogel},
262  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
263   I - Problem Formulation and Model Accuracy},
264  journal = {Journal of Physical Oceanography},
265  year = {1993},
266  volume = {23},
267  pages = {1736--1753
268   
269   },
270  number = {8},
271  abstract = {A sigma coordinate ocean circulation model is employed to study flow
272   trapped to a tall seamount in a periodic f-plane channel. In Part
273   I, errors arising from the pressure gradient formulation in the steep
274   topography/strong stratification limit are examined. To illustrate
275   the error properties, a linearized adiabatic version of the model
276   is considered, both with and without forcing, and starting from a
277   resting state with level isopycnals. The systematic discretization
278   errors from the horizontal pressure gradient terms are shown analytically
279   to increase with steeper topography (relative to a fixed horizontal
280   grid) and for stronger stratification (as measured by the Burger
281   number). For an initially quiescent unforced ocean, the pressure
282   gradient errors produce a spurious oscillating current that, at the
283   end of 10 days, is approximately 1 cm s−1 in amplitude. The
284   period of the spurious oscillation (about 0.5 days) is shown to be
285   a consequence of the particular form of the pressure gradient terms
286   in the sigma coordinate system. With the addition of an alongchannel
287   diurnal forcing, resonantly generated seamount-trapped waves are
288   observed to form. Error levels in these solutions are less than those
289   in the unforced cases; spurious time-mean currents are several orders
290   of magnitude less in amplitude than the resonant propagating waves.
291   However, numerical instability is encountered in a wider range of
292   parameter space. The properties of these resonantly generated waves
293   is explored in detail in Part II of this study. Several new formulations
294   of the pressure gradient terms are tested. Two of the formulations—constructed
295   to have additional conservation properties relative to the traditional
296   form of the pressure gradient terms (conservation of JEBAR and conservation
297   of energy)—are found to have error properties generally similar
298   to those of the traditional formulation. A corrected gradient algorithm,
299   based upon vertical interpolation of the pressure field, has a dramatically
300   reduced error level but a much more restrictive range of stable behavior.},
301  date = {August 01, 1993},
302  owner = {gm},
303  timestamp = {2007.08.03}
304}
305
306@ARTICLE{Blanke_al_JPO99,
307  author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
308  title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General
309   Circulation Model},
310  journal = JPO,
311  year = {1999},
312  volume = {29, 11},
313  pages = {2753-2768},
314  owner = {gm},
315  timestamp = {2008.05.27}
316}
317
318@ARTICLE{Blanke1993,
319  author = {B. Blanke and P. Delecluse},
320  title = {Low frequency variability of the tropical Atlantic ocean simulated
321   by a general circulation model with mixed layer physics},
322  journal = JPO,
323  year = {1993},
324  volume = {23},
325  pages = {1363-1388}
326}
327
328@ARTICLE{blanketal97,
329  author = {B. Blanke and J. D. Neelin and D. Gutzler},
330  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
331  journal = JC,
332  year = {1997},
333  volume = {10},
334  pages = {1473-1486},
335  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
336   and predictability is the role of random
337   
338   forcing by atmospheric variability with short correlation times, on
339   coupled variability with interannual timescales.
340   
341   The discussion of this question requires a quantitative assessment
342   of the stochastic component of the wind stress
343   
344   forcing. Self-consistent estimates of this noise (the stochastic forcing)
345   can be made quite naturally in an empirical
346   
347   atmospheric model that uses a statistical estimate of the relationship
348   between sea surface temperature (SST) and
349   
350   wind stress anomaly patterns as the deterministic feedback between
351   the ocean and the atmosphere. The authors
352   
353   use such an empirical model as the atmospheric component of a hybrid
354   coupled model, coupled to the GFDL
355   
356   ocean general circulation model. The authors define as residual the
357   fraction of the Florida State University wind
358   
359   stress not explained by the empirical atmosphere run from observed
360   SST, and a noise product is constructed by
361   
362   random picks among monthly maps of this residual.
363   
364   The impact of included or excluded noise is assessed with several
365   ensembles of simulations. The model is
366   
367   run in coupled regimes where, in the absence of noise, it is perfectly
368   periodic: in the presence of prescribed
369   
370   seasonal variability, the model is strongly frequency locked on a
371   2-yr period; in annual average conditions it
372   
373   has a somewhat longer inherent ENSO period (30 months). Addition of
374   noise brings an irregular behavior that
375   
376   is considerably richer in spatial patterns as well as in temporal
377   structures. The broadening of the model ENSO
378   
379   spectral peak is roughly comparable to observed. The tendency to frequency
380   lock to subharmonic resonances
381   
382   of the seasonal cycle tends to increase the broadening and to emphasize
383   lower frequencies. An inclination to
384   
385   phase lock to preferred seasons persists even in the presence of noise-induced
386   irregularity. Natural uncoupled
387   
388   atmospheric variability is thus a strong candidate for explaining
389   the observed aperiodicity in ENSO time series.
390   
391   Model–model hindcast experiments also suggest the importance of atmospheric
392   noise in setting limits to ENSO
393   
394   predictability.},
395  pdf = {Blanke_etal_JC97.pdf}
396}
397
398@ARTICLE{Blanke_Raynaud_JPO97,
399  author = {B. Blanke and S. Raynaud},
400  title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and
401   Lagrangian Approach from GCM Results},
402  journal = JPO,
403  year = {1997},
404  volume = {27, 6},
405  pages = {1038-1053},
406  owner = {gm},
407  timestamp = {2008.05.27}
408}
409
410@ARTICLE{Blayo2005,
411  author = {E. Blayo and L. Debreu},
412  title = {Revisiting open boundary conditions from the point of view of characteristic
413   variables},
414  journal = {Ocean Modelling},
415  year = {2005},
416  volume = {9},
417  pages = {231-252}
418}
419
420@ARTICLE{Bougeault1989,
421  author = {P. Bougeault and P. Lacarrere},
422  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
423   Model},
424  journal = MWR,
425  year = {1989},
426  volume = {117},
427  pages = {1872-1890},
428  number = {8},
429  abstract = {The possibility of extending existing techniques for turbulence parameterization
430   in the planetary boundary layer to attitude, orography-induced turbulence
431   events is examined. Starting from a well-tested scheme, we show that
432   it is possible to generalize the specification method of the length
433   scales, with no deterioration of the scheme performance in the boundary
434   layer. The new scheme is implemented in a two-dimensional version
435   of a limited-area, numerical model used for the simulation of mesobeta-scale
436   atmospheric flows. Three well-known cases of orographically induced
437   turbulence are studied. The comparison with observations and former
438   studies shows a satisfactory behavior of the new scheme.},
439  date = {August 01, 1989},
440  owner = {gm},
441  timestamp = {2007.08.06}
442}
443
444@ARTICLE{Brown1978,
445  author = {J. A. Brown and K. A. Campana},
446  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
447  journal = MWR,
448  year = {1978},
449  volume = {106},
450  pages = {1125-1136},
451  number = {8},
452  month = aug,
453  abstract = {A simple method for integrating the primitive equations is presented
454   which allows for a timestep increment up to twice that of the conventional
455   leapfrog scheme. It consists of a time-averaging operator, which
456   incorporates three consecutive time levels, on the pressure gradient
457   terms in the equations of motion. An attractive feature of the method
458   is its case in programming, since the resulting finite-difference
459   equations can he solved explicitly.Presented here are linear analyses
460   of the method applied to the barotropic and two-layer baroclinic
461   gravity waves. Also presented is an analysis of the method with a
462   time-damping device incorporated, which is an alternative in controlling
463   linearly amplifying computational modes.},
464  owner = {gm},
465  timestamp = {2007.08.05}
466}
467
468@ARTICLE{Bryan1997,
469  author = {K. Bryan},
470  title = {A Numerical Method for the Study of the Circulation of the World
471   Ocean},
472  journal = JCP,
473  year = {1997},
474  volume = {135, 2},
475  owner = {gm},
476  timestamp = {2007.08.10}
477}
478
479@ARTICLE{Bryan1984,
480  author = {K. Bryan},
481  title = {Accelerating the convergence to equilibrium of ocean-climate models},
482  journal = JPO,
483  year = {1984},
484  volume = {14},
485  owner = {gm},
486  timestamp = {2007.08.10}
487}
488
489@ARTICLE{Bryden1973,
490  author = {H. L. Bryden},
491  title = {New polynomials for thermal expansion, adiabatic temperature gradient
492   
493   and potential temperature of sea water},
494  journal = DSR,
495  year = {1973},
496  volume = {20},
497  pages = {401-408},
498  owner = {gm},
499  timestamp = {2007.08.04}
500}
501
502@ARTICLE{Campin2004,
503  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
504  title = {Conservation of properties in a free-surface model},
505  journal = {Ocean Modelling},
506  year = {2004},
507  volume = {6, 3-4},
508  pages = {221-244},
509  owner = {gm},
510  timestamp = {2007.08.04}
511}
512
513@ARTICLE{Campin_Goosse_Tel99,
514  author = {J. M. Campin and H. Goosse},
515  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
516   ocean model in z-coordinate},
517  journal = {Tellus},
518  year = {1999},
519  volume = {51},
520  pages = {412-430},
521  owner = {gm},
522  timestamp = {2008.01.20}
523}
524
525@ARTICLE{Cox1987,
526  author = {M. Cox},
527  title = {Isopycnal diffusion in a z-coordinate ocean model},
528  journal = {Ocean Modelling},
529  year = {1987},
530  volume = {74},
531  pages = {1-9},
532  owner = {gm},
533  timestamp = {2007.08.03}
534}
535
536@ARTICLE{Dorscher_Beckmann_JAOT00,
537  author = {R. D\"{o}scher and A. Beckmann},
538  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
539   Model of the North Atlantic Ocean},
540  journal = JAOT,
541  year = {2000},
542  volume = {17},
543  pages = {698-707},
544  owner = {gm},
545  timestamp = {2008.01.23}
546}
547
548@ARTICLE{Debreu_al_CG2008,
549  author = {L. Debreu and C. Vouland and E. Blayo},
550  title = {AGRIF: Adaptive Grid Refinement In Fortran},
551  journal = {Computers and Geosciences},
552  year = {2008},
553  volume = {34},
554  pages = {8-13},
555  owner = {gm},
556  timestamp = {2008.02.03}
557}
558
559@ARTICLE{Delecluse_Madec_Bk00,
560  author = {P. Delecluse and G. Madec},
561  title = {Ocean modelling and the role of the ocean in the climate system},
562  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
563   Houches, Session, LXVII 1997,
564   
565   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
566  year = {2000},
567  pages = {237-313},
568  owner = {gm},
569  timestamp = {2008.02.03}
570}
571
572@ARTICLE{Dukowicz1994,
573  author = {J. K. Dukowicz and R. D. Smith},
574  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
575  journal = JGR,
576  year = {1994},
577  volume = {99},
578  pages = {7991-8014},
579  owner = {gm},
580  timestamp = {2007.08.03}
581}
582
583@INCOLLECTION{Durran2001,
584  author = {D.R. Durran },
585  title = {Open boundary conditions: fact and fiction},
586  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
587  publisher = {Kluwer Academic Publishers},
588  year = {2001},
589  editor = {P.F. Hodnett}
590}
591
592@ARTICLE{Dutay.J.C2004,
593  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
594   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
595   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
596  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
597   
598   with mantle helium-3},
599  journal = {Journal of Marine Systems},
600  year = {2004},
601  pages = {1-22},
602  abstract = {We compare simulations of the injection of mantle helium-3 into the
603   deep ocean from six global coarse resolution models which participated
604   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
605   discuss the results of a study carried out with one of the models,
606   which examines the effect of the subgrid-scale mixing parameterization.
