New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DYN.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Chap_DYN.tex @ 6320

Last change on this file since 6320 was 6320, checked in by mathiot, 8 years ago

ISF: update documentation

File size: 73.4 KB
Line 
1% ================================================================
2% Chapter ——— Ocean Dynamics (DYN)
3% ================================================================
4\chapter{Ocean Dynamics (DYN)}
5\label{DYN}
6\minitoc
7
8%\vspace{2.cm}
9$\ $\newline      %force an empty line
10
11Using the representation described in Chapter \ref{DOM}, several semi-discrete
12space forms of the dynamical equations are available depending on the vertical
13coordinate used and on the conservation properties of the vorticity term. In all
14the equations presented here, the masking has been omitted for simplicity.
15One must be aware that all the quantities are masked fields and that each time an
16average or difference operator is used, the resulting field is multiplied by a mask.
17
18The prognostic ocean dynamics equation can be summarized as follows:
19\begin{equation*}
20\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }
21                  {\text{COR} + \text{ADV}                       }
22         + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
23\end{equation*}
24NXT stands for next, referring to the time-stepping. The first group of terms on
25the rhs of this equation corresponds to the Coriolis and advection
26terms that are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG)
27and a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
28and advection part (COR+ADV) in the flux formulation. The terms following these
29are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient,
30and SPG, Surface Pressure Gradient); and contributions from lateral diffusion
31(LDF) and vertical diffusion (ZDF), which are added to the rhs in the \mdl{dynldf} 
32and \mdl{dynzdf} modules. The vertical diffusion term includes the surface and
33bottom stresses. The external forcings and parameterisations require complex
34inputs (surface wind stress calculation using bulk formulae, estimation of mixing
35coefficients) that are carried out in modules SBC, LDF and ZDF and are described
36in Chapters \ref{SBC}, \ref{LDF} and \ref{ZDF}, respectively.
37
38In the present chapter we also describe the diagnostic equations used to compute
39the horizontal divergence, curl of the velocities (\emph{divcur} module) and
40the vertical velocity (\emph{wzvmod} module).
41
42The different options available to the user are managed by namelist variables.
43For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
44where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
45If a CPP key is used for this term its name is \textbf{key\_ttt}. The corresponding
46code can be found in the \textit{dynttt\_xxx} module in the DYN directory, and it is
47usually computed in the \textit{dyn\_ttt\_xxx} subroutine.
48
49The user has the option of extracting and outputting each tendency term from the
503D momentum equations (\key{trddyn} defined), as described in
51Chap.\ref{MISC}.  Furthermore, the tendency terms associated with the 2D
52barotropic vorticity balance (when \key{trdvor} is defined) can be derived from the
533D terms.
54%%%
55\gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does
56MISC correspond to "extracting tendency terms" or "vorticity balance"?}
57
58$\ $\newline    % force a new ligne
59
60% ================================================================
61% Sea Surface Height evolution & Diagnostics variables
62% ================================================================
63\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
64\label{DYN_divcur_wzv}
65
66%--------------------------------------------------------------------------------------------------------------
67%           Horizontal divergence and relative vorticity
68%--------------------------------------------------------------------------------------------------------------
69\subsection   [Horizontal divergence and relative vorticity (\textit{divcur})]
70         {Horizontal divergence and relative vorticity (\mdl{divcur})}
71\label{DYN_divcur}
72
73The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows:
74\begin{equation} \label{Eq_divcur_cur}
75\zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta _{i+1/2} \left[ {e_{2v}\;v} \right]
76                          -\delta _{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
77\end{equation} 
78
79The horizontal divergence is defined at a $T$-point. It is given by:
80\begin{equation} \label{Eq_divcur_div}
81\chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
82      \left( {\delta _i \left[ {e_{2u}\,e_{3u}\,u} \right]
83             +\delta _j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
84\end{equation} 
85
86Note that although the vorticity has the same discrete expression in $z$-
87and $s$-coordinates, its physical meaning is not identical. $\zeta$ is a pseudo
88vorticity along $s$-surfaces (only pseudo because $(u,v)$ are still defined along
89geopotential surfaces, but are not necessarily defined at the same depth).
90
91The vorticity and divergence at the \textit{before} step are used in the computation
92of the horizontal diffusion of momentum. Note that because they have been
93calculated prior to the Asselin filtering of the \textit{before} velocities, the
94\textit{before} vorticity and divergence arrays must be included in the restart file
95to ensure perfect restartability. The vorticity and divergence at the \textit{now} 
96time step are used for the computation of the nonlinear advection and of the
97vertical velocity respectively.
98
99%--------------------------------------------------------------------------------------------------------------
100%           Sea Surface Height evolution
101%--------------------------------------------------------------------------------------------------------------
102\subsection   [Sea surface height evolution and vertical velocity (\textit{sshwzv})]
103         {Horizontal divergence and relative vorticity (\mdl{sshwzv})}
104\label{DYN_sshwzv}
105
106The sea surface height is given by :
107\begin{equation} \label{Eq_dynspg_ssh}
108\begin{aligned}
109\frac{\partial \eta }{\partial t}
110&\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{  \delta _i \left[ {e_{2u}\,e_{3u}\;u} \right]
111                                                                                  +\delta _j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right\} } 
112           -    \frac{\textit{emp}}{\rho _w }   \\
113&\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho _w }
114\end{aligned}
115\end{equation}
116where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
117expressed in Kg/m$^2$/s (which is equal to mm/s), and $\rho _w$=1,035~Kg/m$^3$ 
118is the reference density of sea water (Boussinesq approximation). If river runoff is
119expressed as a surface freshwater flux (see \S\ref{SBC}) then \textit{emp} can be
120written as the evaporation minus precipitation, minus the river runoff.
121The sea-surface height is evaluated using exactly the same time stepping scheme
122as the tracer equation \eqref{Eq_tra_nxt}:
123a leapfrog scheme in combination with an Asselin time filter, $i.e.$ the velocity appearing
124in \eqref{Eq_dynspg_ssh} is centred in time (\textit{now} velocity).
125This is of paramount importance. Replacing $T$ by the number $1$ in the tracer equation and summing
126over the water column must lead to the sea surface height equation otherwise tracer content
127will not be conserved \citep{Griffies_al_MWR01, Leclair_Madec_OM09}.
128
129The vertical velocity is computed by an upward integration of the horizontal
130divergence starting at the bottom, taking into account the change of the thickness of the levels :
131\begin{equation} \label{Eq_wzv}
132\left\{   \begin{aligned}
133&\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }   \\
134&\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_
135                                         - \frac{1} {2 \rdt} \left\left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
136\end{aligned}   \right.
137\end{equation}
138
139In the case of a non-linear free surface (\key{vvl}), the top vertical velocity is $-\textit{emp}/\rho_w$,
140as changes in the divergence of the barotropic transport are absorbed into the change
141of the level thicknesses, re-orientated downward.
142\gmcomment{not sure of this...  to be modified with the change in emp setting}
143In the case of a linear free surface, the time derivative in \eqref{Eq_wzv} disappears.
144The upper boundary condition applies at a fixed level $z=0$. The top vertical velocity
145is thus equal to the divergence of the barotropic transport ($i.e.$ the first term in the
146right-hand-side of \eqref{Eq_dynspg_ssh}).
147
148Note also that whereas the vertical velocity has the same discrete
149expression in $z$- and $s$-coordinates, its physical meaning is not the same:
150in the second case, $w$ is the velocity normal to the $s$-surfaces.
151Note also that the $k$-axis is re-orientated downwards in the \textsc{fortran} code compared
152to the indexing used in the semi-discrete equations such as \eqref{Eq_wzv} 
153(see  \S\ref{DOM_Num_Index_vertical}).
154
155
156% ================================================================
157% Coriolis and Advection terms: vector invariant form
158% ================================================================
159\section{Coriolis and Advection: vector invariant form}
160\label{DYN_adv_cor_vect}
161%-----------------------------------------nam_dynadv----------------------------------------------------
162\namdisplay{namdyn_adv} 
163%-------------------------------------------------------------------------------------------------------------
164
165The vector invariant form of the momentum equations is the one most
166often used in applications of the \NEMO ocean model. The flux form option
167(see next section) has been present since version $2$. Options are defined
168through the \ngn{namdyn\_adv} namelist variables
169Coriolis and momentum advection terms are evaluated using a leapfrog
170scheme, $i.e.$ the velocity appearing in these expressions is centred in
171time (\textit{now} velocity).
