New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in trunk/NEMO/DOC/BETA/Biblio – NEMO

source: trunk/NEMO/DOC/BETA/Biblio/Biblio.bib @ 707

Last change on this file since 707 was 707, checked in by smasson, 17 years ago

error during changeset:705... related to ticket:1

  • Property svn:executable set to *
File size: 71.1 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@ARTICLE{Arakawa1966,
89  author = {A. Arakawa},
90  title = {Computational design for long term numerical integration of the equations
91   of fluid motion, two-dimensional incompressible flow, Part. I.},
92  journal = JCP,
93  year = {1966},
94  volume = {I},
95  pages = {119-149},
96  owner = {gm},
97  timestamp = {2007.08.04}
98}
99
100@ARTICLE{Arakawa1990,
101  author = {A. Arakawa and Y.-J. G. Hsu},
102  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
103   the Shallow Water Equations},
104  journal = MWR,
105  year = {1990},
106  volume = {118},
107  pages = {1960--1969
108   
109   },
110  number = {10},
111  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
112   water equations with no or arbitrarily small energy dissipation,
113   a family of finite-difference schemes have been derived with which
114   potential enstrophy is guaranteed to decrease while energy is conserved
115   (when the mass flux is nondivergent and time is continuous). Among
116   this family of schemes, there is a member that minimizes the spurious
117   impact of infinite potential vorticities associated with infinitesimal
118   fluid depth. The scheme is, therefore, useful for problems in which
119   the free surface may intersect with the lower boundary.},
120  date = {October 01, 1990},
121  owner = {gm},
122  timestamp = {2007.08.05}
123}
124
125@ARTICLE{Arakawa1981,
126  author = {Arakawa, Akio and Lamb, Vivian R.},
127  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
128   Water Equations},
129  journal = MWR,
130  year = {1981},
131  volume = {109},
132  pages = {18--36
133   
134   },
135  number = {1},
136  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
137   topography, a potential enstrophy and energy conserving scheme for
138   the shallow water equations is derived. It is pointed out that a
139   family of schemes can conserve total energy for general flow and
140   potential enstrophy for flow with no mass flux divergence. The newly
141   derived scheme is a unique member of this family, that conserves
142   both potential enstrophy and energy for general flow. Comparison
143   by means of numerical experiment with a scheme that conserves (potential)
144   enstrophy for purely horizontal nondivergent flow demonstrated the
145   considerable superiority of the newly derived potential enstrophy
146   and energy conserving scheme, not only in suppressing a spurious
147   energy cascade but also in determining the overall flow regime. The
148   potential enstrophy and energy conserving scheme for a spherical
149   grid is also presented.},
150  date = {January 01, 1981},
151  owner = {gm},
152  timestamp = {2007.08.05}
153}
154
155@ARTICLE{ASSELIN1972,
156  author = {R. Asselin},
157  title = {Frequency Filter for Time Integrations},
158  journal = MWR,
159  year = {1972},
160  volume = {100},
161  pages = {487-490},
162  number = {6},
163  abstract = {A simple filter for controlling high-frequency computational and physical
164   modes arising in time integrations is proposed. A linear analysis
165   of the filter with leapfrog, implicit, and semi-implicit, differences
166   is made. The filter very quickly removes the computational mode and
167   is also very useful in damping high-frequency physical waves. The
168   stability of the leapfrog scheme is adversely affected when a large
169   filter parameter is used, but the analysis shows that the use of
170   centered differences with frequency filter is still more advantageous
171   than the use of the Euler-backward method. An example of the use
172   of the filter in an actual forecast with the meteorological equations
173   is shown.},
174  date = {June 01, 1972},
175  owner = {gm},
176  timestamp = {2007.08.03}
177}
178
179@ARTICLE{Beckmann1998,
180  author = {A. Beckmann},
181  title = {The representation of bottom boundary layer processes in numerical
182   ocean circulation models.},
183  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
184   (eds.), NATO Science Series, Kluwer Academic Publishers},
185  year = {1998},
186  owner = {gm},
187  timestamp = {2007.08.04}
188}
189
190@ARTICLE{BeckDos1998,
191  author = {A. Beckmann and R. D\"{o}scher},
192  title = {A method for improved representation of dense water spreading over
193   topography in geopotential-coordinate models},
194  journal = JPO,
195  year = {1998},
196  volume = {27},
197  pages = {581-591},
198  owner = {gm},
199  timestamp = {2007.08.04}
200}
201
202@ARTICLE{Beckmann1993,
203  author = {A. Beckmann and D. B. Haidvogel},
204  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
205   I - Problem Formulation and Model Accuracy},
206  journal = {Journal of Physical Oceanography},
207  year = {1993},
208  volume = {23},
209  pages = {1736--1753
210   
211   },
212  number = {8},
213  abstract = {A sigma coordinate ocean circulation model is employed to study flow
214   trapped to a tall seamount in a periodic f-plane channel. In Part
215   I, errors arising from the pressure gradient formulation in the steep
216   topography/strong stratification limit are examined. To illustrate
217   the error properties, a linearized adiabatic version of the model
218   is considered, both with and without forcing, and starting from a
219   resting state with level isopycnals. The systematic discretization
220   errors from the horizontal pressure gradient terms are shown analytically
221   to increase with steeper topography (relative to a fixed horizontal
222   grid) and for stronger stratification (as measured by the Burger
223   number). For an initially quiescent unforced ocean, the pressure
224   gradient errors produce a spurious oscillating current that, at the
225   end of 10 days, is approximately 1 cm s−1 in amplitude. The
226   period of the spurious oscillation (about 0.5 days) is shown to be
227   a consequence of the particular form of the pressure gradient terms
228   in the sigma coordinate system. With the addition of an alongchannel
229   diurnal forcing, resonantly generated seamount-trapped waves are
230   observed to form. Error levels in these solutions are less than those
231   in the unforced cases; spurious time-mean currents are several orders
232   of magnitude less in amplitude than the resonant propagating waves.
233   However, numerical instability is encountered in a wider range of
234   parameter space. The properties of these resonantly generated waves
235   is explored in detail in Part II of this study. Several new formulations
236   of the pressure gradient terms are tested. Two of the formulations—constructed
237   to have additional conservation properties relative to the traditional
238   form of the pressure gradient terms (conservation of JEBAR and conservation
239   of energy)—are found to have error properties generally similar
240   to those of the traditional formulation. A corrected gradient algorithm,
241   based upon vertical interpolation of the pressure field, has a dramatically
242   reduced error level but a much more restrictive range of stable behavior.},
243  date = {August 01, 1993},
244  owner = {gm},
245  timestamp = {2007.08.03}
246}
247
248@ARTICLE{Blanke1993,
249  author = {B. Blanke and P. Delecluse},
250  title = {Low frequency variability of the tropical Atlantic ocean simulated
251   by a general circulation model with mixed layer physics},
252  journal = JPO,
253  year = {1993},
254  volume = {23},
255  pages = {1363-1388}
256}
257
258@ARTICLE{blanketal97,
259  author = {B. Blanke and J. D. Neelin and D. Gutzler},
260  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
261  journal = JC,
262  year = {1997},
263  volume = {10},
264  pages = {1473-1486},
265  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
266   and predictability is the role of random
267   
268   forcing by atmospheric variability with short correlation times, on
269   coupled variability with interannual timescales.
270   
271   The discussion of this question requires a quantitative assessment
272   of the stochastic component of the wind stress
273   
274   forcing. Self-consistent estimates of this noise (the stochastic forcing)
275   can be made quite naturally in an empirical
276   
277   atmospheric model that uses a statistical estimate of the relationship
278   between sea surface temperature (SST) and
279   
280   wind stress anomaly patterns as the deterministic feedback between
281   the ocean and the atmosphere. The authors
282   
283   use such an empirical model as the atmospheric component of a hybrid
284   coupled model, coupled to the GFDL
285   
286   ocean general circulation model. The authors define as residual the
287   fraction of the Florida State University wind
288   
289   stress not explained by the empirical atmosphere run from observed
290   SST, and a noise product is constructed by
291   
292   random picks among monthly maps of this residual.
293   
294   The impact of included or excluded noise is assessed with several
295   ensembles of simulations. The model is
296   
297   run in coupled regimes where, in the absence of noise, it is perfectly
298   periodic: in the presence of prescribed
299   
300   seasonal variability, the model is strongly frequency locked on a
301   2-yr period; in annual average conditions it
302   
303   has a somewhat longer inherent ENSO period (30 months). Addition of
304   noise brings an irregular behavior that
305   
306   is considerably richer in spatial patterns as well as in temporal
307   structures. The broadening of the model ENSO
308   
309   spectral peak is roughly comparable to observed. The tendency to frequency
310   lock to subharmonic resonances
311   
312   of the seasonal cycle tends to increase the broadening and to emphasize
313   lower frequencies. An inclination to
314   
315   phase lock to preferred seasons persists even in the presence of noise-induced
316   irregularity. Natural uncoupled
317   
318   atmospheric variability is thus a strong candidate for explaining
319   the observed aperiodicity in ENSO time series.
