New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_B.tex @ 3294

Last change on this file since 3294 was 3294, checked in by rblod, 12 years ago

Merge of 3.4beta into the trunk

File size: 21.8 KB
RevLine 
[707]1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
[2282]8
9\newpage
10$\ $\newline    % force a new ligne
11
[707]12% ================================================================
13% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
14% ================================================================
15\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
16\label{Apdx_B_1}
17
[3294]18\subsubsection*{In z-coordinates}
19In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator
[1223]20is given by:
[2282]21\begin{eqnarray} \label{Apdx_B1}
[3294]22 &D^T = \frac{1}{e_1 \, e_2}      \left[
23  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
[2282]24                       \left.
[3294]25+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
[817]26+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
[2282]27\end{eqnarray}
[707]28
[3294]29\subsubsection*{In generalized vertical coordinates}
30In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and
31$\sigma_2$ by \eqref{Apdx_A_s_slope} and the vertical/horizontal ratio of diffusion
[2282]32coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by:
[707]33
34\begin{equation} \label{Apdx_B2}
[3294]35D^T = \left. \nabla \right|_s \cdot
[817]36           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
37\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
[707]38 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
39 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
[3294]40 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
[707]41^2+\sigma _2 ^2} \hfill \\
42\end{array} }} \right)
43\end{equation}
[1223]44or in expanded form:
[2282]45\begin{subequations}
[3294]46\begin{align*} {\begin{array}{*{20}l}
47D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.
[2282]48{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right\\
49&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
[3294]50&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.
51 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]
52\end{array} }
[2282]53\end{align*}
54\end{subequations}
[707]55
[3294]56Equation \eqref{Apdx_B2} is obtained from \eqref{Apdx_B1} without any
57additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,
58we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A}
59and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}.
60Since no cross horizontal derivative $\partial _i \partial _j $ appears in
61\eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent.
62The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$)
[2282]63transformation without any loss of generality:
[707]64
[3294]65\begin{subequations}
66\begin{align*} {\begin{array}{*{20}l}
67D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
[2282]68                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\
[3294]69 \\
70%
71&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
72                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
73& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
74\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\
75 \\
76%
77&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
[2282]78&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
[3294]79&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
[2282]80\end{array} }     \\
[3294]81%
[2282]82 {\begin{array}{*{20}l}
83\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:}
84%
[3294]85& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
86& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
87& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\
[2282]88\\
[3294]89&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
90& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
91& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
92& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
93\end{array} } \\
94{\begin{array}{*{20}l}
[2282]95%
96\intertext{using the same remark as just above, it becomes:}
97%
[3294]98&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
99& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
100& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
101& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }
102 \end{array} } \\
103{\begin{array}{*{20}l}
[2282]104%
[3294]105\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
106the last term of the first line and the first term of the last line cancel, while
[2282]107the second line reduces to a single vertical derivative, so it becomes:}
108%
[3294]109& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
110& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
111 \\
[2282]112%
[3294]113\intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
114\end{array} } \\
[2282]115%
[3294]116{\frac{1}{e_1\,e_2\,e_3}}
[817]117\left( {{\begin{array}{*{30}c}
[707]118{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
119{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
120\end{array}}}\right)
121\cdot \left[ {A^{lT}
[817]122\left( {{\begin{array}{*{30}c}
[707]123 {1} \hfill & {-\sigma_1 } \hfill \\
[3294]124 {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
[707]125\end{array} }} \right)
[3294]126\cdot
[817]127\left( {{\begin{array}{*{30}c}
[707]128{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
129{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
[2282]130\end{array}}}       \right) \left( T \right)} \right]
131\end{align*}
132\end{subequations}
[3294]133\addtocounter{equation}{-2}
[707]134
135% ================================================================
[817]136% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
[707]137% ================================================================
[817]138\section{Iso/diapycnal 2nd Order Tracer Diffusive Operators}
[707]139\label{Apdx_B_2}
140
[3294]141\subsubsection*{In z-coordinates}