172At the lateral boundaries either free slip, no slip or partial slip boundary
173conditions are applied following Chap.\ref{LBC}.
174
175% -------------------------------------------------------------------------------------------------------------
176%        Vorticity term
177% -------------------------------------------------------------------------------------------------------------
178\subsection   [Vorticity term (\textit{dynvor}) ]
179         {Vorticity term (\mdl{dynvor})}
180\label{DYN_vor}
181%------------------------------------------nam_dynvor----------------------------------------------------
182\namdisplay{namdyn_vor} 
183%-------------------------------------------------------------------------------------------------------------
184
185Options are defined through the \ngn{namdyn\_vor} namelist variables.
186Four discretisations of the vorticity term (\textit{ln\_dynvor\_xxx}=true) are available:
187conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ;
188conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for
189the relative vorticity term and horizontal kinetic energy for the planetary vorticity
190term (MIX scheme) ; or conserving both the potential enstrophy of horizontally non-divergent
191flow and horizontal kinetic energy (EEN scheme) (see  Appendix~\ref{Apdx_C_vorEEN}). In the
192case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the
193consistency of vorticity term with analytical equations (\textit{ln\_dynvor\_con}=true).
194The vorticity terms are all computed in dedicated routines that can be found in
195the \mdl{dynvor} module.
196
197%-------------------------------------------------------------
198%                 enstrophy conserving scheme
199%-------------------------------------------------------------
200\subsubsection{Enstrophy conserving scheme (\np{ln\_dynvor\_ens}=true)}
201\label{DYN_vor_ens}
202
203In the enstrophy conserving case (ENS scheme), the discrete formulation of the
204vorticity term provides a global conservation of the enstrophy
205($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent
206flow ($i.e.$ $\chi$=$0$), but does not conserve the total kinetic energy. It is given by:
207\begin{equation} \label{Eq_dynvor_ens}
208\left\{ 
209\begin{aligned}
210{+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i} 
211                                & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
212{- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j} 
213                                & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j} 
214\end{aligned} 
215 \right.
216\end{equation} 
217
218%-------------------------------------------------------------
219%                 energy conserving scheme
220%-------------------------------------------------------------
221\subsubsection{Energy conserving scheme (\np{ln\_dynvor\_ene}=true)}
222\label{DYN_vor_ene}
223
224The kinetic energy conserving scheme (ENE scheme) conserves the global
225kinetic energy but not the global enstrophy. It is given by:
226\begin{equation} \label{Eq_dynvor_ene}
227\left\{   \begin{aligned}
228{+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
229                            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
230{- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
231                            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
232\end{aligned}    \right.
233\end{equation} 
234
235%-------------------------------------------------------------
236%                 mix energy/enstrophy conserving scheme
237%-------------------------------------------------------------
238\subsubsection{Mixed energy/enstrophy conserving scheme (\np{ln\_dynvor\_mix}=true) }
239\label{DYN_vor_mix}
240
241For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the
242two previous schemes is used. It consists of the ENS scheme (\ref{Eq_dynvor_ens})
243for the relative vorticity term, and of the ENE scheme (\ref{Eq_dynvor_ene}) applied
244to the planetary vorticity term.
245\begin{equation} \label{Eq_dynvor_mix}
246\left\{ {     \begin{aligned}
247 {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i} 
248 \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
249 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
250 \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
251{-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
252 \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
253 \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
254 \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
255\end{aligned}     } \right.
256\end{equation} 
257
258%-------------------------------------------------------------
259%                 energy and enstrophy conserving scheme
260%-------------------------------------------------------------
261\subsubsection{Energy and enstrophy conserving scheme (\np{ln\_dynvor\_een}=true) }
262\label{DYN_vor_een}
263
264In both the ENS and ENE schemes, it is apparent that the combination of $i$ and $j$ 
265averages of the velocity allows for the presence of grid point oscillation structures
266that will be invisible to the operator. These structures are \textit{computational modes} 
267that will be at least partly damped by the momentum diffusion operator ($i.e.$ the
268subgrid-scale advection), but not by the resolved advection term. The ENS and ENE schemes
269therefore do not contribute to dump any grid point noise in the horizontal velocity field.
270Such noise would result in more noise in the vertical velocity field, an undesirable feature.
271This is a well-known characteristic of $C$-grid discretization where $u$ and $v$ are located
272at different grid points, a price worth paying to avoid a double averaging in the pressure
273gradient term as in the $B$-grid.
274\gmcomment{ To circumvent this, Adcroft (ADD REF HERE)
275Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....}
276
277A very nice solution to the problem of double averaging was proposed by \citet{Arakawa_Hsu_MWR90}.
278The idea is to get rid of the double averaging by considering triad combinations of vorticity.
279It is noteworthy that this solution is conceptually quite similar to the one proposed by
280\citep{Griffies_al_JPO98} for the discretization of the iso-neutral diffusion operator (see App.\ref{Apdx_C}).
281
282The \citet{Arakawa_Hsu_MWR90} vorticity advection scheme for a single layer is modified
283for spherical coordinates as described by \citet{Arakawa_Lamb_MWR81} to obtain the EEN scheme.
284First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point:
285\begin{equation} \label{Eq_pot_vor}
286q  = \frac{\zeta +f} {e_{3f} }
287\end{equation}
288where the relative vorticity is defined by (\ref{Eq_divcur_cur}), the Coriolis parameter
289is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is:
290\begin{equation} \label{Eq_een_e3f}
291e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2}
292\end{equation}
293
294%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
295\begin{figure}[!ht]    \begin{center}
296\includegraphics[width=0.70\textwidth]{./TexFiles/Figures/Fig_DYN_een_triad.pdf}
297\caption{ \label{Fig_DYN_een_triad} 
298Triads used in the energy and enstrophy conserving scheme (een) for
299$u$-component (upper panel) and $v$-component (lower panel).}
300\end{center}   \end{figure}
301%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
302
303A key point in \eqref{Eq_een_e3f} is how the averaging in the \textbf{i}- and \textbf{j}- directions is made.
304It uses the sum of masked t-point vertical scale factor divided either
305by the sum of the four t-point masks (\np{nn\_een\_e3f}~=~1),
306or  just by $4$ (\np{nn\_een\_e3f}~=~true).
307The latter case preserves the continuity of $e_{3f}$ when one or more of the neighbouring $e_{3t}$ 
308tends to zero and extends by continuity the value of $e_{3f}$ into the land areas.
309This case introduces a sub-grid-scale topography at f-points (with a systematic reduction of $e_{3f}$ 
310when a model level intercept the bathymetry) that tends to reinforce the topostrophy of the flow
311($i.e.$ the tendency of the flow to follow the isobaths) \citep{Penduff_al_OS07}.
312
313Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as
314the following triad combinations of the neighbouring potential vorticities defined at f-points
315(Fig.~\ref{Fig_DYN_een_triad}):
316\begin{equation} \label{Q_triads}
317_i^j \mathbb{Q}^{i_p}_{j_p}
318= \frac{1}{12} \ \left(   q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p}  \right)
319\end{equation}
320where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$.
321
322Finally, the vorticity terms are represented as:
323\begin{equation} \label{Eq_dynvor_een}
324\left\{ {
325\begin{aligned}
326 +q\,e_3 \, v  &\equiv +\frac{1}{e_{1u} }   \sum_{\substack{i_p,\,k_p}} 
327                         {^{i+1/2-i_p}_j}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{1v}\,e_{3v} \;\right)^{i+1/2-i_p}_{j+j_p}   \\
328 - q\,e_3 \, u     &\equiv -\frac{1}{e_{2v} }    \sum_{\substack{i_p,\,k_p}} 
329                         {^i_{j+1/2-j_p}}  \mathbb{Q}^{i_p}_{j_p}  \left( e_{2u}\,e_{3u} \;\right)^{i+i_p}_{j+1/2-j_p}   \\
330\end{aligned} 
331} \right.
332\end{equation} 
333
334This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes.
335It conserves both total energy and potential enstrophy in the limit of horizontally
336nondivergent flow ($i.e.$ $\chi$=$0$) (see  Appendix~\ref{Apdx_C_vorEEN}).
337Applied to a realistic ocean configuration, it has been shown that it leads to a significant
338reduction of the noise in the vertical velocity field \citep{Le_Sommer_al_OM09}.