320   
321   Model–model hindcast experiments also suggest the importance of atmospheric
322   noise in setting limits to ENSO
323   
324   predictability.},
325  pdf = {Blanke_etal_JC97.pdf}
326}
327
328@ARTICLE{Bougeault1989,
329  author = {P. Bougeault and P. Lacarrere},
330  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
331   Model},
332  journal = MWR,
333  year = {1989},
334  volume = {117},
335  pages = {1872-1890},
336  number = {8},
337  abstract = {The possibility of extending existing techniques for turbulence parameterization
338   in the planetary boundary layer to attitude, orography-induced turbulence
339   events is examined. Starting from a well-tested scheme, we show that
340   it is possible to generalize the specification method of the length
341   scales, with no deterioration of the scheme performance in the boundary
342   layer. The new scheme is implemented in a two-dimensional version
343   of a limited-area, numerical model used for the simulation of mesobeta-scale
344   atmospheric flows. Three well-known cases of orographically induced
345   turbulence are studied. The comparison with observations and former
346   studies shows a satisfactory behavior of the new scheme.},
347  date = {August 01, 1989},
348  owner = {gm},
349  timestamp = {2007.08.06}
350}
351
352@ARTICLE{Brown1978,
353  author = {J. A. Brown and K. A. Campana},
354  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
355  journal = MWR,
356  year = {1978},
357  volume = {106},
358  pages = {1125-1136},
359  number = {8},
360  month = aug,
361  abstract = {A simple method for integrating the primitive equations is presented
362   which allows for a timestep increment up to twice that of the conventional
363   leapfrog scheme. It consists of a time-averaging operator, which
364   incorporates three consecutive time levels, on the pressure gradient
365   terms in the equations of motion. An attractive feature of the method
366   is its case in programming, since the resulting finite-difference
367   equations can he solved explicitly.Presented here are linear analyses
368   of the method applied to the barotropic and two-layer baroclinic
369   gravity waves. Also presented is an analysis of the method with a
370   time-damping device incorporated, which is an alternative in controlling
371   linearly amplifying computational modes.},
372  owner = {gm},
373  timestamp = {2007.08.05}
374}
375
376@ARTICLE{Bryan1997,
377  author = {K. Bryan},
378  title = {A Numerical Method for the Study of the Circulation of the World
379   Ocean},
380  journal = JCP,
381  year = {1997},
382  volume = {135, 2},
383  owner = {gm},
384  timestamp = {2007.08.10}
385}
386
387@ARTICLE{Bryan1984,
388  author = {K. Bryan},
389  title = {Accelerating the convergence to equilibrium of ocean-climate models},
390  journal = JPO,
391  year = {1984},
392  volume = {14},
393  owner = {gm},
394  timestamp = {2007.08.10}
395}
396
397@ARTICLE{Bryden1973,
398  author = {H. L. Bryden},
399  title = {New polynomials for thermal expansion, adiabatic temperature gradient
400   
401   and potential temperature of sea water},
402  journal = DSR,
403  year = {1973},
404  volume = {20},
405  pages = {401-408},
406  owner = {gm},
407  timestamp = {2007.08.04}
408}
409
410@ARTICLE{Campin2004,
411  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
412  title = {Conservation of properties in a free-surface model},
413  journal = {Ocean Modelling},
414  year = {2004},
415  volume = {6, 3-4},
416  pages = {221-244},
417  owner = {gm},
418  timestamp = {2007.08.04}
419}
420
421@ARTICLE{Cox1987,
422  author = {M. Cox},
423  title = {Isopycnal diffusion in a z-coordinate ocean model},
424  journal = {Ocean Modelling},
425  year = {1987},
426  volume = {74},
427  pages = {1-5},
428  owner = {gm},
429  timestamp = {2007.08.03}
430}
431
432@ARTICLE{Dukowicz1994,
433  author = {J. K. Dukowicz and R. D. Smith},
434  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
435  journal = JGR,
436  year = {1994},
437  volume = {99},
438  pages = {7991-8014},
439  owner = {gm},
440  timestamp = {2007.08.03}
441}
442
443@ARTICLE{Dutay.J.C2004,
444  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
445   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
446   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
447  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
448   
449   with mantle helium-3},
450  journal = {Journal of Marine Systems},
451  year = {2004},
452  pages = {1-22},
453  abstract = {We compare simulations of the injection of mantle helium-3 into the
454   deep ocean from six global coarse resolution models which participated
455   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
456   discuss the results of a study carried out with one of the models,
457   which examines the effect of the subgrid-scale mixing parameterization.
458   These sensitivity tests provide useful information to interpret the
459   differences among the OCMIP models and between model simulations
460   and the data.
461   
462   We find that the OCMIP models, which parameterize subgrid-scale mixing
463   using an eddy-induced velocity, tend to
464   
465   underestimate the ventilation of the deep ocean, based on diagnostics
466   with d3He. In these models, this parameterization is implemented
467   with a constant thickness diffusivity coefficient. In future simulations,
468   we recommend using such a parameterization with spatially and temporally
469   varying coefficients in order to moderate its effect on stratification.
470   
471   The performance of the models with regard to the formation of AABW
472   confirms the conclusion from a previous evaluation with CFC-11. Models
473   coupled with a sea-ice model produce a substantial bottom water formation
474   in the Southern Ocean that tends to overestimate AABW ventilation,
475   while models that are not coupled with a sea-ice model systematically
476   underestimate the formation of AABW.
477   
478   We also analyze specific features of the deep 3He distribution (3He
479   plumes) that are particularly well depicted in the data and which
480   put severe constraints on the deep circulation. We show that all
481   the models fail to reproduce a correct propagation of these plumes
482   in the deep ocean. The resolution of the models may be too coarse
483   to reproduce the strong and narrow currents in the deep ocean, and
484   the models do not incorporate the geothermal heating that may also
485   contribute to the generation of these currents. We also use the context
486   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
487   to compare and evaluate modeled deep-ocean circulations. Although
488   the source function of mantle helium is known with a rather large
489   uncertainty, we find that the parameterization used for the injection
490   of mantle helium-3 is sufficient to generate realistic results, even
491   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
492   Res. 100 (1995) 3829] claimed this parameterization generates
493   
494   inadequate results. These results are supported by a multi-tracer
495   evaluation performed by considering the simulated distributions of
496   both helium-3 and natural 14C, and comparing the simulated tracer
497   fields with available data.},
498  owner = {sandra},
499  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
500  timestamp = {2006.10.17}
501}
502
503@ARTICLE{Eiseman1980,
504  author = {P. R. Eiseman and A. P. Stone},
505  title = {Conservation lows of fluid dynamics -- A survey},
506  journal = {SIAM Review},
507  year = {1980},
508  volume = {22},
509  pages = {12-27},
510  owner = {gm},
511  timestamp = {2007.08.03}
512}
513
514@PHDTHESIS{Farge1987,
515  author = {M. Farge},
516  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
517   de Saint Venant},
518  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
519  year = {1987},
520  owner = {gm},
521  timestamp = {2007.08.03}
522}
523
524@ARTICLE{Farrow1995,
525  author = {D. E. Farrow and D. P. Stevens},
526  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
527   models},
528  journal = JPO,
529  year = {1995},
530  volume = {25},
531  pages = {1731-1741.},
532  owner = {gm},
533  timestamp = {2007.08.04}
534}
535
536@ARTICLE{Fujio1991,
537  author = {S. Fujio and N. Imasato},
538  title = {Diagnostic calculation for circulation and water mass movement in
539   the deep Pacific},
540  journal = JGR,
541  year = {1991},
542  volume = {96},
543  pages = {759-774},
544  month = jan,
545  owner = {gm},
546  timestamp = {2007.08.04}
547}
548
549@ARTICLE{Gargett1984,
550  author = {A. E. Gargett},
551  title = {Vertical eddy diffusivity in the ocean interior},
552  journal = JMR,
553  year = {1984},
554  volume = {42},
555  owner = {gm},
556  timestamp = {2007.08.06}
557}
558
559@ARTICLE{Gaspar1990,
560  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
561  title = {A simple eddy kinetic energy model for simulations of the oceanic
562   vertical mixing\: Tests at Station Papa and long-term upper ocean
563   study site},
564  journal = JGR,
565  year = {1990},
566  volume = {95(C9)},
567  owner = {gm},
568  timestamp = {2007.08.06}
569}
570
571@ARTICLE{Gent1990,
572  author = {P. R. Gent and J. C. Mcwilliams},
573  title = {Isopycnal Mixing in Ocean Circulation Models},
574  journal = JPO,
575  year = {1990},
576  volume = {20},
577  pages = {150-155},
578  number = {1},
579  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
580   is proposed for use in non-eddy-resolving ocean circulation models.
