New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_Conservation.tex in trunk/NEMO/DOC/BETA/Chapters – NEMO

source: trunk/NEMO/DOC/BETA/Chapters/Chap_Conservation.tex @ 707

Last change on this file since 707 was 707, checked in by smasson, 17 years ago

error during changeset:705... related to ticket:1

  • Property svn:executable set to *
File size: 17.6 KB
Line 
1
2% ================================================================
3% Invariant of the Equations
4% ================================================================
5\chapter{Annex --- Invariants of the Primitive Equations}
6\label{Invariant}
7\minitoc
8
9The continuous equations of motion have many analytic properties. Many
10quantities (total mass, energy, enstrophy, etc.) are strictly conserved in
11the inviscid and unforced limit, while ocean physics conserve the total
12quantities on which they act (momentum, temperature, salinity) but dissipate
13their total variance (energy, enstrophy, etc.). Unfortunately, the finite
14difference form of these equations is not guaranteed to retain all these
15important properties. In constructing the finite differencing schemes, we
16wish to ensure that certain integral constraints will be maintained. In
17particular, it is desirable to construct the finite difference equations so
18that horizontal kinetic energy and/or potential enstrophy of horizontally
19non-divergent flow, and variance of temperature and salinity will be
20conserved in the absence of dissipative effects and forcing. \citet{Arakawa1966} 
21has first pointed out the advantage of this approach. He showed that if
22integral constraints on energy are maintained, the computation will be free
23of the troublesome "non linear" instability originally pointed out by
24\citet{Phillips1959}. A consistent formulation of the energetic properties is
25also extremely important in carrying out long-term numerical simulations for
26an oceanographic model. Such a formulation avoids systematic errors that
27accumulate with time \citep{Bryan1997}.
28
29The general philosophy of OPA which has led to the discrete formulation
30presented in {\S}II.2 and II.3 is to choose second order non-diffusive
31scheme for advective terms for both dynamical and tracer equations. At this
32level of complexity, the resulting schemes are dispersive schemes.
33Therefore, they require the addition of a diffusive operator to be stable.
34The alternative is to use diffusive schemes such as upstream or flux
35corrected schemes. This last option was rejected because we prefer a
36complete handling of the model diffusion, i.e. of the model physics rather
37than letting the advective scheme produces its own implicit diffusion
38without controlling the space and time structure of this implicit diffusion.
39Note that in some very specific cases as passive tracer studies, the
40positivity of the advective scheme is required. In that case, and in that
41case only, the advective scheme used for passive tracer is a flux correction
42scheme \citep{Marti1992, Levy1996, Levy1998}.
43
44% -------------------------------------------------------------------------------------------------------------
45%       Conservation Properties on Ocean Dynamics
46% -------------------------------------------------------------------------------------------------------------
47\section{Conservation Properties on Ocean Dynamics}
48\label{Invariant_dyn}
49
50The non linear term of the momentum equations has been split into a
51vorticity term, a gradient of horizontal kinetic energy and a vertical
52advection term. Three schemes are available for the former (see {\S}~II.2)
53according to the CPP variable defined (default option\textbf{ 
54}or \textbf{key{\_}vorenergy } or \textbf{key{\_}vorcombined
55} defined). They differ in their conservative
56properties (energy or enstrophy conserving scheme). The two latter terms
57preserve the total kinetic energy: the large scale kinetic energy is also
58preserved in practice. The remaining non-diffusive terms of the momentum
59equation (namely the hydrostatic and surface pressure gradient terms) also
60preserve the total kinetic energy and have no effect on the vorticity of the
61flow.
62
63\textbf{* relative, planetary and total vorticity term:}
64
65Let us define as either the relative, planetary and total potential
66vorticity, i.e. , , and , respectively. The continuous formulation of the
67vorticity term satisfies following integral constraints:
68\begin{equation} \label{Eq_vor_vorticity}
69\int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
70\;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0
71\end{equation}
72
73\begin{equation} \label{Eq_vor_enstrophy}
74if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot 
75\frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv} 
76=0
77\end{equation}
78
79\begin{equation} \label{Eq_vor_energy}
80\int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
81\end{equation}
82where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
83(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part. It means that $\varsigma^2$ is conserved for a horizontally non-divergent flow.
84(II.4.1c) is even satisfied locally since the vorticity term is orthogonal
85to the horizontal velocity. It means that the vorticity term has no
86contribution to the evolution of the total kinetic energy. (II.4.1a) is
87obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied
88simultaneously with a second order scheme. Using the symmetry or
89anti-symmetry properties of the operators (Eqs II.1.10 and 11), it can be
90shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c), while
91scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
92Note that the enstrophy conserving scheme on total vorticity has been chosen
93as the standard discrete form of the vorticity term.