339Furthermore, used in combination with a partial steps representation of bottom topography,
340it improves the interaction between current and topography, leading to a larger
341topostrophy of the flow  \citep{Barnier_al_OD06, Penduff_al_OS07}.
342
343%--------------------------------------------------------------------------------------------------------------
344%           Kinetic Energy Gradient term
345%--------------------------------------------------------------------------------------------------------------
346\subsection   [Kinetic Energy Gradient term (\textit{dynkeg})]
347         {Kinetic Energy Gradient term (\mdl{dynkeg})}
348\label{DYN_keg}
349
350As demonstrated in Appendix~\ref{Apdx_C}, there is a single discrete formulation
351of the kinetic energy gradient term that, together with the formulation chosen for
352the vertical advection (see below), conserves the total kinetic energy:
353\begin{equation} \label{Eq_dynkeg}
354\left\{ \begin{aligned}
355 -\frac{1}{2 \; e_{1u} }  & \ \delta _{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   \\
356 -\frac{1}{2 \; e_{2v} }  & \ \delta _{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right]   
357\end{aligned} \right.
358\end{equation} 
359
360%--------------------------------------------------------------------------------------------------------------
361%           Vertical advection term
362%--------------------------------------------------------------------------------------------------------------
363\subsection   [Vertical advection term (\textit{dynzad}) ]
364         {Vertical advection term (\mdl{dynzad}) }
365\label{DYN_zad}
366
367The discrete formulation of the vertical advection, together with the formulation
368chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic
369energy. Indeed, the change of KE due to the vertical advection is exactly
370balanced by the change of KE due to the gradient of KE (see Appendix~\ref{Apdx_C}).
371\begin{equation} \label{Eq_dynzad}
372\left\{     \begin{aligned}
373-\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k}  \\
374-\frac{1} {e_{1v}\,e_{2v}\,e_{3v}}  &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2}  \;\delta _{k+1/2} \left[ u \right]\  }^{\,k} 
375\end{aligned}         \right.
376\end{equation} 
377When \np{ln\_dynzad\_zts}~=~\textit{true}, a split-explicit time stepping with 5 sub-timesteps is used
378on the vertical advection term.
379This option can be useful when the value of the timestep is limited by vertical advection \citep{Lemarie_OM2015}.
380Note that in this case, a similar split-explicit time stepping should be used on
381vertical advection of tracer to ensure a better stability,
382an option which is only available with a TVD scheme (see \np{ln\_traadv\_tvd\_zts} in \S\ref{TRA_adv_tvd}).
383
384
385% ================================================================
386% Coriolis and Advection : flux form
387% ================================================================
388\section{Coriolis and Advection: flux form}
389\label{DYN_adv_cor_flux}
390%------------------------------------------nam_dynadv----------------------------------------------------
391\namdisplay{namdyn_adv} 
392%-------------------------------------------------------------------------------------------------------------
393
394Options are defined through the \ngn{namdyn\_adv} namelist variables.
395In the flux form (as in the vector invariant form), the Coriolis and momentum
396advection terms are evaluated using a leapfrog scheme, $i.e.$ the velocity
397appearing in their expressions is centred in time (\textit{now} velocity). At the
398lateral boundaries either free slip, no slip or partial slip boundary conditions
399are applied following Chap.\ref{LBC}.
400
401
402%--------------------------------------------------------------------------------------------------------------
403%           Coriolis plus curvature metric terms
404%--------------------------------------------------------------------------------------------------------------
405\subsection   [Coriolis plus curvature metric terms (\textit{dynvor}) ]
406         {Coriolis plus curvature metric terms (\mdl{dynvor}) }
407\label{DYN_cor_flux}
408
409In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis
410parameter has been modified to account for the "metric" term. This altered
411Coriolis parameter is thus discretised at $f$-points. It is given by:
412\begin{multline} \label{Eq_dyncor_metric}
413f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i}  -  u\frac{\partial e_1 }{\partial j}} \right\\
414   \equiv   f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta _{i+1/2} \left[ {e_{2u} } \right] 
415                                                                 -  \overline u ^{j+1/2}\delta _{j+1/2} \left[ {e_{1u} } \right]  }  \ \right)
416\end{multline} 
417
418Any of the (\ref{Eq_dynvor_ens}), (\ref{Eq_dynvor_ene}) and (\ref{Eq_dynvor_een})
419schemes can be used to compute the product of the Coriolis parameter and the
420vorticity. However, the energy-conserving scheme  (\ref{Eq_dynvor_een}) has
421exclusively been used to date. This term is evaluated using a leapfrog scheme,
422$i.e.$ the velocity is centred in time (\textit{now} velocity).
423
424%--------------------------------------------------------------------------------------------------------------
425%           Flux form Advection term
426%--------------------------------------------------------------------------------------------------------------
427\subsection   [Flux form Advection term (\textit{dynadv}) ]
428         {Flux form Advection term (\mdl{dynadv}) }
429\label{DYN_adv_flux}
430
431The discrete expression of the advection term is given by :
432\begin{equation} \label{Eq_dynadv}
433\left\{ 
434\begin{aligned}
435\frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 
436\left(      \delta _{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i       }  \ u_t      \right]   
437          + \delta _{j       } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2}  \ u_f      \right] \right\ \;   \\
438\left.   + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2}  \ u_{uw} \right] \right)   \\
439\\
440\frac{1}{e_{1v}\,e_{2v}\,e_{3v}} 
441\left(     \delta _{i       } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f       \right] 
442         + \delta _{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i       } \ v_t       \right] \right\ \, \, \\
443\left.  + \delta _{k      } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw}  \right] \right) \\
444\end{aligned}
445\right.
446\end{equation}
447
448Two advection schemes are available: a $2^{nd}$ order centered finite
449difference scheme, CEN2, or a $3^{rd}$ order upstream biased scheme, UBS.
450The latter is described in \citet{Shchepetkin_McWilliams_OM05}. The schemes are
451selected using the namelist logicals \np{ln\_dynadv\_cen2} and \np{ln\_dynadv\_ubs}.
452In flux form, the schemes differ by the choice of a space and time interpolation to
453define the value of $u$ and $v$ at the centre of each face of $u$- and $v$-cells,
454$i.e.$ at the $T$-, $f$-, and $uw$-points for $u$ and at the $f$-, $T$- and
455$vw$-points for $v$.
456
457%-------------------------------------------------------------
458%                 2nd order centred scheme
459%-------------------------------------------------------------
460\subsubsection{$2^{nd}$ order centred scheme (cen2) (\np{ln\_dynadv\_cen2}=true)}
461\label{DYN_adv_cen2}
462
463In the centered $2^{nd}$ order formulation, the velocity is evaluated as the
464mean of the two neighbouring points :
465\begin{equation} \label{Eq_dynadv_cen2}
466\left\{     \begin{aligned}
467 u_T^{cen2} &=\overline u^{i }       \quad &  u_F^{cen2} &=\overline u^{j+1/2}  \quad &  u_{uw}^{cen2} &=\overline u^{k+1/2}   \\
468 v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j      \quad &  v_{vw}^{cen2} &=\overline v ^{k+1/2}  \\
469\end{aligned}      \right.
470\end{equation} 
471
472The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive
473($i.e.$ it may create false extrema). It is therefore notoriously noisy and must be
474used in conjunction with an explicit diffusion operator to produce a sensible solution.
475The associated time-stepping is performed using a leapfrog scheme in conjunction
476with an Asselin time-filter, so $u$ and $v$ are the \emph{now} velocities.
477
478%-------------------------------------------------------------
479%                 UBS scheme
480%-------------------------------------------------------------
481\subsubsection{Upstream Biased Scheme (UBS) (\np{ln\_dynadv\_ubs}=true)}
482\label{DYN_adv_ubs}
483
484The UBS advection scheme is an upstream biased third order scheme based on
485an upstream-biased parabolic interpolation. For example, the evaluation of
486$u_T^{ubs} $ is done as follows:
487\begin{equation} \label{Eq_dynadv_ubs}
488u_T^{ubs} =\overline u ^i-\;\frac{1}{6}   \begin{cases}
489      u"_{i-1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  \geqslant 0$ }    \\
490      u"_{i+1/2}&    \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i  < 0$ }
491\end{cases}
492\end{equation}
493where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta _i \left[ u \right]} \right]$. This results
494in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error \citep{Shchepetkin_McWilliams_OM05}.