581   The mixing is applied in isopycnal coordinates to isopycnal layer
582   thickness, or inverse density gradient, as well as to passive scalars,
583   temperature and salinity. The transformation of these mixing forms
584   to physical coordinates is also presented.},
585  date = {January 01, 1990},
586  owner = {gm},
587  timestamp = {2007.08.03}
588}
589
590@ARTICLE{Gerdes1993a,
591  author = {R. Gerdes},
592  title = {A primitive equation ocean circulation model using a general vertical
593   coordinate transformation 1. Description and testing of the model},
594  journal = JGR,
595  year = {1993},
596  volume = {98},
597  owner = {gm},
598  timestamp = {2007.08.03}
599}
600
601@ARTICLE{Gerdes1993b,
602  author = {R. Gerdes},
603  title = {A primitive equation ocean circulation model using a general vertical
604   coordinate transformation 2. Application to an overflow problem},
605  journal = JGR,
606  year = {1993},
607  volume = {98},
608  pages = {14703-14726},
609  owner = {gm},
610  timestamp = {2007.08.03}
611}
612
613@BOOK{Gill1982,
614  title = {Atmosphere-Ocean Dynamics},
615  publisher = {International Geophysics Series, Academic Press, New-York},
616  year = {1982},
617  author = {A. E. Gill}
618}
619
620@ARTICLE{Griffes2005,
621  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
622   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
623   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
624  title = {Formulation of an ocean model for global climate simulations},
625  journal = OS,
626  year = {2005},
627  pages = {165–246},
628  abstract = {This paper summarizes the formulation of the ocean component to the
629   Geophysical
630   
631   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
632   the 4th IPCC As- Assessment
633   
634   (AR4) of global climate change. In particular, it reviews elements
635   of ocean
636   
637   sessment climate models and how they are pieced together for use in
638   a state-of-the-art coupled 5
639   
640   model. Novel issues are also highlighted, with particular attention
641   given to sensitivity of
642   
643   the coupled simulation to physical parameterizations and numerical
644   methods. Features
645   
646   of the model described here include the following: (1) tripolar grid
647   to resolve the Arctic
648   
649   Ocean without polar filtering, (2) partial bottom step representation
650   of topography to
651   
652   better represent topographically influenced advective and wave processes,
653   (3) more 10
654   
655   accurate equation of state, (4) three-dimensional flux limited tracer
656   advection to reduce
657   
658   overshoots and undershoots, (5) incorporation of regional climatological
659   variability in
660   
661   shortwave penetration, (6) neutral physics parameterization for representation
662   of the
663   
664   pathways of tracer transport, (7) staggered time stepping for tracer
665   conservation and
666   
667   numerical eciency, (8) anisotropic horizontal viscosities for representation
668   of equato- 15
669   
670   rial currents, (9) parameterization of exchange with marginal seas,
671   (10) incorporation
672   
673   of a free surface that accomodates a dynamic ice model and wave propagation,
674   (11)
675   
676   transport of water across the ocean free surface to eliminate unphysical
677   “virtual tracer
678   
679   flux” methods, (12) parameterization of tidal mixing on continental
680   shelves.},
681  owner = {sandra},
682  pdf = {Griffies_al_OSD05.pdf},
683  timestamp = {2007.01.25}
684}
685
686@BOOK{Griffies2004,
687  title = {Fundamentals of ocean climate models},
688  publisher = {Princeton University Press, 434pp},
689  year = {2004},
690  author = {S. M. Griffies},
691  owner = {gm},
692  timestamp = {2007.08.05}
693}
694
695@ARTICLE{Griffies1998,
696  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
697   Larichev and J. K. Dukowicz and R. D. Smith},
698  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
699  journal = JPO,
700  year = {1998},
701  volume = {28},
702  pages = {805-830},
703  number = {5},
704  abstract = {This paper considers the requirements that must be satisfied in order
705   to provide a stable and physically based isoneutral tracer diffusion
706   scheme in a z-coordinate ocean model. Two properties are emphasized:
707   1) downgradient orientation of the diffusive fluxes along the neutral
708   directions and 2) zero isoneutral diffusive flux of locally referenced
709   potential density. It is shown that the Cox diffusion scheme does
710   not respect either of these properties, which provides an explanation
711   for the necessity to add a nontrivial background horizontal diffusion
712   to that scheme. A new isoneutral diffusion scheme is proposed that
713   aims to satisfy the stated properties and is found to require no
714   horizontal background diffusion.},
715  date = {May 01, 1998},
716  owner = {gm},
717  timestamp = {2007.08.05}
718}
719
720@ARTICLE{Griffies2001,
721  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
722  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
723   Ocean Models},
724  journal = MWR,
725  year = {2001},
726  volume = {129},
727  pages = {1081-1098},
728  number = {5},
729  abstract = {This paper details a free surface method using an explicit time stepping
730   scheme for use in z-coordinate ocean models. One key property that
731   makes the method especially suitable for climate simulations is its
732   very stable numerical time stepping scheme, which allows for the
733   use of a long density time step, as commonly employed with coarse-resolution
734   rigid-lid models. Additionally, the effects of the undulating free
735   surface height are directly incorporated into the baroclinic momentum
736   and tracer equations. The novel issues related to local and global
737   tracer conservation when allowing for the top cell to undulate are
738   the focus of this work. The method presented here is quasi-conservative
739   locally and globally of tracer when the baroclinic and tracer time
740   steps are equal. Important issues relevant for using this method
741   in regional as well as large-scale climate models are discussed and
742   illustrated, and examples of scaling achieved on parallel computers
743   provided.},
744  date = {May 01, 2001},
745  owner = {gm},
746  timestamp = {2007.08.04}
747}
748
749@ARTICLE{Guily2001,
750  author = {E. Guilyardi and G. Madec and L. Terray},
751  title = {The role of lateral ocean physics in the upper ocean thermal balance
752   of a coupled ocean-atmosphere GCM},
753  journal = CD,
754  year = {2001},
755  volume = {17},
756  pages = {589-599},
757  number = {8},
758  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
759}
760
761@BOOK{Haltiner1980,
762  title = {Numerical prediction and dynamic meteorology},
763  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
764  year = {1980},
765  author = {G. J. Haltiner and R. T. Williams},
766  owner = {gm},
767  timestamp = {2007.08.03}
768}
769
770@ARTICLE{Haney1991,
771  author = {R. L. Haney},
772  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
773   Ocean Models},
774  journal = JPO,
775  year = {1991},
776  volume = {21},
777  pages = {610--619
778   
779   },
780  number = {4},
781  abstract = {The error in computing the pressure gradient force near steep topography
782   using terms following (σ) coordinates is investigated in an
783   ocean model using the family of vertical differencing schemes proposed
784   by Arakawa and Suarez. The truncation error is estimated by substituting
785   known buoyancy profiles into the finite difference hydrostatic and
786   pressure gradient terms. The error due to “hydrostatic inconsistency,”
787   which is not simply a space truncation error, is also documented.