607   These sensitivity tests provide useful information to interpret the
608   differences among the OCMIP models and between model simulations
609   and the data.
610   
611   We find that the OCMIP models, which parameterize subgrid-scale mixing
612   using an eddy-induced velocity, tend to
613   
614   underestimate the ventilation of the deep ocean, based on diagnostics
615   with d3He. In these models, this parameterization is implemented
616   with a constant thickness diffusivity coefficient. In future simulations,
617   we recommend using such a parameterization with spatially and temporally
618   varying coefficients in order to moderate its effect on stratification.
619   
620   The performance of the models with regard to the formation of AABW
621   confirms the conclusion from a previous evaluation with CFC-11. Models
622   coupled with a sea-ice model produce a substantial bottom water formation
623   in the Southern Ocean that tends to overestimate AABW ventilation,
624   while models that are not coupled with a sea-ice model systematically
625   underestimate the formation of AABW.
626   
627   We also analyze specific features of the deep 3He distribution (3He
628   plumes) that are particularly well depicted in the data and which
629   put severe constraints on the deep circulation. We show that all
630   the models fail to reproduce a correct propagation of these plumes
631   in the deep ocean. The resolution of the models may be too coarse
632   to reproduce the strong and narrow currents in the deep ocean, and
633   the models do not incorporate the geothermal heating that may also
634   contribute to the generation of these currents. We also use the context
635   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
636   to compare and evaluate modeled deep-ocean circulations. Although
637   the source function of mantle helium is known with a rather large
638   uncertainty, we find that the parameterization used for the injection
639   of mantle helium-3 is sufficient to generate realistic results, even
640   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
641   Res. 100 (1995) 3829] claimed this parameterization generates
642   
643   inadequate results. These results are supported by a multi-tracer
644   evaluation performed by considering the simulated distributions of
645   both helium-3 and natural 14C, and comparing the simulated tracer
646   fields with available data.},
647  owner = {sandra},
648  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
649  timestamp = {2006.10.17}
650}
651
652@ARTICLE{Eiseman1980,
653  author = {P. R. Eiseman and A. P. Stone},
654  title = {Conservation lows of fluid dynamics -- A survey},
655  journal = {SIAM Review},
656  year = {1980},
657  volume = {22},
658  pages = {12-27},
659  owner = {gm},
660  timestamp = {2007.08.03}
661}
662
663@PHDTHESIS{Farge1987,
664  author = {M. Farge},
665  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
666   de Saint Venant},
667  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
668  year = {1987},
669  owner = {gm},
670  timestamp = {2007.08.03}
671}
672
673@ARTICLE{Farrow1995,
674  author = {D. E. Farrow and D. P. Stevens},
675  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
676   models},
677  journal = JPO,
678  year = {1995},
679  volume = {25},
680  pages = {1731-1741.},
681  owner = {gm},
682  timestamp = {2007.08.04}
683}
684
685@ARTICLE{Fujio1991,
686  author = {S. Fujio and N. Imasato},
687  title = {Diagnostic calculation for circulation and water mass movement in
688   the deep Pacific},
689  journal = JGR,
690  year = {1991},
691  volume = {96},
692  pages = {759-774},
693  month = jan,
694  owner = {gm},
695  timestamp = {2007.08.04}
696}
697
698@ARTICLE{Gargett1984,
699  author = {A. E. Gargett},
700  title = {Vertical eddy diffusivity in the ocean interior},
701  journal = JMR,
702  year = {1984},
703  volume = {42},
704  owner = {gm},
705  timestamp = {2007.08.06}
706}
707
708@ARTICLE{Gaspar1990,
709  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
710  title = {A simple eddy kinetic energy model for simulations of the oceanic
711   vertical mixing\: Tests at Station Papa and long-term upper ocean
712   study site},
713  journal = JGR,
714  year = {1990},
715  volume = {95(C9)},
716  owner = {gm},
717  timestamp = {2007.08.06}
718}
719
720@ARTICLE{Gent1990,
721  author = {P. R. Gent and J. C. Mcwilliams},
722  title = {Isopycnal Mixing in Ocean Circulation Models},
723  journal = JPO,
724  year = {1990},
725  volume = {20},
726  pages = {150-155},
727  number = {1},
728  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
729   is proposed for use in non-eddy-resolving ocean circulation models.