495The overall performance of the advection scheme is similar to that reported in
496\citet{Farrow1995}. It is a relatively good compromise between accuracy and
497smoothness. It is not a \emph{positive} scheme, meaning that false extrema are
498permitted. But the amplitudes of the false extrema are significantly reduced over
499those in the centred second order method. As the scheme already includes
500a diffusion component, it can be used without explicit  lateral diffusion on momentum
501($i.e.$ \np{ln\_dynldf\_lap}=\np{ln\_dynldf\_bilap}=false), and it is recommended to do so.
502
503The UBS scheme is not used in all directions. In the vertical, the centred $2^{nd}$ 
504order evaluation of the advection is preferred, $i.e.$ $u_{uw}^{ubs}$ and
505$u_{vw}^{ubs}$ in \eqref{Eq_dynadv_cen2} are used. UBS is diffusive and is
506associated with vertical mixing of momentum. \gmcomment{ gm  pursue the
507sentence:Since vertical mixing of momentum is a source term of the TKE equation...  }
508
509For stability reasons,  the first term in (\ref{Eq_dynadv_ubs}), which corresponds
510to a second order centred scheme, is evaluated using the \textit{now} velocity
511(centred in time), while the second term, which is the diffusion part of the scheme,
512is evaluated using the \textit{before} velocity (forward in time). This is discussed
513by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme.
514
515Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
516schemes only differ by one coefficient. Replacing $1/6$ by $1/8$ in
517(\ref{Eq_dynadv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
518This option is not available through a namelist parameter, since the $1/6$ coefficient
519is hard coded. Nevertheless it is quite easy to make the substitution in the
520\mdl{dynadv\_ubs} module and obtain a QUICK scheme.
521
522Note also that in the current version of \mdl{dynadv\_ubs}, there is also the
523possibility of using a $4^{th}$ order evaluation of the advective velocity as in
524ROMS. This is an error and should be suppressed soon.
525%%%
526\gmcomment{action :  this have to be done}
527%%%
528
529% ================================================================
530%           Hydrostatic pressure gradient term
531% ================================================================
532\section  [Hydrostatic pressure gradient (\textit{dynhpg})]
533      {Hydrostatic pressure gradient (\mdl{dynhpg})}
534\label{DYN_hpg}
535%------------------------------------------nam_dynhpg---------------------------------------------------
536\namdisplay{namdyn_hpg} 
537%-------------------------------------------------------------------------------------------------------------
538
539Options are defined through the \ngn{namdyn\_hpg} namelist variables.
540The key distinction between the different algorithms used for the hydrostatic
541pressure gradient is the vertical coordinate used, since HPG is a \emph{horizontal} 
542pressure gradient, $i.e.$ computed along geopotential surfaces. As a result, any
543tilt of the surface of the computational levels will require a specific treatment to
544compute the hydrostatic pressure gradient.
545
546The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme,
547$i.e.$ the density appearing in its expression is centred in time (\emph{now} $\rho$), or
548a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial slip
549boundary conditions are applied.
550
551%--------------------------------------------------------------------------------------------------------------
552%           z-coordinate with full step
553%--------------------------------------------------------------------------------------------------------------
554\subsection   [$z$-coordinate with full step (\np{ln\_dynhpg\_zco}) ]
555         {$z$-coordinate with full step (\np{ln\_dynhpg\_zco}=true)}
556\label{DYN_hpg_zco}
557
558The hydrostatic pressure can be obtained by integrating the hydrostatic equation
559vertically from the surface. However, the pressure is large at great depth while its
560horizontal gradient is several orders of magnitude smaller. This may lead to large
561truncation errors in the pressure gradient terms. Thus, the two horizontal components
562of the hydrostatic pressure gradient are computed directly as follows:
563
564for $k=km$ (surface layer, $jk=1$ in the code)
565\begin{equation} \label{Eq_dynhpg_zco_surf}
566\left\{ \begin{aligned}
567               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k=km} 
568&= \frac{1}{2} g \   \left. \delta _{i+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
569                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k=km} 
570&= \frac{1}{2} g \   \left. \delta _{j+1/2} \left[  e_{3w} \ \rho \right] \right|_{k=km}   \\
571\end{aligned} \right.
572\end{equation} 
573
574for $1<k<km$ (interior layer)
575\begin{equation} \label{Eq_dynhpg_zco}
576\left\{ \begin{aligned}
577               \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k} 
578&=             \left. \delta _{i+1/2} \left[  p^h         \right] \right|_{k-1} 
579+    \frac{1}{2}\;g\;   \left. \delta _{i+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
580                  \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k} 
581&=                \left. \delta _{j+1/2} \left[  p^h            \right] \right|_{k-1} 
582+    \frac{1}{2}\;g\;   \left. \delta _{j+1/2} \left[  e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k}   \\
583\end{aligned} \right.
584\end{equation} 
585
586Note that the $1/2$ factor in (\ref{Eq_dynhpg_zco_surf}) is adequate because of
587the definition of $e_{3w}$ as the vertical derivative of the scale factor at the surface
588level ($z=0$). Note also that in case of variable volume level (\key{vvl} defined), the
589surface pressure gradient is included in \eqref{Eq_dynhpg_zco_surf} and \eqref{Eq_dynhpg_zco} 
590through the space and time variations of the vertical scale factor $e_{3w}$.
591
592%--------------------------------------------------------------------------------------------------------------
593%           z-coordinate with partial step
594%--------------------------------------------------------------------------------------------------------------
595\subsection   [$z$-coordinate with partial step (\np{ln\_dynhpg\_zps})]
596         {$z$-coordinate with partial step (\np{ln\_dynhpg\_zps}=true)}
597\label{DYN_hpg_zps}
598
599With partial bottom cells, tracers in horizontally adjacent cells generally live at
600different depths. Before taking horizontal gradients between these tracer points,
601a linear interpolation is used to approximate the deeper tracer as if it actually lived
602at the depth of the shallower tracer point.
603
604Apart from this modification, the horizontal hydrostatic pressure gradient evaluated
605in the $z$-coordinate with partial step is exactly as in the pure $z$-coordinate case.
606As explained in detail in section \S\ref{TRA_zpshde}, the nonlinearity of pressure
607effects in the equation of state is such that it is better to interpolate temperature and
608salinity vertically before computing the density. Horizontal gradients of temperature
609and salinity are needed for the TRA modules, which is the reason why the horizontal
610gradients of density at the deepest model level are computed in module \mdl{zpsdhe} 
611located in the TRA directory and described in \S\ref{TRA_zpshde}.
612
613%--------------------------------------------------------------------------------------------------------------
614%           s- and s-z-coordinates
615%--------------------------------------------------------------------------------------------------------------
616\subsection{$s$- and $z$-$s$-coordinates}
617\label{DYN_hpg_sco}
618
619Pressure gradient formulations in an $s$-coordinate have been the subject of a vast
620number of papers ($e.g.$, \citet{Song1998, Shchepetkin_McWilliams_OM05}).
621A number of different pressure gradient options are coded but the ROMS-like, density Jacobian with
622cubic polynomial method is currently disabled whilst known bugs are under investigation.
623
624$\bullet$ Traditional coding (see for example \citet{Madec_al_JPO96}: (\np{ln\_dynhpg\_sco}=true)
625\begin{equation} \label{Eq_dynhpg_sco}
626\left\{ \begin{aligned}
627 - \frac{1}                   {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  p^h  \right] 
628+ \frac{g\; \overline {\rho}^{i+1/2}}  {\rho_o \, e_{1u}} \;   \delta _{i+1/2} \left[  z_t   \right]    \\
629 - \frac{1}                   {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  p^h  \right] 
630+ \frac{g\; \overline {\rho}^{j+1/2}}  {\rho_o \, e_{2v}} \;   \delta _{j+1/2} \left[  z_t   \right]    \\
631\end{aligned} \right.
632\end{equation} 
633
634Where the first term is the pressure gradient along coordinates, computed as in
635\eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of
636the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point
637($e_{3w}$).
638 
639$\bullet$ Traditional coding with adaptation for ice shelf cavities (\np{ln\_dynhpg\_isf}=true).
640This scheme need the activation of ice shelf cavities (\np{ln\_isfcav}=true).