788   The results show that the pressure gradient error is spread throughout
789   the water column, and it is sensitive to the vertical resolution
790   and to the placement of the grid points relative to the vertical
791   structure of the buoyancy field being modeled. Removing a reference
792   state, as suggested for the atmosphere by Gary, reduces the truncation
793   error associated with the two lowest vertical modes by a factor of
794   2 to 3. As an example, the error in computing the pressure gradient
795   using a standard 10-level primitive equation model applied to buoyancy
796   profiles and topographic slopes typical of the California Current
797   region corresponds to a false geostrophic current of the order of
798   10–12 cm s−1. The analogous error in a hydrostatically
799   consistent 30-level model with the reference state removed is about
800   an order of magnitude smaller.},
801  date = {April 01, 1991},
802  owner = {gm},
803  timestamp = {2007.08.03}
804}
805
806@ARTICLE{Hsu1990,
807  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
808  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
809   Coordinate},
810  journal = MWR,
811  year = {1990},
812  volume = {118},
813  pages = {1933--1959
814   
815   },
816  number = {10},
817  abstract = {In constructing a numerical model of the atmosphere, we must choose
818   an appropriate vertical coordinate. Among the various possibilities,
819   isentropic vertical coordinates such as the θ-coordinate seem
820   to have the greatest potential, in spite of the technical difficulties
821   in treating the intersections of coordinate surfaces with the lower
822   boundary. The purpose of this paper is to describe the θ-coordinate
823   model we have developed and to demonstrate its potential through
824   simulating the nonlinear evolution of a baroclinic wave.In the model
825   we have developed, vertical discretization maintains important integral
826   constraints, such as conservation of the angular momentum and total
827   energy. In treating the intersections of coordinate surfaces with
828   the lower boundary, we have followed the massless-layer approach
829   in which the intersecting coordinate surfaces are extended along
830   the boundary by introducing massless layers. Although this approach
831   formally eliminates the intersection problem, it raises other computational
832   problems. Horizontal discretization of the continuity and momentum
833   equations in the model has been carefully designed to overcome these
834   problems.Selected results from a 10-day integration with the 25-layer,
835   β-plane version of the model are presented. It seems that the
836   model can simulate the nonlinear evolution of a baroclinic wave and
837   associated dynamical processes without major computational difficulties.},
838  date = {October 01, 1990},
839  owner = {gm},
840  timestamp = {2007.08.05}
841}
842
843@ARTICLE{JackMcD1995,
844  author = {D. R. Jackett and T. J. McDougall},
845  title = {Minimal adjustment of hydrographic data to achieve static stability},
846  journal = JAOT,
847  year = {1995},
848  volume = {12},
849  pages = {381-389},
850  owner = {gm},
851  timestamp = {2007.08.04}
852}
853
854@BOOK{Jerlov1968,
855  title = {Optical Oceanography},
856  publisher = {194pp},
857  year = {1968},
858  author = {N. G. Jerlov},
859  owner = {gm},
860  timestamp = {2007.08.04}
861}
862
863@INPROCEEDINGS{Killworth1989,
864  author = {P. D. Killworth},
865  title = {On the parameterization of deep convection in ocean models},
866  booktitle = {Parameterization of small-scale processes},
867  year = {1989},
868  editor = {Hawaiian winter workshop},
869  month = {January 17-20},
870  organization = {University of Hawaii at Manoa},
871  owner = {gm},
872  timestamp = {2007.08.06}
873}
874
875@ARTICLE{Killworth1991,
876  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
877   S. M.},
878  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
879  journal = JPO,
880  year = {1991},
881  volume = {21},
882  pages = {1333--1348},
883  number = {9},
884  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
885   circulation model, adapted to include a free surface, is described.
886   The model is designed for the following uses: tidal studies
887   (a tidal option is explicitly included); assimilation of altimetric
888   data (since the surface elevation is now a prognostic variable);
889   and in situations where accurate relaxation to obtain the streamfunction
890   in the original model is too time consuming. Comparison is made between
891   a 300-year run of the original model and the free-surface version,
892   using a very coarse North Atlantic calculation as the basis. The
893   results are very similar, differing only in the streamfunction over
894   topography; this is to be expected, since the treatment of topographic
895   torques on the barotropic flow differs because of the nature of the
896   modifications.},
897  date = {September 01, 1991},
898  owner = {gm},
899  timestamp = {2007.08.03}
900}
901
902@ARTICLE{Kolmogorov1942,
903  author = {A. N. Kolmogorov},
904  title = {The equation of turbulent motion in an incompressible fluid},
905  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
906  year = {1942},
907  volume = {6},
908  pages = {56-58},
909  owner = {gm},
910  timestamp = {2007.08.06}
911}
912
913@PHDTHESIS{Levy1996,
914  author = {M. L\'{e}vy},
915  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
916   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
917  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
918  year = {1996},
919  owner = {gm},
920  timestamp = {2007.08.04}
921}
922
923@ARTICLE{Levy2001,
924  author = {M. L\'{e}vy and A. Estubier and G Madec},
925  title = {Choice of an advection scheme for biogeochemical models},
926  journal = GRL,
927  year = {2001},
928  volume = {28},
929  owner = {gm},
930  timestamp = {2007.08.04}
931}
932
933@ARTICLE{Levy1998,
934  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
935  title = {The onset of a bloom after deep winter convection in the Northwestern
936   Mediterranean Sea: mesoscale
937   
938   process study with a primitive equation model},
939  journal = JMS,
940  year = {1998},
941  volume = {16/1-2},
942  owner = {gm},
943  timestamp = {2007.08.10}
944}
945
946@BOOK{LargeYeager2004,
947  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
948   data sets and flux climatologies},
949  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
950   Center for Atmospheric Research},
951  year = {2004},
952  author = {W. Large and S. Yeager},
953  owner = {gm},
954  timestamp = {2007.08.06}
955}
956
957@ARTICLE{large1994,
958  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
959  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
960   layer parameterization},
961  journal = {Reviews of Geophysics},
962  year = {1994},
963  volume = {32},
964  pages = {363-404},
965  doi = {10.1029/94RG01872},
966  owner = {gm},
967  timestamp = {2007.08.03}
968}
969
970@PHDTHESIS{Lazar1997,
971  author = {A. Lazar},
972  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
973   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
974   id\'{e}alis\'{e}e},
975  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
976  year = {1997},
977  owner = {gm},
978  timestamp = {2007.08.06}
979}
980
981@ARTICLE{Lazar1999,
982  author = {A. Lazar and G. Madec and P. Delecluse},
983  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
984   Tracer Transport Parameterizations in an OGCM},
985  journal = JPO,
986  year = {1999},
987  volume = {29},
988  pages = {2945-2961},
989  number = {11},
990  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
991   a vast interior downwelling and a companion intense western boundary
992   layer upwelling at midlatitude below the thermocline. These features,
993   related to the so-called Veronis effect, are poorly rationalized
994   and depart strongly from the classical vision of the deep circulation
995   where upwelling is considered to occur in the interior. Furthermore,
996   they significantly alter results of ocean general circulation models
997   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
998   showed that the parameterization for mesoscale eddy effects formulated
999   by Gent and McWilliams allows integral quantities like the streamfunction
1000   and meridional heat transport to be free of these undesired effects.
1001   In this paper, an idealized OGCM is used to validate an analytical
1002   rationalization of the processes at work and help understand the
1003   physics. The results show that the features associated with the Veronis
1004   effect can be related quantitatively to three different width scales
1005   that characterize the baroclinic structure of the deep western boundary
1006   current. In addition, since one of these scales may be smaller than
1007   the Munk barotropic layer, usually considered to determine the minimum
1008   resolution and horizontal viscosity for numerical models, the authors
1009   recommend that it be taken into account. Regarding the introduction
1010   of the new parameterization, diagnostics in terms of heat balances
1011   underline some interesting similarities between local heat fluxes
1012   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1013   when a common large diffusivity (here 2000 m2 s−1) is used.
1014   The near-quasigeostrophic character of the flow explains these results.
1015   As a consequence, the response of the Eulerian-mean circulation is
1016   locally similar for runs using either of the two parameterizations.