94
95\textbf{* Gradient of kinetic energy / vertical advection}
96
97In continuous formulation, the gradient of horizontal kinetic energy has no
98contribution to the evolution of the vorticity as the curl of a gradient is
99zero. This property is satisfied locally with the discrete form of both the
100gradient and the curl operator we have made (property (II.1.9)~). Another
101continuous property is that the change of horizontal kinetic energy due to
102vertical advection is exactly balanced by the change of horizontal kinetic
103energy due to the horizontal gradient of horizontal kinetic energy:
104
105\begin{equation} \label{Eq_keg_zad}
106\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial 
107{\textbf{U}}_h }{\partial k}\;dv}
108\end{equation}
109
110Using the discrete form given in {\S}II.2-a and the symmetry or
111anti-symmetry properties of the mean and difference operators, \eqref{Eq_keg_zad} is
112demonstrated in the Appendix C. The main point here is that satisfying
113\eqref{Eq_keg_zad} links the choice of the discrete forms of the vertical advection
114and of the horizontal gradient of horizontal kinetic energy. Choosing one
115imposes the other. The discrete form of the vertical advection given in
116{\S}II.2-a is a direct consequence of formulating the horizontal kinetic
117energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in the gradient term.
118
119\textbf{* hydrostatic pressure gradient term}
120
121In continuous formulation, a pressure gradient has no contribution to the
122evolution of the vorticity as the curl of a gradient is zero. This
123properties is satisfied locally with the choice of discretization we have
124made (property (II.1.9)~). In addition, when the equation of state is linear
125(i.e. when an advective-diffusive equation for density can be derived from
126those of temperature and salinity) the change of horizontal kinetic energy
127due to the work of pressure forces is balanced by the change of potential
128energy due to buoyancy forces:
129
130\begin{equation} \label{Eq_hpg_pe}
131\int_D {-\frac{1}{\rho _o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
132\end{equation}
133
134Using the discrete form given in {\S}~II.2-a and the symmetry or
135anti-symmetry properties of the mean and difference operators, (II.4.3) is
136demonstrated in the Appendix C. The main point here is that satisfying
137(II.4.3) strongly constraints the discrete expression of the depth of
138$T$-points and of the term added to the pressure gradient in $s-$coordinates: the
139depth of a $T$-point, $z_T$, is defined as the sum the vertical scale
140factors at $w$-points starting from the surface.
141
142\textbf{* surface pressure gradient term}
143
144In continuous formulation, the surface pressure gradient has no contribution
145to the evolution of vorticity. This properties is trivially satisfied
146locally as (II.2.3) (the equation verified by $\psi$ has been
147derived from the discrete formulation of the momentum equations, vertical
148sum and curl. Nevertheless, the $\psi$-equation is solved numerically by an
149iterative solver (see {\S}~III.5), thus the property is only satisfied with
150the accuracy required on the solver. In addition, with the rigid-lid
151approximation, the change of horizontal kinetic energy due to the work of
152surface pressure forces is exactly zero:
153\begin{equation} \label{Eq_spg}
154\int_D {-\frac{1}{\rho _o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
155\end{equation}
156
157(II.4.4) is satisfied in discrete form only if the discrete barotropic
158streamfunction time evolution equation is given by (II.2.3) (see appendix
159C). This shows that (II.2.3) is the only way to compute the streamfunction,
160otherwise there is no guarantee that the surface pressure force work
161vanishes.
162
163% -------------------------------------------------------------------------------------------------------------
164%       Conservation Properties on Ocean Thermodynamics
165% -------------------------------------------------------------------------------------------------------------
166\section{Conservation Properties on Ocean Thermodynamics}
167\label{Invariant_tra}
168
169In continuous formulation, the advective terms of the tracer equations
170conserve the tracer content and the quadratic form of the tracer, i.e.
171\begin{equation} \label{Eq_tra_tra2}
172\int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
173\;\text{and}
174\int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
175\end{equation}
176
177The numerical scheme used ({\S}II.2-b) (equations in flux form, second order
178centred finite differences) satisfies (II.4.5) (see appendix C). Note that
179in both continuous and discrete formulations, there is generally no strict
180conservation of mass, since the equation of state is non linear with respect
181to $T$ and $S$. In practice, the mass is conserved with a very good accuracy.