641
642$\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np{ln\_dynhpg\_prj}=true)
643
644$\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{Shchepetkin_McWilliams_OM05} 
645(\np{ln\_dynhpg\_djc}=true) (currently disabled; under development)
646
647Note that expression \eqref{Eq_dynhpg_sco} is commonly used when the variable volume formulation is
648activated (\key{vvl}) because in that case, even with a flat bottom, the coordinate surfaces are not
649horizontal but follow the free surface \citep{Levier2007}. The pressure jacobian scheme
650(\np{ln\_dynhpg\_prj}=true) is available as an improved option to \np{ln\_dynhpg\_sco}=true when
651\key{vvl} is active.  The pressure Jacobian scheme uses a constrained cubic spline to reconstruct
652the density profile across the water column. This method maintains the monotonicity between the
653density nodes  The pressure can be calculated by analytical integration of the density profile and a
654pressure Jacobian method is used to solve the horizontal pressure gradient. This method can provide
655a more accurate calculation of the horizontal pressure gradient than the standard scheme.
656
657\subsection{Ice shelf cavity}
658\label{DYN_hpg_isf}
659Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient due to the ice shelf load and
660 the pressure gradient due to the ocean load. If cavity opened (\np{ln\_isfcav}~=~true) these 2 terms can be
661 calculated by setting \np{ln\_dynhpg\_isf}~=~true. No other scheme are working with the ice shelf.\\
662
663$\bullet$ The main hypothesis to compute the ice shelf load is that the ice shelf is in an isostatic equilibrium.
664 The top pressure is computed integrating from surface to the base of the ice shelf a reference density profile
665(prescribed as density of a water at 34.4 PSU and -1.9$\degres C$) and corresponds to the water replaced by the ice shelf.
666This top pressure is constant over time. A detailed description of this method is described in \citet{Losch2008}.\\
667
668$\bullet$ The ocean load is computed using the expression \eqref{Eq_dynhpg_sco} described in \ref{DYN_hpg_sco}.
669
670%--------------------------------------------------------------------------------------------------------------
671%           Time-scheme
672%--------------------------------------------------------------------------------------------------------------
673\subsection   [Time-scheme (\np{ln\_dynhpg\_imp}) ]
674         {Time-scheme (\np{ln\_dynhpg\_imp}= true/false)}
675\label{DYN_hpg_imp}
676
677The default time differencing scheme used for the horizontal pressure gradient is
678a leapfrog scheme and therefore the density used in all discrete expressions given
679above is the  \textit{now} density, computed from the \textit{now} temperature and
680salinity. In some specific cases (usually high resolution simulations over an ocean
681domain which includes weakly stratified regions) the physical phenomenon that
682controls the time-step is internal gravity waves (IGWs). A semi-implicit scheme for
683doubling the stability limit associated with IGWs can be used \citep{Brown_Campana_MWR78,
684Maltrud1998}. It involves the evaluation of the hydrostatic pressure gradient as an
685average over the three time levels $t-\rdt$, $t$, and $t+\rdt$ ($i.e.$ 
686\textit{before}\textit{now} and  \textit{after} time-steps), rather than at the central
687time level $t$ only, as in the standard leapfrog scheme.
688
689$\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}=true):
690
691\begin{equation} \label{Eq_dynhpg_lf}
692\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
693   -\frac{1}{\rho _o \,e_{1u} }\delta _{i+1/2} \left[ {p_h^t } \right]
694\end{equation}
695
696$\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}=true):
697\begin{equation} \label{Eq_dynhpg_imp}
698\frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \;
699   -\frac{1}{4\,\rho _o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt}  \right]
700\end{equation}
701
702The semi-implicit time scheme \eqref{Eq_dynhpg_imp} is made possible without
703significant additional computation since the density can be updated to time level
704$t+\rdt$ before computing the horizontal hydrostatic pressure gradient. It can
705be easily shown that the stability limit associated with the hydrostatic pressure
706gradient doubles using \eqref{Eq_dynhpg_imp} compared to that using the
707standard leapfrog scheme \eqref{Eq_dynhpg_lf}. Note that \eqref{Eq_dynhpg_imp} 
708is equivalent to applying a time filter to the pressure gradient to eliminate high
709frequency IGWs. Obviously, when using \eqref{Eq_dynhpg_imp}, the doubling of
710the time-step is achievable only if no other factors control the time-step, such as
711the stability limits associated with advection or diffusion.
712
713In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}=true.
714In this case, we choose to apply the time filter to temperature and salinity used in
715the equation of state, instead of applying it to the hydrostatic pressure or to the
716density, so that no additional storage array has to be defined. The density used to
717compute the hydrostatic pressure gradient (whatever the formulation) is evaluated
718as follows:
719\begin{equation} \label{Eq_rho_flt}
720   \rho^t = \rho( \widetilde{T},\widetilde {S},z_t)
721 \quad     \text{with}  \quad 
722   \widetilde{X} = 1 / 4 \left(  X^{t+\rdt} +2 \,X^t + X^{t-\rdt}  \right)
723\end{equation}
724
725Note that in the semi-implicit case, it is necessary to save the filtered density, an
726extra three-dimensional field, in the restart file to restart the model with exact
727reproducibility. This option is controlled by  \np{nn\_dynhpg\_rst}, a namelist parameter.
728
729% ================================================================
730% Surface Pressure Gradient
731% ================================================================
732\section  [Surface pressure gradient (\textit{dynspg}) ]
733      {Surface pressure gradient (\mdl{dynspg})}
734\label{DYN_spg}
735%-----------------------------------------nam_dynspg----------------------------------------------------
736\namdisplay{namdyn_spg} 
737%------------------------------------------------------------------------------------------------------------
738
739$\ $\newline      %force an empty line
740
741Options are defined through the \ngn{namdyn\_spg} namelist variables.
742The surface pressure gradient term is related to the representation of the free surface (\S\ref{PE_hor_pg}).
743The main distinction is between the fixed volume case (linear free surface) and the variable volume case
744(nonlinear free surface, \key{vvl} is defined). In the linear free surface case (\S\ref{PE_free_surface})
745the vertical scale factors $e_{3}$ are fixed in time, while they are time-dependent in the nonlinear case
746(\S\ref{PE_free_surface}).
747With both linear and nonlinear free surface, external gravity waves are allowed in the equations,
748which imposes a very small time step when an explicit time stepping is used.
749Two methods are proposed to allow a longer time step for the three-dimensional equations:
750the filtered free surface, which is a modification of the continuous equations (see \eqref{Eq_PE_flt}),
751and the split-explicit free surface described below.
752The extra term introduced in the filtered method is calculated implicitly,
753so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
754
755
756The form of the surface pressure gradient term depends on how the user wants to handle
757the fast external gravity waves that are a solution of the analytical equation (\S\ref{PE_hor_pg}).
758Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx):
759an explicit formulation which requires a small time step ;
760a filtered free surface formulation which allows a larger time step by adding a filtering
761term into the momentum equation ;
762and a split-explicit free surface formulation, described below, which also allows a larger time step.
763
764The extra term introduced in the filtered method is calculated
765implicitly, so that a solver is used to compute it. As a consequence the update of the $next$ 
766velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}.
767
768
769%--------------------------------------------------------------------------------------------------------------
770% Explicit free surface formulation
771%--------------------------------------------------------------------------------------------------------------
772\subsection{Explicit free surface (\key{dynspg\_exp})}
773\label{DYN_spg_exp}
774
775In the explicit free surface formulation (\key{dynspg\_exp} defined), the model time step
776is chosen to be small enough to resolve the external gravity waves (typically a few tens of seconds).
777The surface pressure gradient, evaluated using a leap-frog scheme ($i.e.$ centered in time),
778is thus simply given by :
779\begin{equation} \label{Eq_dynspg_exp}
780\left\{ \begin{aligned}
781 - \frac{1}{e_{1u}\,\rho_o} \;   \delta _{i+1/2} \left[  \,\rho \,\eta\,  \right]   \\
782 - \frac{1}{e_{2v}\,\rho_o} \;   \delta _{j+1/2} \left[  \,\rho \,\eta\,  \right] 
783\end{aligned} \right.
784\end{equation} 
785
786Note that in the non-linear free surface case ($i.e.$ \key{vvl} defined), the surface pressure
787gradient is already included in the momentum tendency  through the level thickness variation
788allowed in the computation of the hydrostatic pressure gradient. Thus, nothing is done in the \mdl{dynspg\_exp} module.