1017   However, it is shown that the advective nature of the eddy-induced
1018   heat fluxes results in a very different effective circulation, which
1019   is the one felt by tracers.},
1020  date = {November 01, 1999},
1021  owner = {gm},
1022  timestamp = {2007.08.06}
1023}
1024
1025@ARTICLE{Leonard1991,
1026  author = {B. P. Leonard},
1027  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1028   advection},
1029  journal = {Computer Methods in Applied Mechanics and Engineering},
1030  year = {1991},
1031  pages = {17-74},
1032  owner = {gm},
1033  timestamp = {2007.08.04}
1034}
1035
1036@TECHREPORT{Leonard1988,
1037  author = {B. P. Leonard},
1038  title = {Universal limiter for transient interpolation modelling of the advective
1039   transport equations},
1040  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1041  year = {1988},
1042  owner = {gm},
1043  timestamp = {2007.08.04}
1044}
1045
1046@ARTICLE{Leonard1979,
1047  author = {B. P. Leonard},
1048  title = {A stable and accurate convective modelling procedure based on quadratic
1049   upstream interpolation},
1050  journal = {Computer Methods in Applied Mechanics and Engineering},
1051  year = {1979},
1052  volume = {19},
1053  pages = {59-98},
1054  month = jun,
1055  owner = {gm},
1056  timestamp = {2007.08.04}
1057}
1058
1059@TECHREPORT{Levier2007,
1060  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1061  title = {Free surface and variable volume in the NEMO code},
1062  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1063   NEMO web site},
1064  year = {2007},
1065  owner = {gm},
1066  timestamp = {2007.08.03}
1067}
1068
1069@BOOK{levitus82,
1070  title = {Climatological Atlas of the world ocean},
1071  publisher = {NOAA professional paper No. 13, 174pp},
1072  year = {1982},
1073  author = {S Levitus },
1074  note = {173 p.}
1075}
1076
1077@TECHREPORT{Lott1989,
1078  author = {F. Lott and G. Madec},
1079  title = {Implementation of bottom topography in the Ocean General Circulation
1080   Model OPA of the LODYC: formalism and experiments.},
1081  institution = {LODYC, France, 36pp.},
1082  year = {1989},
1083  number = {3},
1084  owner = {gm},
1085  timestamp = {2007.08.03}
1086}
1087
1088@ARTICLE{Lott1990,
1089  author = {F. Lott and G. Madec and J. Verron},
1090  title = {Topographic experiments in an Ocean General Circulation Model},
1091  journal = {Ocean Modelling},
1092  year = {1990},
1093  volume = {88},
1094  pages = {1-4},
1095  owner = {gm},
1096  timestamp = {2007.08.03}
1097}
1098
1099@PHDTHESIS{Madec1990,
1100  author = {G. Madec},
1101  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1102   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1103  school = {Universit\'{e}Pierre et Marie Curie, Paris,  France, 194pp.},
1104  year = {1990},
1105  owner = {gm},
1106  timestamp = {2007.08.10}
1107}
1108
1109@ARTICLE{Madec1991a,
1110  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1111  title = {Effect of thermohaline forcing variability on deep water formation
1112   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1113   study},
1114  journal = DAO,
1115  year = {1991},
1116  owner = {gm},
1117  timestamp = {2007.08.06}
1118}
1119
1120@ARTICLE{Madec1991b,
1121  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1122  title = {A three-dimensional numerical study of deep water formation in the
1123   
1124   
1125   Northwestern Mediterranean Sea .},
1126  journal = JPO,
1127  year = {1991},
1128  volume = {21},
1129  owner = {gm},
1130  timestamp = {2007.08.06}
1131}
1132
1133@INBOOK{Madec1991c,
1134  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1135   Sea},
1136  title = {Deep convection and deep water formation in the oceans},
1137  publisher = {Elsevier Oceanographic Series},
1138  year = {1991},
1139  author = {G. Madec and M. Cr\'{e}pon},
1140  owner = {gm},
1141  timestamp = {2007.08.06}
1142}
1143
1144@ARTICLE{Madec1997,
1145  author = {G. Madec and P. Delecluse},
1146  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1147  journal = {Int. WOCE Newsletter},
1148  year = {1997},
1149  volume = {26},
1150  pages = {12-15},
1151  owner = {gm},
1152  timestamp = {2007.08.06}
1153}
1154
1155@TECHREPORT{Madec1998,
1156  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1157  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1158  institution = {LODYC/IPSL Note 11},
1159  year = {1998}
1160}
1161
1162@ARTICLE{MadecImb1996,
1163  author = {G Madec and M Imbard},
1164  title = {A global ocean mesh to overcome the north pole singularity},
1165  journal = CD,
1166  year = {1996},
1167  volume = {12},
1168  pages = {381-388}
1169}
1170
1171@ARTICLE{Madec1996,
1172  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1173  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1174   Mediterranean Sea},
1175  journal = JPO,
1176  year = {1996},
1177  volume = {26},
1178  pages = {1393-1408},
1179  number = {8},
1180  month = aug,
1181  abstract = {The large-scale processes preconditioning the winter deep-water formation
1182   in the northwestern Mediterranean Sea are investigated with a primitive
1183   equation numerical model where convection is parameterized by a non-penetrative
1184   convective adjustment algorithm. The ocean is forced by momentum
1185   and buoyancy fluxes that have the gross features of mean winter forcing
1186   found in the MEDOC area. The wind-driven barotropic circulation appears
1187   to be a major ingredient of the preconditioning phase of deep-water
1188   formation. After three months, the ocean response is dominated by
1189   a strong barotropic cyclonic vortex located under the forcing area,
1190   which fits the Sverdrup balance away from the northern coast. In
1191   the vortex center, the whole water column remains trapped under the
1192   forcing area all winter. This trapping enables the thermohaline forcing
1193   to drive deep-water formation efficiently. Sensitivity studies show
1194   that, β effect and bottom topography play a paramount role and
1195   confirm that deep convection occurs only in areas that combine a
1196   strong surface thermohaline forcing and a weak barotropic advection
1197   so that water masses are submitted to the negative buoyancy fluxes
1198   for a much longer time. In particular, the impact of the Rhône
1199   Deep Sea Fan on the barotropic circulation dominates the β effect:
1200   the barotropic flow is constrained to follow the bathymetric contours
1201   and the cyclonic vortex is shifted southward so that the fluid above
1202   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1203   above the fan in agreement with observations. The selection of the
1204   area of deep-water formation through the defection of the barotropic
1205   circulation by the topography seems a more efficient mechanism than
1206   those associated with the wind- driven barotropic vortex. This is
1207   due to its permanency, while the latter may be too sensitive to time
1208   and space variations of the forcing.},
1209  owner = {gm},
1210  timestamp = {2007.08.03}
1211}
1212
1213@ARTICLE{Madec1988,
1214  author = {G. Madec and C. Rahier and M. Chartier},
1215  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1216   streamfunction in a multilevel OGCM},
1217  journal = {Ocean Modelling},
1218  year = {1988},
1219  volume = {78},
1220  owner = {gm},
1221  timestamp = {2007.08.10}
1222}
1223
1224@ARTICLE{Maltrud1998,
1225  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1226  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1227   winds},
1228  journal = JGR,
1229  year = {1998},
1230  volume = {103(C13)},
1231  pages = {30,825-30,854},
1232  owner = {gm},
1233  timestamp = {2007.08.05}
1234}
1235
1236@PHDTHESIS{MartiTh1992,
1237  author = {O. Marti},
1238  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1239   et du transport de traceurs anthropog\'{e}niques},
1240  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1241  year = {1992},
1242  owner = {gm},
1243  timestamp = {2007.08.04}
1244}
1245
1246@ARTICLE{Marti1992,
1247  author = {O. Marti and G. Madec and P. Delecluse},
1248  title = {Comment on "Net diffusivity in ocean general circulation models with
1249   nonuniform grids" by F. L. Yin and I. Y. Fung},
1250  journal = JGR,
1251  year = {1992},
1252  volume = {97},
1253  pages = {12763-12766},
1254  month = aug,
1255  owner = {gm},
1256  timestamp = {2007.08.03}
1257}
1258
1259@ARTICLE{McDougall1987,
1260  author = {T. J. McDougall},
1261  title = {Neutral Surfaces},
1262  journal = {Journal of Physical Oceanography},
1263  year = {1987},
1264  volume = {17},
1265  pages = {1950-1964},
1266  number = {11},
1267  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1268   rather efficiently by mesoscale eddies and two-dimensional turbulence
1269   along “neutral surfaces”, defined such that when water
1270   parcels are moved small distances in the neutral surface, they experience
1271   no buoyant restoring forces. By contrast, work would have to be done
1272   on a moving fluid parcel in order to keep it on a potential density
1273   surface. The differences between neutral surfaces and potential density
1274   surfaces are due to the variation of α/β with pressure
1275   (where α is the thermal expansion coefficient and β is
1276   the saline contraction coefficient). By regarding the equation of
1277   state of seawater as a function of salinity, potential temperature,
1278   and pressure, rather than in terms of salinity, temperature, and
1279   pressure, it is possible to quantify the differences between neutral
1280   surfaces and potential density surfaces. In particular, the spatial
1281   gradients of scalar properties (e.g., S, θ, tritium or potential
1282   vorticity) on a neutral surface can be quite different to the corresponding
1283   gradients in a potential density surface. For example, at a potential
1284   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1285   of potential temperature in a potential density surface (referenced
1286   to sea level) is too large by between 50% and 350% (depending
1287   on the stability ratio Rp of the water column) compared with the
1288   physically relevant gradient of potential temperature on the neutral
1289   surface. Three-examples of neutral surfaces are presented, based
1290   on the Levitus atlas of the North Atlantic.},
1291  date = {November 01, 1987},
1292  owner = {gm},
1293  timestamp = {2007.08.04}
1294}
1295
1296@ARTICLE{Merryfield1999,
1297  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1298  title = {A Global Ocean Model with Double-Diffusive Mixing},
1299  journal = JPO,
1300  year = {1999},
1301  volume = {29},
1302  pages = {1124-1142},
1303  number = {6},
1304  abstract = {A global ocean model is described in which parameterizations of diapycnal
1305   mixing by double-diffusive fingering and layering are added to a
1306   stability-dependent background turbulent diffusivity. Model runs
1307   with and without double-diffusive mixing are compared for annual-mean
1308   and seasonally varying surface forcing. Sensitivity to different
1309   double-diffusive mixing parameterizations is considered. In all cases,
1310   the locales and extent of salt fingering (as diagnosed from buoyancy
1311   ratio Rρ) are grossly comparable to climatology, although fingering
1312   in the models tends to be less intense than observed. Double-diffusive
1313   mixing leads to relatively minor changes in circulation but exerts
1314   significant regional influences on temperature and salinity.},
1315  date = {June 01, 1999},
1316  owner = {gm},
1317  timestamp = {2007.08.06}
1318}
1319
1320@ARTICLE{Murray1996,
1321  author = {R. J. Murray},
1322  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1323  journal = JCP,
1324  year = {1996},
1325  volume = {126},
1326  pages = {251-273},
1327  number = {2},
1328  month = {July},
1329  owner = {gm},
1330  timestamp = {2007.08.03}
1331}
1332
1333@PHDTHESIS{OlivierPh2001,
1334  author = {F. Olivier},
1335  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1336   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1337  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1338  year = {2001},
1339  owner = {gm},
1340  timestamp = {2007.08.14}
1341}
1342
1343@ARTICLE{PacPhil1981,
1344  author = {R.C. Pacanowski and S.G.H. Philander},
1345  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1346   Oceans},
1347  journal = JPO,
1348  year = {1981},
1349  volume = {11},
1350  pages = {1443-1451},
1351  number = {11},
1352  abstract = {Measurements indicate that mixing processes are intense in the surface
1353   layers of the ocean but weak below the thermocline, except for the
1354   region below the core of the Equatorial Undercurrent where vertical
1355   temperature gradients are small and the shear is large. Parameterization
1356   of these mixing processes by means of coefficients of eddy mixing
1357   that are Richardson-number dependent, leads to realistic simulations
1358   of the response of the equatorial oceans to different windstress
1359   patterns. In the case of eastward winds results agree well with measurements
1360   in the Indian Ocean. In the case of westward winds it is of paramount
1361   importance that the nonzero heat flux into the ocean be taken into
1362   account. This beat flux stabilizes the upper layers and reduces the
1363   intensity of the mixing, especially in the cast. With an appropriate
1364   surface boundary condition, the results are relatively insensitive
1365   to values assigned to constants in the parameterization formula.},
1366  date = {November 01, 1981},
1367  owner = {gm},
1368  timestamp = {2007.08.03}
1369}
1370
1371@ARTICLE{Paulson1977,
1372  author = {C. A. Paulson and J. J. Simpson},
1373  title = {Irradiance Measurements in the Upper Ocean},
1374  journal = JPO,
1375  year = {1977},
1376  volume = {7},
1377  pages = {952-956},
1378  number = {6},
1379  abstract = {Observations were made of downward solar radiation as a function of
1380   depth during an experiment in the North Pacific (35°N, 155°W).