182
183% -------------------------------------------------------------------------------------------------------------
184%       Conservation Properties on Momentum Physics
185% -------------------------------------------------------------------------------------------------------------
186\subsection{Conservation Properties on Momentum Physics}
187\label{Invariant_dyn_physics}
188
189\textbf{* lateral momentum diffusion term}
190
191The continuous formulation of the horizontal diffusion of momentum satisfies
192the following integral constraints~:
193\begin{equation} \label{Eq_dynldf_dyn}
194\int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla 
195_h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
196\;{\rm {\bf k}}} \right)} \right]\;dv} =0
197\end{equation}
198
199\begin{equation} \label{Eq_dynldf_div}
200\int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
201\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
202\right]\;dv} =0
203\end{equation}
204
205\begin{equation} \label{Eq_dynldf_curl}
206\int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
207\right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
208\right]\;dv} \leqslant 0
209\end{equation}
210
211\begin{equation} \label{Eq_dynldf_curl2}
212\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot 
213\nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
214\times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} 
215\leqslant 0
216\end{equation}
217
218\begin{equation} \label{Eq_dynldf_div2}
219\mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
220{\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
221{A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0
222\end{equation}
223
224
225(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum
226conserve both the potential vorticity and the divergence of the flow, while
227Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy
228and the square of the divergence. The two latter properties are only
229satisfied when the eddy coefficients are horizontally uniform.
230
231Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of
232the mean and difference operators, it is shown that the discrete form of the
233lateral momentum diffusion given in {\S}II.2-c satisfies all the integral
234constraints (II.4.6) (see appendix C). In particular, when the eddy
235coefficients are horizontally uniform, a complete separation of vorticity
236and horizontal divergence fields is ensured, so that diffusion (dissipation)
237of vorticity (enstrophy) does not generate horizontal divergence (variance
238of the horizontal divergence) and \textit{vice versa}. When the vertical curl of the horizontal
239diffusion of momentum (discrete sense) is taken, the term associated to the
240horizontal gradient of the divergence is zero locally. When the horizontal
241divergence of the horizontal diffusion of momentum (discrete sense) is
242taken, the term associated to the vertical curl of the vorticity is zero
243locally. The resulting term conserves $\chi$ and dissipates
244$\chi^2$ when the
245eddy coefficient is horizontally uniform.
246
247\textbf{* vertical momentum diffusion term}
248
249As for the lateral momentum physics, the continuous form of the vertical
250diffusion of momentum satisfies following integral constraints~:
251
252conservation of momentum, dissipation of horizontal kinetic energy
253
254\begin{equation} \label{Eq_dynzdf_dyn}
255\begin{aligned}
256& \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\ 
257& \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\ 
258 \end{aligned} 
259 \end{equation}
260conservation of vorticity, dissipation of enstrophy
261\begin{equation} \label{Eq_dynzdf_vor}
262\begin{aligned}
263& \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
264}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
265{\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
266& \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3
267}\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
268{\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
269\end{aligned}
270\end{equation}
271conservation of horizontal divergence, dissipation of square of the
272horizontal divergence
273\begin{equation} \label{Eq_dynzdf_div}
274\begin{aligned}
275 &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
276k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
277\right)} \right)\;dv} =0 \\ 
278& \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
279k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
280\right)} \right)\;dv} \leq 0 \\ 
281\end{aligned}
282\end{equation}
283
284In discrete form, all these properties are satisfied in $z$-coordinate (see
285Appendix C). In $s$-coordinates, only first order properties can be
286demonstrated, i.e. the vertical momentum physics conserve momentum,
287potential vorticity, and horizontal divergence.
288
289% -------------------------------------------------------------------------------------------------------------
290%       Conservation Properties on Tracer Physics
291% -------------------------------------------------------------------------------------------------------------
292\subsection{Conservation Properties on Tracer Physics}
293\label{Invariant_tra_physics}
294
295The numerical schemes used for tracer subgridscale physics are written in
296such a way that the heat and salt contents are conserved (equations in flux
297form, second order centred finite differences). As a form flux is used to
298compute the temperature and salinity, the quadratic form of these quantities
299(i.e. their variance) globally tends to diminish. As for the advective term,
300there is generally no strict conservation of mass even if, in practice, the
301mass is conserved with a very good accuracy.
302
303\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
304variance, i.e.
305
306\begin{equation} \label{Eq_traldf_t_t2}
307\begin{aligned}
308&\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\ 
309&\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\ 
310\end{aligned}
311\end{equation}
312
313\textbf{* vertical physics: }conservation of tracer, dissipation of tracer
314variance, i.e.
315
316\begin{equation} \label{Eq_trazdf_t_t2}
317\begin{aligned}
318& \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\ 
319& \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\ 
320\end{aligned}
321\end{equation}
322
323Using the symmetry or anti-symmetry properties of the mean and difference
324operators, it is shown that the discrete form of tracer physics given in
325{\S}~II.2-c satisfies all the integral constraints (II.4.8) and (II.4.9)
326except the dissipation of the square of the tracer when non-geopotential
327diffusion is used (see appendix C). A discrete form of the lateral tracer
328physics can be derived which satisfies these last properties. Nevertheless,
329it requires a horizontal averaging of the vertical component of the lateral
330physics that prevents the use of implicit resolution in the vertical. It has
331not been implemented.
332
Note: See TracBrowser for help on using the repository browser.