789
790%--------------------------------------------------------------------------------------------------------------
791% Split-explict free surface formulation
792%--------------------------------------------------------------------------------------------------------------
793\subsection{Split-Explicit free surface (\key{dynspg\_ts})}
794\label{DYN_spg_ts}
795%------------------------------------------namsplit-----------------------------------------------------------
796\namdisplay{namsplit} 
797%-------------------------------------------------------------------------------------------------------------
798
799The split-explicit free surface formulation used in \NEMO (\key{dynspg\_ts} defined),
800also called the time-splitting formulation, follows the one
801proposed by \citet{Shchepetkin_McWilliams_OM05}. The general idea is to solve the free surface
802equation and the associated barotropic velocity equations with a smaller time
803step than $\rdt$, the time step used for the three dimensional prognostic
804variables (Fig.~\ref{Fig_DYN_dynspg_ts}).
805The size of the small time step, $\rdt_e$ (the external mode or barotropic time step)
806 is provided through the \np{nn\_baro} namelist parameter as:
807$\rdt_e = \rdt / nn\_baro$. This parameter can be optionally defined automatically (\np{ln\_bt\_nn\_auto}=true)
808considering that the stability of the barotropic system is essentially controled by external waves propagation.
809Maximum Courant number is in that case time independent, and easily computed online from the input bathymetry.
810Therefore, $\rdt_e$ is adjusted so that the Maximum allowed Courant number is smaller than \np{rn\_bt\_cmax}.
811
812%%%
813The barotropic mode solves the following equations:
814\begin{subequations} \label{Eq_BT}
815  \begin{equation}     \label{Eq_BT_dyn}
816\frac{\partial {\rm \overline{{\bf U}}_h} }{\partial t}=
817 -f\;{\rm {\bf k}}\times {\rm \overline{{\bf U}}_h} 
818-g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \rm {\overline{{\bf U}}_h} + \rm {\overline{\bf G}}
819  \end{equation}
820
821  \begin{equation} \label{Eq_BT_ssh}
822\frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right]+P-E
823  \end{equation}
824\end{subequations}
825where $\rm {\overline{\bf G}}$ is a forcing term held constant, containing coupling term between modes, surface atmospheric forcing as well as slowly varying barotropic terms not explicitly computed to gain efficiency. The third term on the right hand side of \eqref{Eq_BT_dyn} represents the bottom stress (see section \S\ref{ZDF_bfr}), explicitly accounted for at each barotropic iteration. Temporal discretization of the system above follows a three-time step Generalized Forward Backward algorithm detailed in \citet{Shchepetkin_McWilliams_OM05}. AB3-AM4 coefficients used in \NEMO follow the second-order accurate, "multi-purpose" stability compromise as defined in \citet{Shchepetkin_McWilliams_Bk08} (see their figure 12, lower left).
826
827%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
828\begin{figure}[!t]    \begin{center}
829\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_DYN_dynspg_ts.pdf}
830\caption{  \label{Fig_DYN_dynspg_ts}
831Schematic of the split-explicit time stepping scheme for the external
832and internal modes. Time increases to the right. In this particular exemple,
833a boxcar averaging window over $nn\_baro$ barotropic time steps is used ($nn\_bt\_flt=1$) and $nn\_baro=5$.
834Internal mode time steps (which are also the model time steps) are denoted
835by $t-\rdt$, $t$ and $t+\rdt$. Variables with $k$ superscript refer to instantaneous barotropic variables,
836$< >$ and $<< >>$ operator refer to time filtered variables using respectively primary (red vertical bars) and secondary weights (blue vertical bars).
837The former are used to obtain time filtered quantities at $t+\rdt$ while the latter are used to obtain time averaged
838transports to advect tracers.
839a) Forward time integration: \np{ln\_bt\_fw}=true,  \np{ln\_bt\_av}=true.
840b) Centred time integration: \np{ln\_bt\_fw}=false, \np{ln\_bt\_av}=true.
841c) Forward time integration with no time filtering (POM-like scheme): \np{ln\_bt\_fw}=true, \np{ln\_bt\_av}=false. }
842\end{center}    \end{figure}
843%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >
844
845In the default case (\np{ln\_bt\_fw}=true), the external mode is integrated
846between \textit{now} and  \textit{after} baroclinic time-steps (Fig.~\ref{Fig_DYN_dynspg_ts}a). To avoid aliasing of fast barotropic motions into three dimensional equations, time filtering is eventually applied on barotropic
847quantities (\np{ln\_bt\_av}=true). In that case, the integration is extended slightly beyond  \textit{after} time step to provide time filtered quantities.
848These are used for the subsequent initialization of the barotropic mode in the following baroclinic step.
849Since external mode equations written at baroclinic time steps finally follow a forward time stepping scheme,
850asselin filtering is not applied to barotropic quantities. \\
851Alternatively, one can choose to integrate barotropic equations starting
852from \textit{before} time step (\np{ln\_bt\_fw}=false). Although more computationaly expensive ( \np{nn\_baro} additional iterations are indeed necessary), the baroclinic to barotropic forcing term given at \textit{now} time step
853become centred in the middle of the integration window. It can easily be shown that this property
854removes part of splitting errors between modes, which increases the overall numerical robustness.
855%references to Patrick Marsaleix' work here. Also work done by SHOM group.
856
857%%%
858
859As far as tracer conservation is concerned, barotropic velocities used to advect tracers must also be updated
860at \textit{now} time step. This implies to change the traditional order of computations in \NEMO: most of momentum 
861trends (including the barotropic mode calculation) updated first, tracers' after. This \textit{de facto} makes semi-implicit hydrostatic
862pressure gradient (see section \S\ref{DYN_hpg_imp}) and time splitting not compatible.
863Advective barotropic velocities are obtained by using a secondary set of filtering weights, uniquely defined from the filter
864coefficients used for the time averaging (\citet{Shchepetkin_McWilliams_OM05}). Consistency between the time averaged continuity equation and the time stepping of tracers is here the key to obtain exact conservation.
865
866%%%
867
868One can eventually choose to feedback instantaneous values by not using any time filter (\np{ln\_bt\_av}=false).
869In that case, external mode equations are continuous in time, ie they are not re-initialized when starting a new
870sub-stepping sequence. This is the method used so far in the POM model, the stability being maintained by refreshing at (almost)
871each barotropic time step advection and horizontal diffusion terms. Since the latter terms have not been added in \NEMO for
872computational efficiency, removing time filtering is not recommended except for debugging purposes.
873This may be used for instance to appreciate the damping effect of the standard formulation on external gravity waves in idealized or weakly non-linear cases. Although the damping is lower than for the filtered free surface, it is still significant as shown by \citet{Levier2007} in the case of an analytical barotropic Kelvin wave.
874
875%>>>>>===============
876\gmcomment{               %%% copy from griffies Book
877
878\textbf{title: Time stepping the barotropic system }
879
880Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$. Hence,
881we can update the surface height and vertically integrated velocity with a leap-frog
882scheme using the small barotropic time step $\rdt$. We have
883
884\begin{equation} \label{DYN_spg_ts_eta}
885\eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1})
886   = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
887\end{equation}
888\begin{multline} \label{DYN_spg_ts_u}
889\textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}\\
890   = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n})
891   - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right]
892\end{multline}
893\
894
895In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with the barotropic time steps. The $\tau$ time label on $\eta^{(b)}$ 
896and $U^{(b)}$ denotes the baroclinic time at which the vertically integrated forcing $\textbf{M}(\tau)$ (note that this forcing includes the surface freshwater forcing), the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over a single cycle. This is also the time
897that sets the barotropic time steps via
898\begin{equation} \label{DYN_spg_ts_t}
899t_n=\tau+n\rdt   
900\end{equation}
901with $n$ an integer. The density scaled surface pressure is evaluated via
902\begin{equation} \label{DYN_spg_ts_ps}
903p_s^{(b)}(\tau,t_{n}) = \begin{cases}
904   g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_&      \text{non-linear case} \\
905   g \;\eta_s^{(b)}(\tau,t_{n}&      \text{linear case} 
906   \end{cases}
907\end{equation}
908To get started, we assume the following initial conditions
909\begin{equation} \label{DYN_spg_ts_eta}
910\begin{split}
911\eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)}
912\\
913\eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} 
914\end{split}
915\end{equation}
916with
917\begin{equation} \label{DYN_spg_ts_etaF}
918 \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n})
919\end{equation}
920the time averaged surface height taken from the previous barotropic cycle. Likewise,
921\begin{equation} \label{DYN_spg_ts_u}
922\textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)}   \\
923\\
924\textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0}   
925\end{equation}
926with
927\begin{equation} \label{DYN_spg_ts_u}
928 \overline{\textbf{U}^{(b)}(\tau)} 
929   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n})
930\end{equation}
931the time averaged vertically integrated transport. Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.