1381   The irradiance meter employed was sensitive to solar radiation of
1382   wavelength 400–1000 nm arriving from above at a horizontal
1383   surface. Because of selective absorption of the short and long wavelengths,
1384   the irradiance decreases much faster than exponential in the upper
1385   few meters, falling to one-third of the incident value between 2
1386   and 3 m depth. Below 10 m the decrease was exponential at a rate
1387   characteristic of moderately clear water of Type IA. Neglecting one
1388   case having low sun altitude, the observations are well represented
1389   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1390   where I is the irradiance at depth −z, I0 is the irradiance
1391   at the surface less reflected solar radiation, R=0.62, ζ1
1392   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1393   and z is the vertical space coordinate, positive upward with the
1394   origin at mean sea level. The depth at which the irradiance falls
1395   to 10% of its surface value is nearly the same as observations
1396   of Secchi depth when cases with high wind speed or low solar altitude
1397   are neglected. Parameters R, ζ1, and ζ2 are computed for
1398   the entire range of oceanic water types.},
1399  date = {November 01, 1977},
1400  owner = {gm},
1401  timestamp = {2007.08.04}
1402}
1403
1404@ARTICLE{Phillips1959,
1405  author = {R. S.  Phillips},
1406  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1407   Equations},
1408  journal = {Transactions of the American Mathematical Society},
1409  year = {1959},
1410  volume = {90(2)},
1411  pages = {193-254},
1412  doi = {doi:10.2307/1993202},
1413  owner = {gm},
1414  timestamp = {2007.08.10}
1415}
1416
1417@ARTICLE{Reverdin1991,
1418  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1419   Morli\`{e}re and J. M. Verstraete},
1420  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1421   numerical simulation and a data analysis},
1422  journal = PO,
1423  year = {1991},
1424  volume = {27},
1425  pages = {273-340},
1426  owner = {gm},
1427  timestamp = {2007.08.04}
1428}
1429
1430@BOOK{Richtmyer1967,
1431  title = {Difference methods for initial-value problems},
1432  publisher = {Interscience Publisher, Second Edition, 405pp},
1433  year = {1967},
1434  author = {R. D. Richtmyer and K. W. Morton},
1435  owner = {gm},
1436  timestamp = {2007.08.04}
1437}
1438
1439@ARTICLE{Robert1966,
1440  author = {A. J. Robert},
1441  title = {The integration of a Low order spectral form of the primitive meteorological
1442   equations},
1443  journal = {J. Meteo. Soc. Japan},
1444  year = {1966},
1445  volume = {44, 2},
1446  owner = {gm},
1447  timestamp = {2007.08.04}
1448}
1449
1450@ARTICLE{Roullet2000,
1451  author = {G. Roullet and G. Madec},
1452  title = {salt conservation, free surface, and varying levels: a new formulation
1453   for ocean general circulation models},
1454  journal = JGR,
1455  year = {2000},
1456  volume = {105},
1457  pages = {23,927-23,942},
1458  owner = {sandra},
1459  pdf = {Roullet_Madec_JGR00.pdf},
1460  timestamp = {2007.03.22}
1461}
1462
1463@ARTICLE{Sadourny1975,
1464  author = {R. Sadourny},
1465  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1466  journal = JAS,
1467  year = {1975},
1468  volume = {32},
1469  pages = {680-689},
1470  number = {4},
1471  abstract = {Two simple numerical models of the shallow-water equations identical
1472   in all respects but for their con-servation properties have been
1473   tested regarding their internal mixing processes. The experiments
1474   show that violation of enstrophy conservation results in a spurious
1475   accumulation of rotational energy in the smaller scales, reflected
1476   by an unrealistic increase of enstrophy, which ultimately produces
1477   a finite rate of energy dissipation in the zero viscosity limit,
1478   thus violating the well-known dynamics of two-dimensional flow. Further,
1479   the experiments show a tendency to equipartition of the kinetic energy
1480   of the divergent part of the flow in the inviscid limit, suggesting
1481   the possibility of a divergent energy cascade in the physical system,
1482   as well as a possible influence of the energy mixing on the process
1483   of adjustment toward balanced flow.},
1484  date = {April 01, 1975},
1485  owner = {gm},
1486  timestamp = {2007.08.05}
1487}
1488
1489@ARTICLE{Sarmiento1982,
1490  author = {J. L. Sarmiento and K. Bryan},
1491  title = {Ocean transport model for the North Atlantic},
1492  journal = JGR,
1493  year = {1982},
1494  volume = {87},
1495  pages = {394-409},
1496  owner = {gm},
1497  timestamp = {2007.08.04}
1498}
1499
1500@ARTICLE{Sacha2005,
1501  author = {A. F. Shchepetkin and J. C. McWilliams},
1502  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1503   topography-following-coordinate oceanic modelr},
1504  journal = {Ocean Modelling},
1505  year = {2005},
1506  volume = {9, 4},
1507  pages = {347-404},
1508  owner = {gm},
1509  timestamp = {2007.08.04}
1510}
1511
1512@ARTICLE{Sacha2003,
1513  author = {A. F. Shchepetkin and J. C. McWilliams},
1514  title = {A method for computing horizontal pressure-gradient force in an oceanic
1515   model with a nonaligned
1516   
1517   vertical coordinate},
1518  journal = JGR,
1519  year = {2003},
1520  volume = {108(C3)},
1521  pages = {3090, doi:10.1029/2001JC001047},
1522  owner = {gm},
1523  timestamp = {2007.08.05}
1524}
1525
1526@ARTICLE{Shchepetkin1996,
1527  author = {A. F. Shchepetkin and J. J. O'Brien},
1528  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1529   Equation Ocean Models},
1530  journal = MWR,
1531  year = {1996},
1532  volume = {124},
1533  pages = {1285-1300},
1534  number = {6},
1535  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1536   processes in which the friction is physically relevant and to prevent
1537   numerical instability by suppressing accumulation of energy in the
1538   smallest resolved scales. This study shows that even for the latter
1539   case the form of the friction term should be chosen in a physically
1540   consistent way. Violation of fundamental physical principles reduces
1541   the fidelity of the numerical solution, even if the friction is small.