730   The mixing is applied in isopycnal coordinates to isopycnal layer
731   thickness, or inverse density gradient, as well as to passive scalars,
732   temperature and salinity. The transformation of these mixing forms
733   to physical coordinates is also presented.},
734  date = {January 01, 1990},
735  owner = {gm},
736  timestamp = {2007.08.03}
737}
738
739@ARTICLE{Gerdes1993a,
740  author = {R. Gerdes},
741  title = {A primitive equation ocean circulation model using a general vertical
742   coordinate transformation 1. Description and testing of the model},
743  journal = JGR,
744  year = {1993},
745  volume = {98},
746  owner = {gm},
747  timestamp = {2007.08.03}
748}
749
750@ARTICLE{Gerdes1993b,
751  author = {R. Gerdes},
752  title = {A primitive equation ocean circulation model using a general vertical
753   coordinate transformation 2. Application to an overflow problem},
754  journal = JGR,
755  year = {1993},
756  volume = {98},
757  pages = {14703-14726},
758  owner = {gm},
759  timestamp = {2007.08.03}
760}
761
762@TECHREPORT{Gibson_TR86,
763  author = {J. K. Gibson},
764  title = {Standard software development and maintenance},
765  institution = {Operational Dep., ECMWF, Reading, UK.},
766  year = {1986},
767  owner = {gm},
768  timestamp = {2008.02.03}
769}
770
771@BOOK{Gill1982,
772  title = {Atmosphere-Ocean Dynamics},
773  publisher = {International Geophysics Series, Academic Press, New-York},
774  year = {1982},
775  author = {A. E. Gill}
776}
777
778@ARTICLE{Goosse_al_JGR99,
779  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
780  title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization
781   of vertical mixing},
782  journal = JGR,
783  year = {1999},
784  volume = {104},
785  pages = {13,681-13,695},
786  owner = {gm},
787  timestamp = {2008.05.27}
788}
789
790@ARTICLE{Griffes2005,
791  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
792   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
793   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
794  title = {Formulation of an ocean model for global climate simulations},
795  journal = OS,
796  year = {2005},
797  pages = {165–246},
798  abstract = {This paper summarizes the formulation of the ocean component to the
799   Geophysical
800   
801   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
802   the 4th IPCC As- Assessment
803   
804   (AR4) of global climate change. In particular, it reviews elements
805   of ocean
806   
807   sessment climate models and how they are pieced together for use in
808   a state-of-the-art coupled 5
809   
810   model. Novel issues are also highlighted, with particular attention
811   given to sensitivity of
812   
813   the coupled simulation to physical parameterizations and numerical
814   methods. Features
815   
816   of the model described here include the following: (1) tripolar grid
817   to resolve the Arctic
818   
819   Ocean without polar filtering, (2) partial bottom step representation
820   of topography to
821   
822   better represent topographically influenced advective and wave processes,
823   (3) more 10
824   
825   accurate equation of state, (4) three-dimensional flux limited tracer
826   advection to reduce
827   
828   overshoots and undershoots, (5) incorporation of regional climatological
829   variability in
830   
831   shortwave penetration, (6) neutral physics parameterization for representation
832   of the
833   
834   pathways of tracer transport, (7) staggered time stepping for tracer
835   conservation and
836   
837   numerical eciency, (8) anisotropic horizontal viscosities for representation
838   of equato- 15
839   
840   rial currents, (9) parameterization of exchange with marginal seas,
841   (10) incorporation
842   
843   of a free surface that accomodates a dynamic ice model and wave propagation,
844   (11)
845   
846   transport of water across the ocean free surface to eliminate unphysical
847   “virtual tracer
848   
849   flux” methods, (12) parameterization of tidal mixing on continental
850   shelves.},
851  owner = {sandra},
852  pdf = {Griffies_al_OSD05.pdf},
853  timestamp = {2007.01.25}
854}
855
856@BOOK{Griffies2004,
857  title = {Fundamentals of ocean climate models},
858  publisher = {Princeton University Press, 434pp},
859  year = {2004},
860  author = {S. M. Griffies},
861  owner = {gm},
862  timestamp = {2007.08.05}
863}
864
865@ARTICLE{Griffies1998,
866  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
867   Larichev and J. K. Dukowicz and R. D. Smith},
868  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
869  journal = JPO,
870  year = {1998},
871  volume = {28},
872  pages = {805-830},
873  number = {5},
874  abstract = {This paper considers the requirements that must be satisfied in order
875   to provide a stable and physically based isoneutral tracer diffusion
876   scheme in a z-coordinate ocean model. Two properties are emphasized:
877   1) downgradient orientation of the diffusive fluxes along the neutral
878   directions and 2) zero isoneutral diffusive flux of locally referenced
879   potential density. It is shown that the Cox diffusion scheme does
880   not respect either of these properties, which provides an explanation
881   for the necessity to add a nontrivial background horizontal diffusion
882   to that scheme. A new isoneutral diffusion scheme is proposed that
883   aims to satisfy the stated properties and is found to require no
884   horizontal background diffusion.},
885  date = {May 01, 1998},
886  owner = {gm},
887  timestamp = {2007.08.05}
888}
889
890@ARTICLE{Griffies2001,
891  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
892  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
893   Ocean Models},
894  journal = MWR,
895  year = {2001},
896  volume = {129},
897  pages = {1081-1098},
898  number = {5},
899  abstract = {This paper details a free surface method using an explicit time stepping
900   scheme for use in z-coordinate ocean models. One key property that
901   makes the method especially suitable for climate simulations is its
902   very stable numerical time stepping scheme, which allows for the
903   use of a long density time step, as commonly employed with coarse-resolution
904   rigid-lid models. Additionally, the effects of the undulating free
905   surface height are directly incorporated into the baroclinic momentum
906   and tracer equations. The novel issues related to local and global
907   tracer conservation when allowing for the top cell to undulate are
908   the focus of this work. The method presented here is quasi-conservative
909   locally and globally of tracer when the baroclinic and tracer time
910   steps are equal. Important issues relevant for using this method
911   in regional as well as large-scale climate models are discussed and
912   illustrated, and examples of scaling achieved on parallel computers
913   provided.},
914  date = {May 01, 2001},
915  owner = {gm},
916  timestamp = {2007.08.04}
917}
918
919@ARTICLE{Guily2001,
920  author = {E. Guilyardi and G. Madec and L. Terray},
921  title = {The role of lateral ocean physics in the upper ocean thermal balance
922   of a coupled ocean-atmosphere GCM},
923  journal = CD,
924  year = {2001},
925  volume = {17},
926  pages = {589-599},
927  number = {8},
928  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
929}
930
931@ARTICLE{Guyon_al_EP99,
932  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
933  title = {A Parallel ocean model for high resolution studies},
934  journal = {Lecture Notes in Computer Science},
935  year = {1999},
936  volume = {Euro-Par'99},
937  pages = {603-607},
938  owner = {gm},
939  timestamp = {2008.05.27}
940}
941
942@ARTICLE{Guyon_al_CalPar99,
943  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut
944   and P. Fronier},
945  title = {Parallelization of the OPA ocean model},
946  journal = {Calculateurs Paralleles},
947  year = {1999},
948  volume = {11, 4},
949  pages = {499-517},
950  owner = {gm},
951  timestamp = {2008.05.27}
952}
953
954@BOOK{Haltiner1980,
955  title = {Numerical prediction and dynamic meteorology},
956  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
957  year = {1980},
958  author = {G. J. Haltiner and R. T. Williams},
959  owner = {gm},
960  timestamp = {2007.08.03}
961}
962
963@ARTICLE{Haney1991,
964  author = {R. L. Haney},
965  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
966   Ocean Models},
967  journal = JPO,
968  year = {1991},
969  volume = {21},
970  pages = {610--619
971   
972   },
973  number = {4},
974  abstract = {The error in computing the pressure gradient force near steep topography
975   using terms following (σ) coordinates is investigated in an
976   ocean model using the family of vertical differencing schemes proposed
977   by Arakawa and Suarez. The truncation error is estimated by substituting
978   known buoyancy profiles into the finite difference hydrostatic and
979   pressure gradient terms. The error due to “hydrostatic inconsistency,”
980   which is not simply a space truncation error, is also documented.
981   The results show that the pressure gradient error is spread throughout
982   the water column, and it is sensitive to the vertical resolution
983   and to the placement of the grid points relative to the vertical
984   structure of the buoyancy field being modeled. Removing a reference
985   state, as suggested for the atmosphere by Gary, reduces the truncation
986   error associated with the two lowest vertical modes by a factor of
987   2 to 3. As an example, the error in computing the pressure gradient
988   using a standard 10-level primitive equation model applied to buoyancy
989   profiles and topographic slopes typical of the California Current
990   region corresponds to a false geostrophic current of the order of
991   10–12 cm s−1. The analogous error in a hydrostatically
992   consistent 30-level model with the reference state removed is about
993   an order of magnitude smaller.},
994  date = {April 01, 1991},
995  owner = {gm},
996  timestamp = {2007.08.03}
997}
998
999@ARTICLE{Hsu1990,
1000  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
1001  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
1002   Coordinate},
1003  journal = MWR,
1004  year = {1990},
1005  volume = {118},
1006  pages = {1933--1959
1007   
1008   },
1009  number = {10},
1010  abstract = {In constructing a numerical model of the atmosphere, we must choose
1011   an appropriate vertical coordinate. Among the various possibilities,
1012   isentropic vertical coordinates such as the θ-coordinate seem
1013   to have the greatest potential, in spite of the technical difficulties
1014   in treating the intersections of coordinate surfaces with the lower
1015   boundary. The purpose of this paper is to describe the θ-coordinate
1016   model we have developed and to demonstrate its potential through
1017   simulating the nonlinear evolution of a baroclinic wave.In the model
1018   we have developed, vertical discretization maintains important integral
1019   constraints, such as conservation of the angular momentum and total
1020   energy. In treating the intersections of coordinate surfaces with
1021   the lower boundary, we have followed the massless-layer approach
1022   in which the intersecting coordinate surfaces are extended along
1023   the boundary by introducing massless layers. Although this approach
1024   formally eliminates the intersection problem, it raises other computational
1025   problems. Horizontal discretization of the continuity and momentum
1026   equations in the model has been carefully designed to overcome these
1027   problems.Selected results from a 10-day integration with the 25-layer,
1028   β-plane version of the model are presented. It seems that the
1029   model can simulate the nonlinear evolution of a baroclinic wave and
1030   associated dynamical processes without major computational difficulties.},
1031  date = {October 01, 1990},
1032  owner = {gm},
1033  timestamp = {2007.08.05}
1034}
1035
1036@ARTICLE{JackMcD1995,
1037  author = {D. R. Jackett and T. J. McDougall},
1038  title = {Minimal adjustment of hydrographic data to achieve static stability},
1039  journal = JAOT,
1040  year = {1995},
1041  volume = {12},
1042  pages = {381-389},
1043  owner = {gm},
1044  timestamp = {2007.08.04}
1045}
1046
1047@BOOK{Jerlov1968,
1048  title = {Optical Oceanography},
1049  publisher = {194pp},
1050  year = {1968},
1051  author = {N. G. Jerlov},
1052  owner = {gm},
1053  timestamp = {2007.08.04}
1054}
1055
1056@INPROCEEDINGS{Killworth1989,
1057  author = {P. D. Killworth},
1058  title = {On the parameterization of deep convection in ocean models},
1059  booktitle = {Parameterization of small-scale processes},
1060  year = {1989},
1061  editor = {Hawaiian winter workshop},
1062  month = {January 17-20},
1063  organization = {University of Hawaii at Manoa},
1064  owner = {gm},
1065  timestamp = {2007.08.06}
1066}
1067
1068@ARTICLE{Killworth1992,
1069  author = {P. D. Killworth},
1070  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1071  journal = JPO,
1072  year = {1992},
1073  volume = {22},
1074  pages = {1379-1387}
1075}
1076
1077@ARTICLE{Killworth1991,
1078  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
1079   S. M.},
1080  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1081  journal = JPO,
1082  year = {1991},
1083  volume = {21},
1084  pages = {1333--1348},
1085  number = {9},
1086  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1087   circulation model, adapted to include a free surface, is described.