[707]142
[3294]143The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the ($i$,$j$,$k$)
144curvilinear coordinate system in which the equations of the ocean circulation model are
[1223]145formulated, takes the following form \citep{Redi_JPO82}:
[707]146
[3294]147\begin{equation} \label{Apdx_B3}
[707]148\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
149\left[ {{\begin{array}{*{20}c}
150 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
151 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
152 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
153\end{array} }} \right]
[3294]154\end{equation}
155where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$,
156$\textbf{j}$) directions, relative to geopotentials:
[707]157\begin{equation*}
158a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
[817]159\qquad , \qquad
[3294]160a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
[707]161\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
162\end{equation*}
[817]163
[3294]164In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, so
[1223]165$\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
[3294]166\begin{subequations} \label{Apdx_B4}
167\begin{equation} \label{Apdx_B4a}
168{\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
[707]169\left[ {{\begin{array}{*{20}c}
170 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
171 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
172 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
[3294]173\end{array} }} \right],
174\end{equation}
175and the iso/dianeutral diffusive operator in $z$-coordinates is then
176\begin{equation}\label{Apdx_B4b}
177 D^T = \left. \nabla \right|_z \cdot
178           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
179\end{equation}
180\end{subequations}
[817]181
[3294]182
183Physically, the full tensor \eqref{Apdx_B3}
184represents strong isoneutral diffusion on a plane parallel to the isoneutral
185surface and weak dianeutral diffusion perpendicular to this plane.
186However, the approximate `weak-slope' tensor \eqref{Apdx_B4a} represents strong
187diffusion along the isoneutral surface, with weak
188\emph{vertical}  diffusion -- the principal axes of the tensor are no
189longer orthogonal. This simplification also decouples
190the ($i$,$z$) and ($j$,$z$) planes of the tensor. The weak-slope operator therefore takes the same
191form, \eqref{Apdx_B4}, as \eqref{Apdx_B2}, the diffusion operator for geopotential
192diffusion written in non-orthogonal $i,j,s$-coordinates. Written out
193explicitly,
194
195\begin{multline} \label{Apdx_B_ldfiso}
196 D^T=\frac{1}{e_1 e_2 }\left\{
197 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
198 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
199\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
200\end{multline}
201
202
203The isopycnal diffusion operator \eqref{Apdx_B4},
204\eqref{Apdx_B_ldfiso} conserves tracer quantity and dissipates its
205square. The demonstration of the first property is trivial as \eqref{Apdx_B4} is the divergence
[1223]206of fluxes. Let us demonstrate the second one:
[707]207\begin{equation*}
[3294]208\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
209          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
[707]210\end{equation*}
[3294]211and since
212\begin{subequations}
213\begin{align*} {\begin{array}{*{20}l}
214\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T}
215\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
216\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
217{\frac{\partial T}{\partial j}} \right)^2} \right. \\
[2282]218&\qquad \qquad \qquad
[3294]219{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
220&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
221          T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
222          j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
223  +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
[2282]224& \geq 0
[3294]225\end{array} }
[817]226\end{align*}
[2282]227\end{subequations}
[3294]228\addtocounter{equation}{-1}
229 the property becomes obvious.
[707]230
[3294]231\subsubsection*{In generalized vertical coordinates}
[707]232
[3294]233Because the weak-slope operator \eqref{Apdx_B4}, \eqref{Apdx_B_ldfiso} is decoupled
234in the ($i$,$z$) and ($j$,$z$) planes, it may be transformed into
235generalized $s$-coordinates in the same way as \eqref{Apdx_B_1} was transformed into
236\eqref{Apdx_B_2}. The resulting operator then takes the simple form
[707]237
[3294]238\begin{equation} \label{Apdx_B_ldfiso_s}
239D^T = \left. \nabla \right|_s \cdot
240           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
241\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
242 1 \hfill & 0 \hfill & {-r _1 } \hfill \\
243 0 \hfill & 1 \hfill & {-r _2 } \hfill \\
244 {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
245^2+r _2 ^2} \hfill \\
246\end{array} }} \right),
247\end{equation}
248
249where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$,
250$\textbf{j}$) directions, relative to $s$-coordinate surfaces:
251\begin{equation*}
252r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
253\qquad , \qquad
254r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
255\right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
256\end{equation*}
257
258To prove  \eqref{Apdx_B5}  by direct re-expression of \eqref{Apdx_B_ldfiso} is
259straightforward, but laborious. An easier way is first to note (by reversing the
260derivation of \eqref{Apdx_B_2} from \eqref{Apdx_B_1} ) that the
261weak-slope operator may be \emph{exactly} reexpressed in
262non-orthogonal $i,j,\rho$-coordinates as
263
264\begin{equation} \label{Apdx_B5}
265D^T = \left. \nabla \right|_\rho \cdot
266           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
267\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
268 1 \hfill & 0 \hfill &0 \hfill \\
269 0 \hfill & 1 \hfill & 0 \hfill \\
2700 \hfill & 0 \hfill & \varepsilon \hfill \\
271\end{array} }} \right).