932
933Upon reaching $t_{n=N} = \tau + 2\rdt \tau$ , the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at baroclinic time $\tau + \rdt \tau$ 
934\begin{equation} \label{DYN_spg_ts_u}
935\textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} 
936   = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n})
937\end{equation}
938The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using the following form
939
940\begin{equation} \label{DYN_spg_ts_ssh}
941\eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] 
942\end{equation}
943
944 The use of this "big-leap-frog" scheme for the surface height ensures compatibility between the mass/volume budgets and the tracer budgets. More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).
945 
946In general, some form of time filter is needed to maintain integrity of the surface
947height field due to the leap-frog splitting mode in equation \ref{DYN_spg_ts_ssh}. We
948have tried various forms of such filtering, with the following method discussed in
949\cite{Griffies_al_MWR01} chosen due to its stability and reasonably good maintenance of
950tracer conservation properties (see Section ??)
951
952\begin{equation} \label{DYN_spg_ts_sshf}
953\eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
954\end{equation}
955Another approach tried was
956
957\begin{equation} \label{DYN_spg_ts_sshf2}
958\eta^{F}(\tau-\Delta) = \eta(\tau)
959   + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt)
960                + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right]
961\end{equation}
962
963which is useful since it isolates all the time filtering aspects into the term multiplied
964by $\alpha$. This isolation allows for an easy check that tracer conservation is exact when
965eliminating tracer and surface height time filtering (see Section ?? for more complete discussion). However, in the general case with a non-zero $\alpha$, the filter \ref{DYN_spg_ts_sshf} was found to be more conservative, and so is recommended.
966
967}            %%end gm comment (copy of griffies book)
968
969%>>>>>===============
970
971
972%--------------------------------------------------------------------------------------------------------------
973% Filtered free surface formulation
974%--------------------------------------------------------------------------------------------------------------
975\subsection{Filtered free surface (\key{dynspg\_flt})}
976\label{DYN_spg_fltp}
977
978The filtered formulation follows the \citet{Roullet_Madec_JGR00} implementation.
979The extra term introduced in the equations (see \S\ref{PE_free_surface}) is solved implicitly.
980The elliptic solvers available in the code are documented in \S\ref{MISC}.
981
982%% gm %%======>>>>   given here the discrete eqs provided to the solver
983\gmcomment{               %%% copy from chap-model basics
984\begin{equation} \label{Eq_spg_flt}
985\frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}}
986- g \nabla \left( \tilde{\rho} \ \eta \right)
987- g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)
988\end{equation}
989where $T_c$, is a parameter with dimensions of time which characterizes the force,
990$\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$ 
991represents the collected contributions of the Coriolis, hydrostatic pressure gradient,
992non-linear and viscous terms in \eqref{Eq_PE_dyn}.
993}   %end gmcomment
994
995Note that in the linear free surface formulation (\key{vvl} not defined), the ocean depth
996is time-independent and so is the matrix to be inverted. It is computed once and for all and applies to all ocean time steps.
997
998% ================================================================
999% Lateral diffusion term
1000% ================================================================
1001\section  [Lateral diffusion term (\textit{dynldf})]
1002      {Lateral diffusion term (\mdl{dynldf})}
1003\label{DYN_ldf}
1004%------------------------------------------nam_dynldf----------------------------------------------------
1005\namdisplay{namdyn_ldf} 
1006%-------------------------------------------------------------------------------------------------------------
1007
1008Options are defined through the \ngn{namdyn\_ldf} namelist variables.
1009The options available for lateral diffusion are to use either laplacian
1010(rotated or not) or biharmonic operators. The coefficients may be constant
1011or spatially variable; the description of the coefficients is found in the chapter
1012on lateral physics (Chap.\ref{LDF}). The lateral diffusion of momentum is
1013evaluated using a forward scheme, $i.e.$ the velocity appearing in its expression
1014is the \textit{before} velocity in time, except for the pure vertical component
1015that appears when a tensor of rotation is used. This latter term is solved
1016implicitly together with the vertical diffusion term (see \S\ref{STP})
1017
1018At the lateral boundaries either free slip, no slip or partial slip boundary
1019conditions are applied according to the user's choice (see Chap.\ref{LBC}).
1020
1021\gmcomment{
1022Hyperviscous operators are frequently used in the simulation of turbulent flows to control
1023the dissipation of unresolved small scale features.
1024Their primary role is to provide strong dissipation at the smallest scale supported by the grid
1025while minimizing the impact on the larger scale features.
1026Hyperviscous operators are thus designed to be more scale selective than the traditional,
1027physically motivated Laplace operator.
1028In finite difference methods, the biharmonic operator is frequently the method of choice to achieve
1029this scale selective dissipation since its damping time ($i.e.$ its spin down time)
1030scale like $\lambda^{-4}$ for disturbances of wavelength $\lambda$ 
1031(so that short waves damped more rapidelly than long ones),
1032whereas the Laplace operator damping time scales only like $\lambda^{-2}$.
1033}
1034
1035% ================================================================
1036\subsection   [Iso-level laplacian operator (\np{ln\_dynldf\_lap}) ]
1037         {Iso-level laplacian operator (\np{ln\_dynldf\_lap}=true)}
1038\label{DYN_ldf_lap}
1039
1040For lateral iso-level diffusion, the discrete operator is:
1041\begin{equation} \label{Eq_dynldf_lap}
1042\left\{ \begin{aligned}
1043 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta _{i+1/2} \left[ {A_T^{lm} 
1044\;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta _j \left[
1045{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
1046\\
1047 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta _{j+1/2} \left[ {A_T^{lm} 
1048\;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta _i \left[
1049{A_f^{lm} \;e_{3f} \zeta } \right] \\ 
1050\end{aligned} \right.
1051\end{equation} 
1052
1053As explained in \S\ref{PE_ldf}, this formulation (as the gradient of a divergence
1054and curl of the vorticity) preserves symmetry and ensures a complete
1055separation between the vorticity and divergence parts of the momentum diffusion.
1056
1057%--------------------------------------------------------------------------------------------------------------
1058%           Rotated laplacian operator
1059%--------------------------------------------------------------------------------------------------------------
1060\subsection   [Rotated laplacian operator (\np{ln\_dynldf\_iso}) ]
1061         {Rotated laplacian operator (\np{ln\_dynldf\_iso}=true)}
1062\label{DYN_ldf_iso}
1063
1064A rotation of the lateral momentum diffusion operator is needed in several cases:
1065for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}=true) and for
1066either iso-neutral (\np{ln\_dynldf\_iso}=true) or geopotential
1067(\np{ln\_dynldf\_hor}=true) diffusion in the $s$-coordinate. In the partial step
1068case, coordinates are horizontal except at the deepest level and no
1069rotation is performed when \np{ln\_dynldf\_hor}=true. The diffusion operator
1070is defined simply as the divergence of down gradient momentum fluxes on each
1071momentum component. It must be emphasized that this formulation ignores
1072constraints on the stress tensor such as symmetry. The resulting discrete
1073representation is:
1074\begin{equation} \label{Eq_dyn_ldf_iso}
1075\begin{split}
1076 D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\
1077&  \left\{\quad  {\delta _{i+1/2} \left[ {A_T^{lm}  \left(
1078    {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta _{i}[u]
1079   -e_{2t} \; r_{1t} \,\overline{\overline {\delta _{k+1/2}[u]}}^{\,i,\,k}}
1080 \right)} \right]}   \right.
1081\\ 
1082& \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} 
1083}\,\delta _{j+1/2} [u] - e_{1f}\, r_{2f} 
1084\,\overline{\overline {\delta _{k+1/2} [u]}} ^{\,j+1/2,\,k}} 
1085\right)} \right]
1086\\ 
1087&\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline 
1088{\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} } 
1089\right.} \right.