1088   The model is designed for the following uses: tidal studies
1089   (a tidal option is explicitly included); assimilation of altimetric
1090   data (since the surface elevation is now a prognostic variable);
1091   and in situations where accurate relaxation to obtain the streamfunction
1092   in the original model is too time consuming. Comparison is made between
1093   a 300-year run of the original model and the free-surface version,
1094   using a very coarse North Atlantic calculation as the basis. The
1095   results are very similar, differing only in the streamfunction over
1096   topography; this is to be expected, since the treatment of topographic
1097   torques on the barotropic flow differs because of the nature of the
1098   modifications.},
1099  date = {September 01, 1991},
1100  owner = {gm},
1101  timestamp = {2007.08.03}
1102}
1103
1104@ARTICLE{Kolmogorov1942,
1105  author = {A. N. Kolmogorov},
1106  title = {The equation of turbulent motion in an incompressible fluid},
1107  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1108  year = {1942},
1109  volume = {6},
1110  pages = {56-58},
1111  owner = {gm},
1112  timestamp = {2007.08.06}
1113}
1114
1115@PHDTHESIS{Levy1996,
1116  author = {M. L\'{e}vy},
1117  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1118   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1119  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1120  year = {1996},
1121  owner = {gm},
1122  timestamp = {2007.08.04}
1123}
1124
1125@ARTICLE{Levy2001,
1126  author = {M. L\'{e}vy and A. Estubier and G Madec},
1127  title = {Choice of an advection scheme for biogeochemical models},
1128  journal = GRL,
1129  year = {2001},
1130  volume = {28},
1131  owner = {gm},
1132  timestamp = {2007.08.04}
1133}
1134
1135@ARTICLE{Levy1998,
1136  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1137  title = {The onset of a bloom after deep winter convection in the Northwestern
1138   Mediterranean Sea: mesoscale
1139   
1140   process study with a primitive equation model},
1141  journal = JMS,
1142  year = {1998},
1143  volume = {16/1-2},
1144  owner = {gm},
1145  timestamp = {2007.08.10}
1146}
1147
1148@BOOK{LargeYeager2004,
1149  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1150   data sets and flux climatologies},
1151  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1152   Center for Atmospheric Research},
1153  year = {2004},
1154  author = {W. Large and S. Yeager},
1155  owner = {gm},
1156  timestamp = {2007.08.06}
1157}
1158
1159@ARTICLE{large1994,
1160  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1161  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1162   layer parameterization},
1163  journal = {Reviews of Geophysics},
1164  year = {1994},
1165  volume = {32},
1166  pages = {363-404},
1167  doi = {10.1029/94RG01872},
1168  owner = {gm},
1169  timestamp = {2007.08.03}
1170}
1171
1172@PHDTHESIS{Lazar1997,
1173  author = {A. Lazar},
1174  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1175   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1176   id\'{e}alis\'{e}e},
1177  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1178  year = {1997},
1179  owner = {gm},
1180  timestamp = {2007.08.06}
1181}
1182
1183@ARTICLE{Lazar1999,
1184  author = {A. Lazar and G. Madec and P. Delecluse},
1185  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1186   Tracer Transport Parameterizations in an OGCM},
1187  journal = JPO,
1188  year = {1999},
1189  volume = {29},
1190  pages = {2945-2961},
1191  number = {11},
1192  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1193   a vast interior downwelling and a companion intense western boundary
1194   layer upwelling at midlatitude below the thermocline. These features,
1195   related to the so-called Veronis effect, are poorly rationalized
1196   and depart strongly from the classical vision of the deep circulation
1197   where upwelling is considered to occur in the interior. Furthermore,
1198   they significantly alter results of ocean general circulation models
1199   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1200   showed that the parameterization for mesoscale eddy effects formulated
1201   by Gent and McWilliams allows integral quantities like the streamfunction
1202   and meridional heat transport to be free of these undesired effects.
1203   In this paper, an idealized OGCM is used to validate an analytical
1204   rationalization of the processes at work and help understand the
1205   physics. The results show that the features associated with the Veronis
1206   effect can be related quantitatively to three different width scales
1207   that characterize the baroclinic structure of the deep western boundary
1208   current. In addition, since one of these scales may be smaller than
1209   the Munk barotropic layer, usually considered to determine the minimum
1210   resolution and horizontal viscosity for numerical models, the authors
1211   recommend that it be taken into account. Regarding the introduction
1212   of the new parameterization, diagnostics in terms of heat balances
1213   underline some interesting similarities between local heat fluxes
1214   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1215   when a common large diffusivity (here 2000 m2 s−1) is used.
1216   The near-quasigeostrophic character of the flow explains these results.
1217   As a consequence, the response of the Eulerian-mean circulation is
1218   locally similar for runs using either of the two parameterizations.
1219   However, it is shown that the advective nature of the eddy-induced
1220   heat fluxes results in a very different effective circulation, which
1221   is the one felt by tracers.},
1222  date = {November 01, 1999},
1223  owner = {gm},
1224  timestamp = {2007.08.06}
1225}
1226
1227@ARTICLE{Lengaigne_al_JGR03,
1228  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1229  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
1230   on tracer and dynamics},
1231  journal = JGR,
1232  year = {2003},
1233  volume = {108 (C11)},
1234  pages = {3345, doi:10.1029/2002JC001704},
1235  owner = {gm},
1236  timestamp = {2008.01.26}
1237}
1238
1239@ARTICLE{Leonard1991,
1240  author = {B. P. Leonard},
1241  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1242   advection},
1243  journal = {Computer Methods in Applied Mechanics and Engineering},
1244  year = {1991},
1245  pages = {17-74},
1246  owner = {gm},
1247  timestamp = {2007.08.04}
1248}
1249
1250@TECHREPORT{Leonard1988,
1251  author = {B. P. Leonard},
1252  title = {Universal limiter for transient interpolation modelling of the advective
1253   transport equations},
1254  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1255  year = {1988},
1256  owner = {gm},
1257  timestamp = {2007.08.04}
1258}
1259
1260@ARTICLE{Leonard1979,
1261  author = {B. P. Leonard},
1262  title = {A stable and accurate convective modelling procedure based on quadratic
1263   upstream interpolation},
1264  journal = {Computer Methods in Applied Mechanics and Engineering},
1265  year = {1979},
1266  volume = {19},
1267  pages = {59-98},
1268  month = jun,
1269  owner = {gm},
1270  timestamp = {2007.08.04}
1271}
1272
1273@TECHREPORT{Levier2007,
1274  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1275  title = {Free surface and variable volume in the NEMO code},
1276  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1277   NEMO web site},
1278  year = {2007},
1279  owner = {gm},
1280  timestamp = {2007.08.03}
1281}
1282
1283@BOOK{levitus82,
1284  title = {Climatological Atlas of the world ocean},
1285  publisher = {NOAA professional paper No. 13, 174pp},
1286  year = {1982},
1287  author = {S Levitus },
1288  note = {173 p.}
1289}
1290
1291@TECHREPORT{Lott1989,
1292  author = {F. Lott and G. Madec},
1293  title = {Implementation of bottom topography in the Ocean General Circulation
1294   Model OPA of the LODYC: formalism and experiments.},
1295  institution = {LODYC, France, 36pp.},
1296  year = {1989},
1297  number = {3},
1298  owner = {gm},
1299  timestamp = {2007.08.03}
1300}
1301
1302@ARTICLE{Lott1990,
1303  author = {F. Lott and G. Madec and J. Verron},
1304  title = {Topographic experiments in an Ocean General Circulation Model},
1305  journal = {Ocean Modelling},
1306  year = {1990},
1307  volume = {88},
1308  pages = {1-4},
1309  owner = {gm},
1310  timestamp = {2007.08.03}
1311}
1312
1313@PHDTHESIS{Madec1990,
1314  author = {G. Madec},
1315  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1316   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1317  school = {Universit\'{e}Pierre et Marie Curie, Paris, France, 194pp.},
1318  year = {1990},
1319  owner = {gm},
1320  timestamp = {2007.08.10}
1321}
1322
1323@ARTICLE{Madec1991a,
1324  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1325  title = {Effect of thermohaline forcing variability on deep water formation
1326   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1327   study},
1328  journal = DAO,
1329  year = {1991},
1330  owner = {gm},
1331  timestamp = {2007.08.06}
1332}
1333
1334@ARTICLE{Madec1991b,
1335  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1336  title = {A three-dimensional numerical study of deep water formation in the
1337   
1338   
1339   Northwestern Mediterranean Sea .},
1340  journal = JPO,
1341  year = {1991},
1342  volume = {21},
1343  owner = {gm},
1344  timestamp = {2007.08.06}
1345}
1346
1347@INBOOK{Madec1991c,
1348  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1349   Sea},
1350  title = {Deep convection and deep water formation in the oceans},
1351  publisher = {Elsevier Oceanographic Series},
1352  year = {1991},
1353  author = {G. Madec and M. Cr\'{e}pon},
1354  owner = {gm},
1355  timestamp = {2007.08.06}
1356}
1357
1358@ARTICLE{Madec1997,
1359  author = {G. Madec and P. Delecluse},
1360  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1361  journal = {Int. WOCE Newsletter},
1362  year = {1997},
1363  volume = {26},
1364  pages = {12-15},
1365  owner = {gm},
1366  timestamp = {2007.08.06}
1367}
1368
1369@TECHREPORT{Madec1998,
1370  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1371  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1372  institution = {LODYC/IPSL Note 11},
1373  year = {1998}
1374}
1375
1376@ARTICLE{MadecImb1996,
1377  author = {G Madec and M Imbard},
1378  title = {A global ocean mesh to overcome the north pole singularity},
1379  journal = CD,
1380  year = {1996},
1381  volume = {12},
1382  pages = {381-388}
1383}
1384
1385@ARTICLE{Madec1996,
1386  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1387  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1388   Mediterranean Sea},