1542   Several forms of the lateral friction, commonly used in numerical
1543   ocean models, are discussed in the context of shallow-water equations
1544   with nonuniform layer thickness. It is shown that in a numerical
1545   model tuned for the minimal dissipation, the improper form of the
1546   friction term creates finite artificial vorticity sources that do
1547   not vanish with increased resolution, even if the viscous coefficient
1548   is reduced consistently with resolution. An alternative numerical
1549   implementation of the no-slip boundary conditions for an arbitrary
1550   coast line is considered. It was found that the quality of the numerical
1551   solution may be considerably improved by discretization of the viscous
1552   stress tensor in such a way that the numerical boundary scheme approximates
1553   not only the stress tensor to a certain order of accuracy but also
1554   simulates the truncation error of the numerical scheme used in the
1555   interior of the domain. This ensures error cancellation during subsequent
1556   use of the elements of the tensor in the discrete version of the
1557   momentum equations, allowing for approximation of them without decrease
1558   in the order of accuracy near the boundary.},
1559  date = {June 01, 1996},
1560  owner = {gm},
1561  timestamp = {2007.08.14}
1562}
1563
1564@ARTICLE{Simmons2003,
1565  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1566  title = {Tidally driven mixing in a numerical model of the
1567   
1568   ocean general circulation},
1569  journal = OM,
1570  year = {2003},
1571  pages = {1-19},
1572  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1573   tidal energy is dissipated in the
1574   
1575   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1576   energy is converted from the barotropic
1577   
1578   to internal tides in the deep ocean, predominantly around regions
1579   of rough topography such as midocean
1580   
1581   ridges. Aglobal tidal model is used to compute turbulent energy levels
1582   associated with the dissipation
1583   
1584   of internal tides, and the diapycnal mixing supported by this energy
1585   ?ux is computed using a simple parameterization.
1586   
1587   The mixing parameterization has been incorporated into a coarse resolution
1588   numerical model of the
1589   
1590   global ocean. This parameterization o?ers an energetically consistent
1591   and practical means of improving the
1592   
1593   representation of ocean mixing processes in climate models. Novel
1594   features of this implementation are that
1595   
1596   the model explicitly accounts for the tidal energy source for mixing,
1597   and that the mixing evolves both
1598   
1599   spatially and temporally with the model state. At equilibrium, the
1600   globally averaged di?usivity pro?le
1601   
1602   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1603   abyss with a depth average of 0.9
1604   
1605   cm2 s1, in close agreement with inferences from global balances.
1606   Water properties are strongly in?uenced
1607   
1608   by the combination of weak mixing in the main thermocline and enhanced
1609   mixing in the deep ocean.
1610   
1611   Climatological comparisons show that the parameterized mixing scheme
1612   results in a substantial reduction},
1613  owner = {sandra},
1614  pdf = {Simmons_mixing_OM2003.pdf},
1615  timestamp = {2007.03.22}
1616}
1617
1618@ARTICLE{Song1994,
1619  author = {Y. Song and D. Haidvogel},
1620  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
1621   Coordinate System
1622   
1623   Authors:},
1624  journal = JCP,
1625  year = {1994},
1626  volume = {115, 1},
1627  owner = {gm},
1628  timestamp = {2007.08.04}
1629}
1630
1631@ARTICLE{Song1998,
1632  author = {Y. T. Song},
1633  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
1634   Scheme Design and Diagnostic Analysis},
1635  journal = MWR,
1636  year = {1998},
1637  volume = {126},
1638  pages = {3213-3230},
1639  number = {12},
1640  abstract = {A Jacobian formulation of the pressure gradient force for use in models
1641   with topography-following coordinates is proposed. It can be used
1642   in conjunction with any vertical coordinate system and is easily
1643   implemented. Vertical variations in the pressure gradient are expressed
1644   in terms of a vertical integral of the Jacobian of density and depth
1645   with respect to the vertical computational coordinate. Finite difference
1646   approximations are made on the density field, consistent with piecewise
1647   linear and continuous fields, and accurate pressure gradients are
1648   obtained by vertically integrating the discrete Jacobian from sea
1649   surface.Two discrete schemes are derived and examined in detail:
1650   the first using standard centered differencing in the generalized
1651   vertical coordinate and the second using a vertical weighting such
1652   that the finite differences are centered with respect to the Cartesian
1653   z coordinate. Both schemes achieve second-order accuracy for any
1654   vertical coordinate system and are significantly more accurate than
1655   conventional schemes based on estimating the pressure gradients by
1656   finite differencing a previously determined pressure field.The standard
1657   Jacobian formulation is constructed to give exact pressure gradient
1658   results, independent of the bottom topography, if the buoyancy field
1659   varies bilinearly with horizontal position, x, and the generalized
1660   vertical coordinate, s, over each grid cell. Similarly, the weighted
1661   Jacobian scheme is designed to achieve exact results, when the buoyancy
1662   field varies linearly with z and arbitrarily with x, that is, b(x,z)
1663   = b0(x) + b1(x)z.When horizontal resolution cannot be made
1664   fine enough to avoid hydrostatic inconsistency, errors can be substantially
1665   reduced by the choice of an appropriate vertical coordinate. Tests
1666   with horizontally uniform, vertically varying, and with horizontally
1667   and vertically varying buoyancy fields show that the standard Jacobian
1668   formulation achieves superior results when the condition for hydrostatic
1669   consistency is satisfied, but when coarse horizontal resolution causes
1670   this condition to be strongly violated, the weighted Jacobian may
1671   give superior results.},
1672  date = {December 01, 1998},
1673  owner = {gm},
1674  timestamp = {2007.08.05}
1675}
1676
1677@ARTICLE{SongWright1998,
1678  author = {Y. T. Song and D. G. Wright},
1679  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
1680   - Energy, Momentum, and Bottom Torque Consistency},
1681  journal = MWR,
1682  year = {1998},
1683  volume = {126},
1684  pages = {3231-3247},
1685  number = {12},
1686  abstract = {A new formulation of the pressure gradient force for use in models
1687   with topography-following coordinates is proposed and diagnostically
1688   analyzed in Part I. Here, it is shown that important properties of
1689   the continuous equations are retained by the resulting numerical
1690   schemes, and their performance in prognostic simulations is examined.
1691   Numerical consistency is investigated with respect to global energy
1692   conservation, depth-integrated momentum changes, and the representation
1693   of the bottom pressure torque. The performances of the numerical
1694   schemes are tested in prognostic integrations of an ocean model to
1695   demonstrate numerical accuracy and long-term integral stability.
1696   Two typical geometries, an isolated tall seamount and an unforced
1697   basin with sloping boundaries, are considered for the special case
1698   of no external forcing and horizontal isopycnals to test numerical
1699   accuracy. These test problems confirm that the proposed schemes yield
1700   accurate approximations to the pressure gradient force. Integral
1701   consistency conditions are verified and the energetics of the “advective
1702   elimination” of the pressure gradient error (Mellor et al)
1703   is considered.A large-scale wind-driven basin with and without topography
1704   is used to test the model’s long-term integral performance
1705   and the effects of bottom pressure torque on the transport in western
1706   boundary currents. Integrations are carried out for 10 years in each
1707   case and results show that the schemes are stable, and the steep
1708   topography causes no obvious numerical problems. A realistic meandering
1709   western boundary current is well developed with detached cold cyclonic
1710   and warm anticyclonic eddies as it extends across the basin. In addition,
1711   the results with topography show earlier separation and enhanced
1712   transport in the western boundary currents due to the bottom pressure
1713   torque.},
1714  date = {December 01, 1998},
1715  owner = {gm},
1716  timestamp = {2007.08.05}
1717}
1718
1719@PHDTHESIS{Speich1992,
1720  author = {S. Speich},
1721  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
1722   par les d\'{e}troits - cas de la mer d'Alboran},
1723  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1724  year = {1992},
1725  owner = {gm},
1726  timestamp = {2007.08.06}
1727}
1728
1729@ARTICLE{Speich1996,
1730  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
1731  title = {The circulation in the Alboran Sea - a sensitivity study},
1732  journal = JPO,
1733  year = {1996},
1734  volume = {26},
1735  owner = {gm},
1736  timestamp = {2007.08.06}
1737}
1738
1739@ARTICLE{Steele2001,
1740  author = {M. Steele and R. Morley and W. Ermold},
1741  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
1742  journal = {Journal of Climate},
1743  year = {2001},
1744  volume = {14},
1745  pages = {2079--2087
1746   
1747   },
1748  number = {9},
1749  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
1750   Climatology (PHC), has been created that merges the 1998 version
1751   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
1752   The result is a global climatology for temperature and salinity that
1753   contains a good description of the Arctic Ocean and its environs.
1754   Monthly, seasonal, and annual average products have been generated.
1755   How the original datasets were prepared for merging, how the optimal
1756   interpolation procedure was performed, and characteristics of the
1757   resulting dataset are discussed, followed by a summary and discussion
1758   of future plans.},
1759  date = {May 01, 2001},
1760  owner = {gm},
1761  timestamp = {2007.08.06}
1762}
1763
1764@ARTICLE{Stein1992,
1765  author = {C. A. Stein and S. Stein},
1766  title = {A model for the global variation in oceanic depth and heat flow with
1767   lithospheric age},
1768  journal = {Nature},
1769  year = {1992},
1770  volume = {359},
1771  pages = {123-129},
1772  owner = {gm},
1773  timestamp = {2007.08.04}
1774}
1775
1776@ARTICLE{Thiem2006,
1777  author = {O. Thiem and J. Berntsen},
1778  title = {Internal pressure errors in sigma-coordinate ocean models due to
1779   anisotropy},
1780  journal = {Ocean Modelling},
1781  year = {2006},
1782  volume = {12, 1-2},
1783  owner = {gm},
1784  timestamp = {2007.08.05}
1785}
1786
1787@ARTICLE{Treguier1996,
1788  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
1789  title = {Properties of nonuniform grids used in ocean general circulation
1790   models},
1791  journal = JGR,
1792  year = {1996},
1793  volume = {101},
1794  pages = {20877-20881},
1795  owner = {gm},
1796  timestamp = {2007.08.03}
1797}
1798
1799@ARTICLE{Treguier1997,
1800  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
1801  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
1802   Ocean Models},
1803  journal = JPO,
1804  year = {1997},
1805  volume = {27},
1806  pages = {567-580},
1807  number = {4},
1808  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
1809   consistent with the fact that the ocean interior is nearly adiabatic.