272\end{equation}
273Then direct transformation from $i,j,\rho$-coordinates to
274$i,j,s$-coordinates gives \eqref{Apdx_B_ldfiso_s} immediately.
275
276Note that the weak-slope approximation is only made in
277transforming from the (rotated,orthogonal) isoneutral axes to the
278non-orthogonal $i,j,\rho$-coordinates. The further transformation
279into $i,j,s$-coordinates is exact, whatever the steepness of
280the  $s$-surfaces, in the same way as the transformation of
281horizontal/vertical Laplacian diffusion in $z$-coordinates,
282\eqref{Apdx_B_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
283
284
[707]285% ================================================================
286% Lateral/Vertical Momentum Diffusive Operators
287% ================================================================
288\section{Lateral/Vertical Momentum Diffusive Operators}
289\label{Apdx_B_3}
290
[3294]291The second order momentum diffusion operator (Laplacian) in the $z$-coordinate
292is found by applying \eqref{Eq_PE_lap_vector}, the expression for the Laplacian
293of a vector,  to the horizontal velocity vector :
[817]294\begin{align*}
[3294]295\Delta {\textbf{U}}_h
[817]296&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
297\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
298\\
299&=\left( {{\begin{array}{*{20}c}
[707]300 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
301 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
302 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
303\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
[3294]304 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
305}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
[707]306u}{\partial k}} \right)} \hfill \\
[3294]307 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
308}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
[707]309}{\partial i}} \hfill \\
[3294]310 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
311}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
312j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
[707]313\hfill \\
314\end{array} }} \right)
[817]315\\
316\\
317&=\left( {{\begin{array}{*{20}c}
[707]318{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
319{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
3200 \\
321\end{array} }} \right)
322+\frac{1}{e_3 }
323\left( {{\begin{array}{*{20}c}
324{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
325{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
326{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
327\end{array} }} \right)
[817]328\end{align*}
[3294]329Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third
[1223]330componant of the second vector is obviously zero and thus :
[707]331\begin{equation*}
332\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
333\end{equation*}
334
[3294]335Note that this operator ensures a full separation between the vorticity and horizontal
336divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian
[1223]337applied to each component in Cartesian coordinates, not on the sphere.
[707]338
[3294]339The horizontal/vertical second order (Laplacian type) operator used to diffuse
[1223]340horizontal momentum in the $z$-coordinate therefore takes the following form :
[817]341\begin{equation} \label{Apdx_B_Lap_U}
[3294]342 {\textbf{D}}^{\textbf{U}} =
[817]343     \nabla _h \left( {A^{lm}\;\chi } \right)
344   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
345   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
[3294]346            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\
[817]347\end{equation}
[1223]348that is, in expanded form:
[817]349\begin{align*}
[3294]350D^{\textbf{U}}_u
[817]351& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
352     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
353     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
[3294]354D^{\textbf{U}}_v
[817]355& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
356     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
357     +\frac{1}{e_3} \frac{\partial v}{\partial k}
358\end{align*}
[707]359
[3294]360Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to a
361useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
362Similarly, we did not found an expression of practical use for the geopotential
363horizontal/vertical Laplacian operator in the $s$-coordinate. Generally,
364\eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate systems, that is
[1223]365a Laplacian diffusion is applied on momentum along the coordinate directions.
Note: See TracBrowser for help on using the repository browser.