1389  journal = JPO,
1390  year = {1996},
1391  volume = {26},
1392  pages = {1393-1408},
1393  number = {8},
1394  month = aug,
1395  abstract = {The large-scale processes preconditioning the winter deep-water formation
1396   in the northwestern Mediterranean Sea are investigated with a primitive
1397   equation numerical model where convection is parameterized by a non-penetrative
1398   convective adjustment algorithm. The ocean is forced by momentum
1399   and buoyancy fluxes that have the gross features of mean winter forcing
1400   found in the MEDOC area. The wind-driven barotropic circulation appears
1401   to be a major ingredient of the preconditioning phase of deep-water
1402   formation. After three months, the ocean response is dominated by
1403   a strong barotropic cyclonic vortex located under the forcing area,
1404   which fits the Sverdrup balance away from the northern coast. In
1405   the vortex center, the whole water column remains trapped under the
1406   forcing area all winter. This trapping enables the thermohaline forcing
1407   to drive deep-water formation efficiently. Sensitivity studies show
1408   that, β effect and bottom topography play a paramount role and
1409   confirm that deep convection occurs only in areas that combine a
1410   strong surface thermohaline forcing and a weak barotropic advection
1411   so that water masses are submitted to the negative buoyancy fluxes
1412   for a much longer time. In particular, the impact of the Rhône
1413   Deep Sea Fan on the barotropic circulation dominates the β effect:
1414   the barotropic flow is constrained to follow the bathymetric contours
1415   and the cyclonic vortex is shifted southward so that the fluid above
1416   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1417   above the fan in agreement with observations. The selection of the
1418   area of deep-water formation through the defection of the barotropic
1419   circulation by the topography seems a more efficient mechanism than
1420   those associated with the wind- driven barotropic vortex. This is
1421   due to its permanency, while the latter may be too sensitive to time
1422   and space variations of the forcing.},
1423  owner = {gm},
1424  timestamp = {2007.08.03}
1425}
1426
1427@ARTICLE{Madec1988,
1428  author = {G. Madec and C. Rahier and M. Chartier},
1429  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1430   streamfunction in a multilevel OGCM},
1431  journal = {Ocean Modelling},
1432  year = {1988},
1433  volume = {78},
1434  owner = {gm},
1435  timestamp = {2007.08.10}
1436}
1437
1438@ARTICLE{Maltrud1998,
1439  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1440  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1441   winds},
1442  journal = JGR,
1443  year = {1998},
1444  volume = {103(C13)},
1445  pages = {30,825-30,854},
1446  owner = {gm},
1447  timestamp = {2007.08.05}
1448}
1449
1450@ARTICLE{Marchesiello2001,
1451  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
1452  title = {Open boundary conditions for long-term integrations of Regional Oceanic
1453   Models},
1454  journal = {Ocean Modelling},
1455  year = {2001},
1456  volume = {3},
1457  pages = {1-20}
1458}
1459
1460@PHDTHESIS{MartiTh1992,
1461  author = {O. Marti},
1462  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1463   et du transport de traceurs anthropog\'{e}niques},
1464  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1465  year = {1992},
1466  owner = {gm},
1467  timestamp = {2007.08.04}
1468}
1469
1470@ARTICLE{Marti1992,
1471  author = {O. Marti and G. Madec and P. Delecluse},
1472  title = {Comment on "Net diffusivity in ocean general circulation models with
1473   nonuniform grids" by F. L. Yin and I. Y. Fung},
1474  journal = JGR,
1475  year = {1992},
1476  volume = {97},
1477  pages = {12763-12766},
1478  month = aug,
1479  owner = {gm},
1480  timestamp = {2007.08.03}
1481}
1482
1483@ARTICLE{McDougall1987,
1484  author = {T. J. McDougall},
1485  title = {Neutral Surfaces},
1486  journal = {Journal of Physical Oceanography},
1487  year = {1987},
1488  volume = {17},
1489  pages = {1950-1964},
1490  number = {11},
1491  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1492   rather efficiently by mesoscale eddies and two-dimensional turbulence
1493   along “neutral surfaces”, defined such that when water
1494   parcels are moved small distances in the neutral surface, they experience
1495   no buoyant restoring forces. By contrast, work would have to be done
1496   on a moving fluid parcel in order to keep it on a potential density
1497   surface. The differences between neutral surfaces and potential density
1498   surfaces are due to the variation of α/β with pressure
1499   (where α is the thermal expansion coefficient and β is
1500   the saline contraction coefficient). By regarding the equation of
1501   state of seawater as a function of salinity, potential temperature,
1502   and pressure, rather than in terms of salinity, temperature, and
1503   pressure, it is possible to quantify the differences between neutral
1504   surfaces and potential density surfaces. In particular, the spatial
1505   gradients of scalar properties (e.g., S, θ, tritium or potential
1506   vorticity) on a neutral surface can be quite different to the corresponding
1507   gradients in a potential density surface. For example, at a potential
1508   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1509   of potential temperature in a potential density surface (referenced
1510   to sea level) is too large by between 50% and 350% (depending
1511   on the stability ratio Rp of the water column) compared with the
1512   physically relevant gradient of potential temperature on the neutral
1513   surface. Three-examples of neutral surfaces are presented, based
1514   on the Levitus atlas of the North Atlantic.},
1515  date = {November 01, 1987},
1516  owner = {gm},
1517  timestamp = {2007.08.04}
1518}
1519
1520@ARTICLE{McDougall_Taylor_JMR84,
1521  author = {T. J. McDougall and J. R. Taylor},
1522  title = {Flux measurements across a finger interface at low values of the
1523   stability ratio},
1524  journal = {Journal of Marine Research},
1525  year = {1984},
1526  volume = {42},
1527  pages = {1-14},
1528  owner = {gm},
1529  timestamp = {2008.05.20}
1530}
1531
1532@ARTICLE{Merryfield1999,
1533  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1534  title = {A Global Ocean Model with Double-Diffusive Mixing},
1535  journal = JPO,
1536  year = {1999},
1537  volume = {29},
1538  pages = {1124-1142},
1539  number = {6},
1540  abstract = {A global ocean model is described in which parameterizations of diapycnal
1541   mixing by double-diffusive fingering and layering are added to a
1542   stability-dependent background turbulent diffusivity. Model runs
1543   with and without double-diffusive mixing are compared for annual-mean
1544   and seasonally varying surface forcing. Sensitivity to different
1545   double-diffusive mixing parameterizations is considered. In all cases,
1546   the locales and extent of salt fingering (as diagnosed from buoyancy
1547   ratio Rρ) are grossly comparable to climatology, although fingering
1548   in the models tends to be less intense than observed. Double-diffusive
1549   mixing leads to relatively minor changes in circulation but exerts
1550   significant regional influences on temperature and salinity.},
1551  date = {June 01, 1999},
1552  owner = {gm},
1553  timestamp = {2007.08.06}
1554}
1555
1556@BOOK{Mesinger_Arakawa_Bk76,
1557  title = {Numerical methods used in Atmospheric models},
1558  publisher = {GARP Publication Series No 17},
1559  year = {1976},
1560  author = {F. Mesinger and A. Arakawa},
1561  owner = {gm},
1562  timestamp = {2008.02.09}
1563}
1564
1565@ARTICLE{Murray1996,
1566  author = {R. J. Murray},
1567  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1568  journal = JCP,
1569  year = {1996},
1570  volume = {126},
1571  pages = {251-273},
1572  number = {2},
1573  month = {July},
1574  owner = {gm},
1575  timestamp = {2007.08.03}
1576}
1577
1578@PHDTHESIS{OlivierPh2001,
1579  author = {F. Olivier},
1580  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1581   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1582  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1583  year = {2001},
1584  owner = {gm},
1585  timestamp = {2007.08.14}
1586}
1587
1588@ARTICLE{PacPhil1981,
1589  author = {R.C. Pacanowski and S.G.H. Philander},
1590  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1591   Oceans},
1592  journal = JPO,
1593  year = {1981},
1594  volume = {11},
1595  pages = {1443-1451},
1596  number = {11},
1597  abstract = {Measurements indicate that mixing processes are intense in the surface
1598   layers of the ocean but weak below the thermocline, except for the
1599   region below the core of the Equatorial Undercurrent where vertical
1600   temperature gradients are small and the shear is large. Parameterization
1601   of these mixing processes by means of coefficients of eddy mixing
1602   that are Richardson-number dependent, leads to realistic simulations
1603   of the response of the equatorial oceans to different windstress
1604   patterns. In the case of eastward winds results agree well with measurements
1605   in the Indian Ocean. In the case of westward winds it is of paramount
1606   importance that the nonzero heat flux into the ocean be taken into
1607   account. This beat flux stabilizes the upper layers and reduces the
1608   intensity of the mixing, especially in the cast. With an appropriate
1609   surface boundary condition, the results are relatively insensitive
1610   to values assigned to constants in the parameterization formula.},
1611  date = {November 01, 1981},
1612  owner = {gm},
1613  timestamp = {2007.08.03}
1614}
1615
1616@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
1617  author = {R. C. Pacanowski and A. Gnanadesikan},
1618  title = {Transient response in a z-level ocean model that resolves topography
1619   
1620   
1621   with partial-cells},
1622  journal = MWR,
1623  year = {1998},
1624  volume = {126},
1625  pages = {3248-3270},
1626  owner = {gm},
1627  timestamp = {2008.01.26}
1628}
1629
1630@ARTICLE{Paulson1977,
1631  author = {C. A. Paulson and J. J. Simpson},
1632  title = {Irradiance Measurements in the Upper Ocean},
1633  journal = JPO,
1634  year = {1977},
1635  volume = {7},
1636  pages = {952-956},
1637  number = {6},
1638  abstract = {Observations were made of downward solar radiation as a function of
1639   depth during an experiment in the North Pacific (35°N, 155°W).