1810   Gent and McWilliams have described a framework in which this can
1811   be approximated in z-coordinate primitive equation models by incorporating
1812   the effects of eddies on the buoyancy field through an eddy-induced
1813   velocity. It is also natural to base a parameterization on the simple
1814   picture of the mixing of potential vorticity in the interior and
1815   the mixing of buoyancy at the surface. The authors discuss the various
1816   constraints imposed by these two requirements and attempt to clarify
1817   the appropriate boundary conditions on the eddy-induced velocities
1818   at the surface. Quasigeostrophic theory is used as a guide to the
1819   simplest way of satisfying these constraints.},
1820  date = {April 01, 1997},
1821  owner = {gm},
1822  timestamp = {2007.08.03}
1823}
1824
1825@BOOK{UNESCO1983,
1826  title = {Algorithms for computation of fundamental property of sea water},
1827  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
1828  year = {1983},
1829  author = {UNESCO},
1830  owner = {gm},
1831  timestamp = {2007.08.04}
1832}
1833
1834@TECHREPORT{OASIS2006,
1835  author = {S. Valcke},
1836  title = {OASIS3 User Guide (prism\_2-5)},
1837  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
1838   64 pp},
1839  year = {2006},
1840  owner = {gm},
1841  timestamp = {2007.08.05}
1842}
1843
1844@TECHREPORT{valal00,
1845  author = {S. Valcke and L. Terray and A. Piacentini },
1846  title = {The OASIS Coupled User Guide Version 2.4},
1847  institution = {CERFACS},
1848  year = {2000},
1849  number = {TR/CMGC/00-10}
1850}
1851
1852@ARTICLE{Weatherly1984,
1853  author = {G. L. Weatherly},
1854  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
1855  journal = JMR,
1856  year = {1984},
1857  volume = {42, 2},
1858  pages = {289-301},
1859  owner = {gm},
1860  timestamp = {2007.08.06}
1861}
1862
1863@ARTICLE{Weaver1997,
1864  author = {A. J. Weaver and M. Eby},
1865  title = {On the numerical implementation of advection schemes for use in conjuction
1866   with various mixing
1867   
1868   parameterizations in the GFDL ocean model},
1869  journal = JPO,
1870  year = {1997},
1871  volume = {27},
1872  owner = {gm},
1873  timestamp = {2007.08.06}
1874}
1875
1876@ARTICLE{Webb1998,
1877  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
1878  title = {Improved Advection Schemes for Ocean Models},
1879  journal = JAOT,
1880  year = {1998},
1881  volume = {15},
1882  pages = {1171-1187},
1883  number = {5},
1884  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
1885   ocean model, based on a control volume form of the advection equation.
1886   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
1887   forward time-stepping schemes used by the ocean model. Farrow and
1888   Stevens overcame the problem by implementing a predictor–corrector
1889   time-stepping scheme, but this is computationally expensive to run.
1890   The present paper shows that the problem can be overcome by splitting
1891   the QUICK operator into an O(δx2) advective term and a velocity
1892   dependent biharmonic diffusion term. These can then be time-stepped
1893   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
1894   ocean model, leading to a significant increase in model efficiency.
1895   A small change in the advection operator coefficients may also be
1896   made leading to O(δx4) accuracy. Tests of the improved schemes
1897   are carried out making use of a global eddy-permitting ocean model.
1898   Results are presented from cases where the schemes were applied to
1899   only the tracer fields and also from cases where they were applied
1900   to both the tracer and velocity fields. It is found that the new
1901   schemes have the most effect in the western boundary current regions,
1902   where, for example, the warm core of the Agulhas Current is no longer
1903   broken up by numerical noise.},
1904  date = {October 01, 1998},
1905  owner = {gm},
1906  timestamp = {2007.08.04}
1907}
1908
1909@ARTICLE{Willebrand2001,
1910  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
1911   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
1912   L. New},
1913  title = {Circulation characteristics in three eddy-permitting models of the
1914   North Atlantic},
1915  journal = {Progress in Oceanography},
1916  year = {2001},
1917  volume = {48, 2},
1918  pages = {123-161},
1919  owner = {gm},
1920  timestamp = {2007.08.04}
1921}
1922
1923@ARTICLE{Zalesak1979,
1924  author = {S. T. Zalesak},
1925  title = {Fully multidimensional flux corrected transport algorithms for fluids},
1926  journal = JCP,
1927  year = {1979},
1928  volume = {31},
1929  owner = {gm},
1930  timestamp = {2007.08.04}
1931}
1932
1933@ARTICLE{Zhang1992,
1934  author = {Zhang, R.-H. and Endoh, M.},
1935  title = {A free surface general circulation model for the tropical Pacific
1936   Ocean},
1937  journal = JGR,
1938  year = {1992},
1939  volume = {97},
1940  pages = {11237-11255},
1941  month = jul,
1942  owner = {gm}
1943}
1944
1945@INBOOK{Delecluse2000,
1946  chapter = {Ocean modelling and the role of the ocean in the climate system},
1947  pages = {237-313},
1948  title = {Modeling the Earth's Climate and its Variability, Les Houches, Session
1949   LXVII 1997},
1950  year = {2000},
1951  editor = {W. R. Holland and  S. Jaussaume and F. David},
1952  owner = {gm},
1953  timestamp = {2007.08.17}
1954}
1955
1956@comment{jabref-meta: groupsversion:3;}
1957
1958@comment{jabref-meta: groupstree:
19590 AllEntriesGroup:;
19601 ExplicitGroup:El Nino\;2\;blanketal97\;;
19612 ExplicitGroup:97/98 event\;0\;;
19622 ExplicitGroup:Forecast\;0\;;
19632 ExplicitGroup:GHG change\;0\;;
19642 ExplicitGroup:in GCMs\;0\;;
19652 ExplicitGroup:in MIPs\;0\;;
19662 ExplicitGroup:momentum balance\;0\;;
19672 ExplicitGroup:Obs analysis\;0\;;
19682 ExplicitGroup:Paleo\;0\;;
19692 ExplicitGroup:Previous events\;0\;;
19702 ExplicitGroup:Reviews\;0\;;
19712 ExplicitGroup:Simple models\;0\;Zhang1992\;;
19722 ExplicitGroup:SPL, SC, mean\;0\;;
19732 ExplicitGroup:Teleconnections\;0\;;
19742 ExplicitGroup:Low freq\;0\;;
19752 ExplicitGroup:Theory\;0\;;
19762 ExplicitGroup:Energetics\;0\;;
19771 ExplicitGroup:Diurnal in tropics\;0\;;
19781 ExplicitGroup:Indian\;0\;;
19791 ExplicitGroup:Atlantic\;0\;;
19801 ExplicitGroup:MJO, IO, TIW\;2\;;
19812 ExplicitGroup:Obs\;0\;;
19822 ExplicitGroup:GCM\;0\;;
19832 ExplicitGroup:Mechanims\;0\;;
19842 ExplicitGroup:TIW\;0\;;
19851 ExplicitGroup:Observations\;2\;;
19862 ExplicitGroup:ERBE\;0\;;
19872 ExplicitGroup:Tropical\;0\;;
19882 ExplicitGroup:Global\;0\;;
19892 ExplicitGroup:Clouds\;0\;;
19902 ExplicitGroup:Scale interactions\;0\;;
19911 ExplicitGroup:Mechanisms\;2\;;
19922 ExplicitGroup:CRF\;0\;;
19932 ExplicitGroup:Water vapor\;0\;;
19942 ExplicitGroup:Atmos mechanisms\;0\;;
19951 ExplicitGroup:GCMs\;2\;;
19962 ExplicitGroup:Uncertainty\;0\;;
19972 ExplicitGroup:Momentum balance\;0\;;
19981 ExplicitGroup:Climate change\;0\;;
19992 ExplicitGroup:IPCC AR4\;0\;;
20001 ExplicitGroup:Analysis tools\;0\;;
20011 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2002}
2003
Note: See TracBrowser for help on using the repository browser.