1090\\ 
1091&  \ \qquad \qquad \qquad \quad\
1092- e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2}
1093\\ 
1094& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1095+\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2} 
1096\right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} 
1097\\
1098\\
1099 D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} }    \\
1100&  \left\{\quad  {\delta _{i+1/2} \left[ {A_f^{lm}  \left(
1101    {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta _{i+1/2}[v]
1102   -e_{2f} \; r_{1f} \,\overline{\overline {\delta _{k+1/2}[v]}}^{\,i+1/2,\,k}}
1103 \right)} \right]}   \right.
1104\\ 
1105& \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} 
1106}\,\delta _{j} [v] - e_{1t}\, r_{2t} 
1107\,\overline{\overline {\delta _{k+1/2} [v]}} ^{\,j,\,k}} 
1108\right)} \right]
1109\\ 
1110& \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline 
1111{\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right.
1112\\
1113&  \ \qquad \qquad \qquad \quad\
1114- e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2}
1115\\ 
1116& \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\
1117+\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2} 
1118\right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\} 
1119 \end{split}
1120\end{equation}
1121where $r_1$ and $r_2$ are the slopes between the surface along which the
1122diffusion operator acts and the surface of computation ($z$- or $s$-surfaces).
1123The way these slopes are evaluated is given in the lateral physics chapter
1124(Chap.\ref{LDF}).
1125
1126%--------------------------------------------------------------------------------------------------------------
1127%           Iso-level bilaplacian operator
1128%--------------------------------------------------------------------------------------------------------------
1129\subsection   [Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap})]
1130         {Iso-level bilaplacian operator (\np{ln\_dynldf\_bilap}=true)}
1131\label{DYN_ldf_bilap}
1132
1133The lateral fourth order operator formulation on momentum is obtained by
1134applying \eqref{Eq_dynldf_lap} twice. It requires an additional assumption on
1135boundary conditions: the first derivative term normal to the coast depends on
1136the free or no-slip lateral boundary conditions chosen, while the third
1137derivative terms normal to the coast are set to zero (see Chap.\ref{LBC}).
1138%%%
1139\gmcomment{add a remark on the the change in the position of the coefficient}
1140%%%
1141
1142% ================================================================
1143%           Vertical diffusion term
1144% ================================================================
1145\section  [Vertical diffusion term (\mdl{dynzdf})]
1146      {Vertical diffusion term (\mdl{dynzdf})}
1147\label{DYN_zdf}
1148%----------------------------------------------namzdf------------------------------------------------------
1149\namdisplay{namzdf} 
1150%-------------------------------------------------------------------------------------------------------------
1151
1152Options are defined through the \ngn{namzdf} namelist variables.
1153The large vertical diffusion coefficient found in the surface mixed layer together
1154with high vertical resolution implies that in the case of explicit time stepping there
1155would be too restrictive a constraint on the time step. Two time stepping schemes
1156can be used for the vertical diffusion term : $(a)$ a forward time differencing
1157scheme (\np{ln\_zdfexp}=true) using a time splitting technique
1158(\np{nn\_zdfexp} $>$ 1) or $(b)$ a backward (or implicit) time differencing scheme
1159(\np{ln\_zdfexp}=false) (see \S\ref{STP}). Note that namelist variables
1160\np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics.
1161
1162The formulation of the vertical subgrid scale physics is the same whatever
1163the vertical coordinate is. The vertical diffusion operators given by
1164\eqref{Eq_PE_zdf} take the following semi-discrete space form:
1165\begin{equation} \label{Eq_dynzdf}
1166\left\{   \begin{aligned}
1167D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta _k \left[ \frac{A_{uw}^{vm} }{e_{3uw} }
1168                              \ \delta _{k+1/2} [\,u\,]         \right]     \\
1169\\
1170D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta _k \left[ \frac{A_{vw}^{vm} }{e_{3vw} }
1171                              \ \delta _{k+1/2} [\,v\,]         \right]
1172\end{aligned}   \right.
1173\end{equation} 
1174where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and
1175diffusivity coefficients. The way these coefficients are evaluated
1176depends on the vertical physics used (see \S\ref{ZDF}).
1177
1178The surface boundary condition on momentum is the stress exerted by
1179the wind. At the surface, the momentum fluxes are prescribed as the boundary
1180condition on the vertical turbulent momentum fluxes,
1181\begin{equation} \label{Eq_dynzdf_sbc}
1182\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1}
1183    = \frac{1}{\rho _o} \binom{\tau _u}{\tau _v }
1184\end{equation}
1185where $\left( \tau _u ,\tau _v \right)$ are the two components of the wind stress
1186vector in the (\textbf{i},\textbf{j}) coordinate system. The high mixing coefficients
1187in the surface mixed layer ensure that the surface wind stress is distributed in
1188the vertical over the mixed layer depth. If the vertical mixing coefficient
1189is small (when no mixed layer scheme is used) the surface stress enters only
1190the top model level, as a body force. The surface wind stress is calculated
1191in the surface module routines (SBC, see Chap.\ref{SBC})
1192
1193The turbulent flux of momentum at the bottom of the ocean is specified through
1194a bottom friction parameterisation (see \S\ref{ZDF_bfr})
1195
1196% ================================================================
1197% External Forcing
1198% ================================================================
1199\section{External Forcings}
1200\label{DYN_forcing}
1201
1202Besides the surface and bottom stresses (see the above section) which are
1203introduced as boundary conditions on the vertical mixing, three other forcings
1204may enter the dynamical equations by affecting the surface pressure gradient.
1205
1206(1) When \np{ln\_apr\_dyn}~=~true (see \S\ref{SBC_apr}), the atmospheric pressure is taken
1207into account when computing the surface pressure gradient.
1208
1209(2) When \np{ln\_tide\_pot}~=~true and \key{tide} is defined (see \S\ref{SBC_tide}),
1210the tidal potential is taken into account when computing the surface pressure gradient.
1211
1212(3) When \np{nn\_ice\_embd}~=~2 and LIM or CICE is used ($i.e.$ when the sea-ice is embedded in the ocean),
1213the snow-ice mass is taken into account when computing the surface pressure gradient.
1214
1215
1216\gmcomment{ missing : the lateral boundary condition !!!   another external forcing
1217 }
1218
1219% ================================================================
1220% Time evolution term
1221% ================================================================
1222\section  [Time evolution term (\textit{dynnxt})]
1223      {Time evolution term (\mdl{dynnxt})}
1224\label{DYN_nxt}
1225
1226%----------------------------------------------namdom----------------------------------------------------
1227\namdisplay{namdom} 
1228%-------------------------------------------------------------------------------------------------------------
1229
1230Options are defined through the \ngn{namdom} namelist variables.
1231The general framework for dynamics time stepping is a leap-frog scheme,
1232$i.e.$ a three level centred time scheme associated with an Asselin time filter
1233(cf. Chap.\ref{STP}). The scheme is applied to the velocity, except when using
1234the flux form of momentum advection (cf. \S\ref{DYN_adv_cor_flux}) in the variable
1235volume case (\key{vvl} defined), where it has to be applied to the thickness
1236weighted velocity (see \S\ref{Apdx_A_momentum}
1237
1238$\bullet$ vector invariant form or linear free surface (\np{ln\_dynhpg\_vec}=true ; \key{vvl} not defined):
1239\begin{equation} \label{Eq_dynnxt_vec}
1240\left\{   \begin{aligned}
1241&u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt  \ \text{RHS}_u^t     \\
1242&u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right]
1243\end{aligned}   \right.
1244\end{equation} 
1245
1246$\bullet$ flux form and nonlinear free surface (\np{ln\_dynhpg\_vec}=false ; \key{vvl} defined):
1247\begin{equation} \label{Eq_dynnxt_flux}
1248\left\{   \begin{aligned}
1249&\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t     \\
1250&\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t
1251  +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right]
1252\end{aligned}   \right.
1253\end{equation} 
1254where RHS is the right hand side of the momentum equation, the subscript $f$ 
1255denotes filtered values and $\gamma$ is the Asselin coefficient. $\gamma$ is
1256initialized as \np{nn\_atfp} (namelist parameter). Its default value is \np{nn\_atfp} = $10^{-3}$.
1257In both cases, the modified Asselin filter is not applied since perfect conservation
1258is not an issue for the momentum equations.
1259
1260Note that with the filtered free surface, the update of the \textit{after} velocities
1261is done in the \mdl{dynsp\_flt} module, and only array swapping
1262and Asselin filtering is done in \mdl{dynnxt}.
1263
1264% ================================================================
Note: See TracBrowser for help on using the repository browser.