1640   The irradiance meter employed was sensitive to solar radiation of
1641   wavelength 400–1000 nm arriving from above at a horizontal
1642   surface. Because of selective absorption of the short and long wavelengths,
1643   the irradiance decreases much faster than exponential in the upper
1644   few meters, falling to one-third of the incident value between 2
1645   and 3 m depth. Below 10 m the decrease was exponential at a rate
1646   characteristic of moderately clear water of Type IA. Neglecting one
1647   case having low sun altitude, the observations are well represented
1648   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1649   where I is the irradiance at depth −z, I0 is the irradiance
1650   at the surface less reflected solar radiation, R=0.62, ζ1
1651   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1652   and z is the vertical space coordinate, positive upward with the
1653   origin at mean sea level. The depth at which the irradiance falls
1654   to 10% of its surface value is nearly the same as observations
1655   of Secchi depth when cases with high wind speed or low solar altitude
1656   are neglected. Parameters R, ζ1, and ζ2 are computed for
1657   the entire range of oceanic water types.},
1658  date = {November 01, 1977},
1659  owner = {gm},
1660  timestamp = {2007.08.04}
1661}
1662
1663@ARTICLE{Penduff2000,
1664  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
1665  title = { Self-adapting open boundaries for a regional model of the eastern
1666   North Atlantic},
1667  journal = JGR,
1668  year = {2000},
1669  volume = {105},
1670  pages = {11,279-11,297}
1671}
1672
1673@ARTICLE{Penduff2007,
1674  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
1675   J. Molines and G. Madec},
1676  title = {Influence of numerical schemes on current-topography interactions
1677   in 1/4$^{\circ}$ global ocean simulations},
1678  journal = {Ocean Science},
1679  year = {2007},
1680  volume = {?},
1681  pages = {in revision}
1682}
1683
1684@ARTICLE{Phillips1959,
1685  author = {R. S. Phillips},
1686  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1687   Equations},
1688  journal = {Transactions of the American Mathematical Society},
1689  year = {1959},
1690  volume = {90(2)},
1691  pages = {193-254},
1692  doi = {doi:10.2307/1993202},
1693  owner = {gm},
1694  timestamp = {2007.08.10}
1695}
1696
1697@ARTICLE{Redi_JPO82,
1698  author = {M. H. Redi},
1699  title = {Oceanic isopycnal mixing by coordinate rotation},
1700  journal = JPO,
1701  year = {1982},
1702  volume = {13},
1703  pages = {1154-1158},
1704  owner = {gm},
1705  timestamp = {2008.02.02}
1706}
1707
1708@ARTICLE{Reverdin1991,
1709  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1710   Morli\`{e}re and J. M. Verstraete},
1711  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1712   numerical simulation and a data analysis},
1713  journal = PO,
1714  year = {1991},
1715  volume = {27},
1716  pages = {273-340},
1717  owner = {gm},
1718  timestamp = {2007.08.04}
1719}
1720
1721@BOOK{Richtmyer1967,
1722  title = {Difference methods for initial-value problems},
1723  publisher = {Interscience Publisher, Second Edition, 405pp},
1724  year = {1967},
1725  author = {R. D. Richtmyer and K. W. Morton},
1726  owner = {gm},
1727  timestamp = {2007.08.04}
1728}
1729
1730@ARTICLE{Robert1966,
1731  author = {A. J. Robert},
1732  title = {The integration of a Low order spectral form of the primitive meteorological
1733   equations},
1734  journal = {J. Meteo. Soc. Japan},
1735  year = {1966},
1736  volume = {44, 2},
1737  owner = {gm},
1738  timestamp = {2007.08.04}
1739}
1740
1741@INCOLLECTION{Roed1986,
1742  author = {L.P. Roed and C.K. Cooper},
1743  title = {Open boundary conditions in numerical ocean models},
1744  booktitle = {Advanced Physical Oceanography Numerical Modelling},
1745  publisher = { NATO ASI Series, vol. 186.},
1746  year = {1986},
1747  editor = {J.J. O'Brien}
1748}
1749
1750@ARTICLE{Roullet2000,
1751  author = {G. Roullet and G. Madec},
1752  title = {salt conservation, free surface, and varying levels: a new formulation
1753   for ocean general circulation models},
1754  journal = JGR,
1755  year = {2000},
1756  volume = {105},
1757  pages = {23,927-23,942},
1758  owner = {sandra},
1759  pdf = {Roullet_Madec_JGR00.pdf},
1760  timestamp = {2007.03.22}
1761}
1762
1763@ARTICLE{Sadourny1975,
1764  author = {R. Sadourny},
1765  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1766  journal = JAS,
1767  year = {1975},
1768  volume = {32},
1769  pages = {680-689},
1770  number = {4},
1771  abstract = {Two simple numerical models of the shallow-water equations identical
1772   in all respects but for their con-servation properties have been
1773   tested regarding their internal mixing processes. The experiments
1774   show that violation of enstrophy conservation results in a spurious
1775   accumulation of rotational energy in the smaller scales, reflected
1776   by an unrealistic increase of enstrophy, which ultimately produces
1777   a finite rate of energy dissipation in the zero viscosity limit,
1778   thus violating the well-known dynamics of two-dimensional flow. Further,
1779   the experiments show a tendency to equipartition of the kinetic energy
1780   of the divergent part of the flow in the inviscid limit, suggesting
1781   the possibility of a divergent energy cascade in the physical system,
1782   as well as a possible influence of the energy mixing on the process
1783   of adjustment toward balanced flow.},
1784  date = {April 01, 1975},
1785  owner = {gm},
1786  timestamp = {2007.08.05}
1787}
1788
1789@ARTICLE{Sarmiento1982,
1790  author = {J. L. Sarmiento and K. Bryan},
1791  title = {Ocean transport model for the North Atlantic},
1792  journal = JGR,
1793  year = {1982},
1794  volume = {87},
1795  pages = {394-409},
1796  owner = {gm},
1797  timestamp = {2007.08.04}
1798}
1799
1800@ARTICLE{Sacha2005,
1801  author = {A. F. Shchepetkin and J. C. McWilliams},
1802  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1803   topography-following-coordinate oceanic modelr},
1804  journal = {Ocean Modelling},
1805  year = {2005},
1806  volume = {9, 4},
1807  pages = {347-404},
1808  owner = {gm},
1809  timestamp = {2007.08.04}
1810}
1811
1812@ARTICLE{Sacha2003,
1813  author = {A. F. Shchepetkin and J. C. McWilliams},
1814  title = {A method for computing horizontal pressure-gradient force in an oceanic
1815   model with a nonaligned
1816   
1817   vertical coordinate},
1818  journal = JGR,
1819  year = {2003},
1820  volume = {108(C3)},
1821  pages = {3090, doi:10.1029/2001JC001047},
1822  owner = {gm},
1823  timestamp = {2007.08.05}
1824}
1825
1826@ARTICLE{Shchepetkin1996,
1827  author = {A. F. Shchepetkin and J. J. O'Brien},
1828  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1829   Equation Ocean Models},
1830  journal = MWR,
1831  year = {1996},
1832  volume = {124},
1833  pages = {1285-1300},
1834  number = {6},
1835  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1836   processes in which the friction is physically relevant and to prevent
1837   numerical instability by suppressing accumulation of energy in the
1838   smallest resolved scales. This study shows that even for the latter
1839   case the form of the friction term should be chosen in a physically
1840   consistent way. Violation of fundamental physical principles reduces
1841   the fidelity of the numerical solution, even if the friction is small.
1842   Several forms of the lateral friction, commonly used in numerical
1843   ocean models, are discussed in the context of shallow-water equations
1844   with nonuniform layer thickness. It is shown that in a numerical
1845   model tuned for the minimal dissipation, the improper form of the
1846   friction term creates finite artificial vorticity sources that do
1847   not vanish with increased resolution, even if the viscous coefficient
1848   is reduced consistently with resolution. An alternative numerical
1849   implementation of the no-slip boundary conditions for an arbitrary
1850   coast line is considered. It was found that the quality of the numerical
1851   solution may be considerably improved by discretization of the viscous
1852   stress tensor in such a way that the numerical boundary scheme approximates
1853   not only the stress tensor to a certain order of accuracy but also
1854   simulates the truncation error of the numerical scheme used in the
1855   interior of the domain. This ensures error cancellation during subsequent
1856   use of the elements of the tensor in the discrete version of the
1857   momentum equations, allowing for approximation of them without decrease
1858   in the order of accuracy near the boundary.},
1859  date = {June 01, 1996},
1860  owner = {gm},
1861  timestamp = {2007.08.14}
1862}
1863
1864@ARTICLE{Simmons2003,
1865  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1866  title = {Tidally driven mixing in a numerical model of the
1867   
1868   ocean general circulation},
1869  journal = OM,
1870  year = {2003},
1871  pages = {1-19},
1872  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1873   tidal energy is dissipated in the
1874   
1875   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1876   energy is converted from the barotropic
1877   
1878   to internal tides in the deep ocean, predominantly around regions
1879   of rough topography such as midocean
1880   
1881   ridges. Aglobal tidal model is used to compute turbulent energy levels
1882   associated with the dissipation
1883   
1884   of internal tides, and the diapycnal mixing supported by this energy
1885   ?ux is computed using a simple parameterization.
1886   
1887   The mixing parameterization has been incorporated into a coarse resolution
1888   numerical model of the
1889   
1890   global ocean. This parameterization o?ers an energetically consistent
1891   and practical means of improving the
1892   
1893   representation of ocean mixing processes in climate models. Novel
1894   features of this implementation are that
1895   
1896   the model explicitly accounts for the tidal energy source for mixing,
1897   and that the mixing evolves both
1898   
1899   spatially and temporally with the model state. At equilibrium, the
1900   globally averaged di?usivity pro?le
1901   
1902   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1903   abyss with a depth average of 0.9
1904   
1905   cm2 s1, in close agreement with inferences from global balances.
1906   Water properties are strongly in?uenced
1907   
1908   by the combination of weak mixing in the main thermocline and enhanced
1909   mixing in the deep ocean.
1910   
1911   Climatological comparisons show that the parameterized mixing scheme
1912   results in a substantial reduction},
1913  owner = {sandra},
1914  pdf = {Simmons_mixing_OM2003.pdf},
1915  timestamp = {2007.03.22}
1916}
1917
1918@ARTICLE{Song1994,
1919  author = {Y. Song and D. Haidvogel},
1920  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
1921   Coordinate System
1922   
1923   Authors:},
1924  journal = JCP,
1925  year = {1994},
1926  volume = {115, 1},
1927  owner = {gm},
1928  timestamp = {2007.08.04}
1929}
1930
1931@ARTICLE{Song1998,
1932  author = {Y. T. Song},
1933  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
1934   Scheme Design and Diagnostic Analysis},
1935  journal = MWR,
1936  year = {1998},
1937  volume = {126},
1938  pages = {3213-3230},
1939  number = {12},
1940  abstract = {A Jacobian formulation of the pressure gradient force for use in models
1941   with topography-following coordinates is proposed. It can be used
1942   in conjunction with any vertical coordinate system and is easily
1943   implemented. Vertical variations in the pressure gradient are expressed
1944   in terms of a vertical integral of the Jacobian of density and depth
1945   with respect to the vertical computational coordinate. Finite difference
1946   approximations are made on the density field, consistent with piecewise
1947   linear and continuous fields, and accurate pressure gradients are
1948   obtained by vertically integrating the discrete Jacobian from sea
1949   surface.Two discrete schemes are derived and examined in detail:
1950   the first using standard centered differencing in the generalized
1951   vertical coordinate and the second using a vertical weighting such
1952   that the finite differences are centered with respect to the Cartesian
1953   z coordinate. Both schemes achieve second-order accuracy for any
1954   vertical coordinate system and are significantly more accurate than
1955   conventional schemes based on estimating the pressure gradients by
1956   finite differencing a previously determined pressure field.The standard
1957   Jacobian formulation is constructed to give exact pressure gradient
1958   results, independent of the bottom topography, if the buoyancy field
1959   varies bilinearly with horizontal position, x, and the generalized
1960   vertical coordinate, s, over each grid cell. Similarly, the weighted
1961   Jacobian scheme is designed to achieve exact results, when the buoyancy
1962   field varies linearly with z and arbitrarily with x, that is, b(x,z)
1963   = b0(x) + b1(x)z.When horizontal resolution cannot be made
1964   fine enough to avoid hydrostatic inconsistency, errors can be substantially
1965   reduced by the choice of an appropriate vertical coordinate. Tests
1966   with horizontally uniform, vertically varying, and with horizontally
1967   and vertically varying buoyancy fields show that the standard Jacobian
1968   formulation achieves superior results when the condition for hydrostatic
1969   consistency is satisfied, but when coarse horizontal resolution causes
1970   this condition to be strongly violated, the weighted Jacobian may
1971   give superior results.},
1972  date = {December 01, 1998},
1973  owner = {gm},
1974  timestamp = {2007.08.05}
1975}
1976
1977@ARTICLE{SongWright1998,
1978  author = {Y. T. Song and D. G. Wright},
1979  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
1980   - Energy, Momentum, and Bottom Torque Consistency},
1981  journal = MWR,
1982  year = {1998},
1983  volume = {126},
1984  pages = {3231-3247},
1985  number = {12},
1986  abstract = {A new formulation of the pressure gradient force for use in models
1987   with topography-following coordinates is proposed and diagnostically
1988   analyzed in Part I. Here, it is shown that important properties of
1989   the continuous equations are retained by the resulting numerical
1990   schemes, and their performance in prognostic simulations is examined.
1991   Numerical consistency is investigated with respect to global energy
1992   conservation, depth-integrated momentum changes, and the representation
1993   of the bottom pressure torque. The performances of the numerical
1994   schemes are tested in prognostic integrations of an ocean model to
1995   demonstrate numerical accuracy and long-term integral stability.
1996   Two typical geometries, an isolated tall seamount and an unforced
1997   basin with sloping boundaries, are considered for the special case
1998   of no external forcing and horizontal isopycnals to test numerical
1999   accuracy. These test problems confirm that the proposed schemes yield
2000   accurate approximations to the pressure gradient force. Integral
2001   consistency conditions are verified and the energetics of the “advective
2002   elimination” of the pressure gradient error (Mellor et al)
2003   is considered.A large-scale wind-driven basin with and without topography
2004   is used to test the model’s long-term integral performance
2005   and the effects of bottom pressure torque on the transport in western
2006   boundary currents. Integrations are carried out for 10 years in each
2007   case and results show that the schemes are stable, and the steep
2008   topography causes no obvious numerical problems. A realistic meandering
2009   western boundary current is well developed with detached cold cyclonic
2010   and warm anticyclonic eddies as it extends across the basin. In addition,
2011   the results with topography show earlier separation and enhanced
2012   transport in the western boundary currents due to the bottom pressure
2013   torque.},
2014  date = {December 01, 1998},
2015  owner = {gm},
2016  timestamp = {2007.08.05}
2017}
2018
2019@PHDTHESIS{Speich1992,
2020  author = {S. Speich},
2021  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
2022   par les d\'{e}troits - cas de la mer d'Alboran},
2023  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
2024  year = {1992},
2025  owner = {gm},
2026  timestamp = {2007.08.06}
2027}
2028
2029@ARTICLE{Speich1996,
2030  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
2031  title = {The circulation in the Alboran Sea - a sensitivity study},
2032  journal = JPO,
2033  year = {1996},
2034  volume = {26},
2035  owner = {gm},
2036  timestamp = {2007.08.06}
2037}
2038
2039@ARTICLE{Steele2001,
2040  author = {M. Steele and R. Morley and W. Ermold},
2041  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
2042  journal = {Journal of Climate},
2043  year = {2001},
2044  volume = {14},
2045  pages = {2079--2087
2046   
2047   },
2048  number = {9},
2049  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
2050   Climatology (PHC), has been created that merges the 1998 version
2051   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
2052   The result is a global climatology for temperature and salinity that
2053   contains a good description of the Arctic Ocean and its environs.
2054   Monthly, seasonal, and annual average products have been generated.
2055   How the original datasets were prepared for merging, how the optimal
2056   interpolation procedure was performed, and characteristics of the
2057   resulting dataset are discussed, followed by a summary and discussion
2058   of future plans.},
2059  date = {May 01, 2001},
2060  owner = {gm},
2061  timestamp = {2007.08.06}
2062}
2063
2064@ARTICLE{Stein1992,
2065  author = {C. A. Stein and S. Stein},
2066  title = {A model for the global variation in oceanic depth and heat flow with
2067   lithospheric age},
2068  journal = {Nature},
2069  year = {1992},
2070  volume = {359},
2071  pages = {123-129},
2072  owner = {gm},
2073  timestamp = {2007.08.04}
2074}
2075
2076@ARTICLE{Thiem2006,
2077  author = {O. Thiem and J. Berntsen},
2078  title = {Internal pressure errors in sigma-coordinate ocean models due to
2079   anisotropy},
2080  journal = {Ocean Modelling},
2081  year = {2006},
2082  volume = {12, 1-2},
2083  owner = {gm},
2084  timestamp = {2007.08.05}
2085}
2086
2087@ARTICLE{Treguier1992,
2088  author = {A.M. Tr\'{e}guier},
2089  title = {Kinetic energy analysis of an eddy resolving, primitive equation
2090   North Atlantic model},
2091  journal = JGR,
2092  year = {1992},
2093  volume = {97},
2094  pages = {687-701}
2095}
2096
2097@ARTICLE{Treguier2001,
2098  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
2099   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
2100   and S. Michel},
2101  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
2102   open boundary conditions},
2103  journal = JGR,
2104  year = {2001},
2105  volume = {106},
2106  pages = {22115-22129}
2107}
2108
2109@ARTICLE{Treguier1996,
2110  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
2111  title = {Properties of nonuniform grids used in ocean general circulation
2112   models},
2113  journal = JGR,
2114  year = {1996},
2115  volume = {101},
2116  pages = {20877-20881},
2117  owner = {gm},
2118  timestamp = {2007.08.03}
2119}
2120
2121@ARTICLE{Treguier1997,
2122  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
2123  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
2124   Ocean Models},
2125  journal = JPO,
2126  year = {1997},
2127  volume = {27},
2128  pages = {567-580},
2129  number = {4},
2130  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
2131   consistent with the fact that the ocean interior is nearly adiabatic.
2132   Gent and McWilliams have described a framework in which this can
2133   be approximated in z-coordinate primitive equation models by incorporating
2134   the effects of eddies on the buoyancy field through an eddy-induced
2135   velocity. It is also natural to base a parameterization on the simple
2136   picture of the mixing of potential vorticity in the interior and
2137   the mixing of buoyancy at the surface. The authors discuss the various
2138   constraints imposed by these two requirements and attempt to clarify
2139   the appropriate boundary conditions on the eddy-induced velocities
2140   at the surface. Quasigeostrophic theory is used as a guide to the
2141   simplest way of satisfying these constraints.},
2142  date = {April 01, 1997},
2143  owner = {gm},
2144  timestamp = {2007.08.03}
2145}
2146
2147@BOOK{UNESCO1983,
2148  title = {Algorithms for computation of fundamental property of sea water},
2149  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
2150  year = {1983},
2151  author = {UNESCO},
2152  owner = {gm},
2153  timestamp = {2007.08.04}
2154}
2155
2156@TECHREPORT{OASIS2006,
2157  author = {S. Valcke},
2158  title = {OASIS3 User Guide (prism\_2-5)},
2159  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
2160   64 pp},
2161  year = {2006},
2162  owner = {gm},
2163  timestamp = {2007.08.05}
2164}
2165
2166@TECHREPORT{valal00,
2167  author = {S. Valcke and L. Terray and A. Piacentini },
2168  title = {The OASIS Coupled User Guide Version 2.4},
2169  institution = {CERFACS},
2170  year = {2000},
2171  number = {TR/CMGC/00-10}
2172}
2173
2174@ARTICLE{Weatherly1984,
2175  author = {G. L. Weatherly},
2176  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
2177  journal = JMR,
2178  year = {1984},
2179  volume = {42, 2},
2180  pages = {289-301},
2181  owner = {gm},
2182  timestamp = {2007.08.06}
2183}
2184
2185@ARTICLE{Weaver1997,
2186  author = {A. J. Weaver and M. Eby},
2187  title = {On the numerical implementation of advection schemes for use in conjuction
2188   with various mixing
2189   
2190   parameterizations in the GFDL ocean model},
2191  journal = JPO,
2192  year = {1997},
2193  volume = {27},
2194  owner = {gm},
2195  timestamp = {2007.08.06}
2196}
2197
2198@ARTICLE{Webb1998,
2199  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
2200  title = {Improved Advection Schemes for Ocean Models},
2201  journal = JAOT,
2202  year = {1998},
2203  volume = {15},
2204  pages = {1171-1187},
2205  number = {5},
2206  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
2207   ocean model, based on a control volume form of the advection equation.
2208   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
2209   forward time-stepping schemes used by the ocean model. Farrow and
2210   Stevens overcame the problem by implementing a predictor–corrector
2211   time-stepping scheme, but this is computationally expensive to run.
2212   The present paper shows that the problem can be overcome by splitting
2213   the QUICK operator into an O(δx2) advective term and a velocity
2214   dependent biharmonic diffusion term. These can then be time-stepped
2215   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
2216   ocean model, leading to a significant increase in model efficiency.
2217   A small change in the advection operator coefficients may also be
2218   made leading to O(δx4) accuracy. Tests of the improved schemes
2219   are carried out making use of a global eddy-permitting ocean model.
2220   Results are presented from cases where the schemes were applied to
2221   only the tracer fields and also from cases where they were applied
2222   to both the tracer and velocity fields. It is found that the new
2223   schemes have the most effect in the western boundary current regions,
2224   where, for example, the warm core of the Agulhas Current is no longer
2225   broken up by numerical noise.},
2226  date = {October 01, 1998},
2227  owner = {gm},
2228  timestamp = {2007.08.04}
2229}
2230
2231@ARTICLE{Willebrand2001,
2232  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
2233   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
2234   L. New},
2235  title = {Circulation characteristics in three eddy-permitting models of the
2236   North Atlantic},
2237  journal = {Progress in Oceanography},
2238  year = {2001},
2239  volume = {48, 2},
2240  pages = {123-161},
2241  owner = {gm},
2242  timestamp = {2007.08.04}
2243}
2244
2245@ARTICLE{Zalesak1979,
2246  author = {S. T. Zalesak},
2247  title = {Fully multidimensional flux corrected transport algorithms for fluids},
2248  journal = JCP,
2249  year = {1979},
2250  volume = {31},
2251  owner = {gm},
2252  timestamp = {2007.08.04}
2253}
2254
2255@ARTICLE{Zhang1992,
2256  author = {Zhang, R.-H. and Endoh, M.},
2257  title = {A free surface general circulation model for the tropical Pacific
2258   Ocean},
2259  journal = JGR,
2260  year = {1992},
2261  volume = {97},
2262  pages = {11237-11255},
2263  month = jul,
2264  owner = {gm}
2265}
2266
2267@comment{jabref-meta: groupsversion:3;}
2268
2269@comment{jabref-meta: groupstree:
22700 AllEntriesGroup:;
22711 ExplicitGroup:El Nino\;2\;blanketal97\;;
22722 ExplicitGroup:97/98 event\;0\;;
22732 ExplicitGroup:Forecast\;0\;;
22742 ExplicitGroup:GHG change\;0\;;
22752 ExplicitGroup:in GCMs\;0\;;
22762 ExplicitGroup:in MIPs\;0\;;
22772 ExplicitGroup:momentum balance\;0\;;
22782 ExplicitGroup:Obs analysis\;0\;;
22792 ExplicitGroup:Paleo\;0\;;
22802 ExplicitGroup:Previous events\;0\;;
22812 ExplicitGroup:Reviews\;0\;;
22822 ExplicitGroup:Simple models\;0\;Zhang1992\;;
22832 ExplicitGroup:SPL, SC, mean\;0\;;
22842 ExplicitGroup:Teleconnections\;0\;;
22852 ExplicitGroup:Low freq\;0\;;
22862 ExplicitGroup:Theory\;0\;;
22872 ExplicitGroup:Energetics\;0\;;
22881 ExplicitGroup:Diurnal in tropics\;0\;;
22891 ExplicitGroup:Indian\;0\;;
22901 ExplicitGroup:Atlantic\;0\;;
22911 ExplicitGroup:MJO, IO, TIW\;2\;;
22922 ExplicitGroup:Obs\;0\;;
22932 ExplicitGroup:GCM\;0\;;
22942 ExplicitGroup:Mechanims\;0\;;
22952 ExplicitGroup:TIW\;0\;;
22961 ExplicitGroup:Observations\;2\;;
22972 ExplicitGroup:ERBE\;0\;;
22982 ExplicitGroup:Tropical\;0\;;
22992 ExplicitGroup:Global\;0\;;
23002 ExplicitGroup:Clouds\;0\;;
23012 ExplicitGroup:Scale interactions\;0\;;
23021 ExplicitGroup:Mechanisms\;2\;;
23032 ExplicitGroup:CRF\;0\;;
23042 ExplicitGroup:Water vapor\;0\;;
23052 ExplicitGroup:Atmos mechanisms\;0\;;
23061 ExplicitGroup:GCMs\;2\;;
23072 ExplicitGroup:Uncertainty\;0\;;
23082 ExplicitGroup:Momentum balance\;0\;;
23091 ExplicitGroup:Climate change\;0\;;
23102 ExplicitGroup:IPCC AR4\;0\;;
23111 ExplicitGroup:Analysis tools\;0\;;
23121 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2313}
2314
Note: See TracBrowser for help on using the repository browser.