Changeset 11599


Ignore:
Timestamp:
2019-09-25T22:19:45+02:00 (14 months ago)
Author:
nicolasmartin
Message:

Cosmetic cleaning

Location:
NEMO/trunk/doc/latex/NEMO/subfiles
Files:
13 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex

    r11598 r11599  
    341341  and possibly introduce masking of extra land points to better fit the original bathymetry file. 
    342342\end{description} 
    343 %%% 
    344343 
    345344%% ================================================================================================= 
     
    384383\subsubsection[$S$-coordinate (\forcode{ln_sco})]{$S$-coordinate (\protect\np{ln_sco}{ln\_sco})} 
    385384\label{sec:DOMCFG_sco} 
    386 % 
    387385\begin{listing} 
    388386  \nlst{namzgr_sco_domcfg} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex

    r11598 r11599  
    134134  \int\limits_D  \zeta \; \left( \textbf{k} \times \textbf{U}_h  \right) \cdot \textbf{U}_h  \;  dv   = 0   \\ 
    135135\] 
    136 % 
    137136\[ 
    138137  % \label{eq:INVARIANTS_E_tot_vect_adv_1} 
     
    272271%gm comment 
    273272\gmcomment{ 
    274 % 
    275273The last equality comes from the following equation, 
    276274\begin{flalign*} 
     
    329327% end gm comment 
    330328} 
    331 % 
    332329 
    333330%% ================================================================================================= 
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex

    r11598 r11599  
    311311  \end{align*} 
    312312\end{subequations} 
    313 % 
    314313Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and 
    315314using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side, 
     
    361360  } 
    362361\end{align*} 
    363 % 
    364362Introducing the vertical scale factor inside the horizontal derivative of the first two terms 
    365363(\ie\ the horizontal divergence), it becomes : 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex

    r11598 r11599  
    101101one assimilation cycle to the next than that described by \autoref{eq:ASM_F1_i}. 
    102102 
    103 %========================================================================== 
    104 % Divergence damping description %%% 
    105103%% ================================================================================================= 
    106104\section{Divergence damping initialisation} 
     
    145143This specifies the number of iterations of the divergence damping. Setting a value of the order of 100 will result in a significant reduction in the vertical velocity induced by the increments. 
    146144 
    147 %========================================================================== 
    148  
    149145%% ================================================================================================= 
    150146\section{Implementation details} 
     
    154150the ORCA2 grid. 
    155151 
    156 % 
    157152\begin{listing} 
    158153  \nlst{nam_asminc} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex

    r11598 r11599  
    15831583\label{sec:DIA_diag_harm} 
    15841584 
    1585 % 
    15861585\begin{listing} 
    15871586  \nlst{nam_diaharm} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex

    r11598 r11599  
    6565The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable. 
    6666 
    67 %=============================================================== 
    6867%% ================================================================================================= 
    6968\section{Warm layer model} 
    7069\label{sec:DIU_warm_layer_sec} 
    71 %=============================================================== 
    7270 
    7371The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter). 
     
    122120In practice the second term acts as a relaxation on the temperature. 
    123121 
    124 %=============================================================== 
    125  
    126122%% ================================================================================================= 
    127123\section{Cool skin model} 
    128124\label{sec:DIU_cool_skin_sec} 
    129  
    130 %=============================================================== 
    131125 
    132126The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex

    r11598 r11599  
    6767Furthermore, the tendency terms associated with the 2D barotropic vorticity balance (when \texttt{trdvor?} is defined) 
    6868can be derived from the 3D terms. 
    69 %%% 
    7069\gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does 
    7170MISC correspond to "extracting tendency terms" or "vorticity balance"?} 
     
    535534there is also the possibility of using a $4^{th}$ order evaluation of the advective velocity as in ROMS. 
    536535This is an error and should be suppressed soon. 
    537 %%% 
    538536\gmcomment{action :  this have to be done} 
    539 %%% 
    540537 
    541538%% ================================================================================================= 
     
    809806\subsection[Split-explicit free surface (\forcode{ln_dynspg_ts})]{Split-explicit free surface (\protect\np{ln_dynspg_ts}{ln\_dynspg\_ts})} 
    810807\label{subsec:DYN_spg_ts} 
    811 % 
    812808%\nlst{namsplit} 
    813809 
     
    824820Therefore, $\rdt_e$ is adjusted so that the Maximum allowed Courant number is smaller than \np{rn_bt_cmax}{rn\_bt\_cmax}. 
    825821 
    826 %%% 
    827822The barotropic mode solves the following equations: 
    828823% \begin{subequations} 
     
    893888%references to Patrick Marsaleix' work here. Also work done by SHOM group. 
    894889 
    895 %%% 
    896890 
    897891As far as tracer conservation is concerned, 
     
    907901obtain exact conservation. 
    908902 
    909 %%% 
    910903 
    911904One can eventually choose to feedback instantaneous values by not using any time filter 
     
    11901183the first derivative term normal to the coast depends on the free or no-slip lateral boundary conditions chosen, 
    11911184while the third derivative terms normal to the coast are set to zero (see \autoref{chap:LBC}). 
    1192 %%% 
    11931185\gmcomment{add a remark on the the change in the position of the coefficient} 
    1194 %%% 
    11951186 
    11961187%% ================================================================================================= 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex

    r11598 r11599  
    6868\label{sec:LDF_slp} 
    6969 
    70 %%% 
    7170\gmcomment{ 
    7271  we should emphasize here that the implementation is a rather old one. 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex

    r11598 r11599  
    135135 
    136136%\colorbox{yellow}{Miss: } 
    137 % 
    138137%A extensive description of all namsbc namelist (parameter that have to be 
    139138%created!) 
    140 % 
    141139%Especially the \np{nn_fsbc}{nn\_fsbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu 
    142140%ssv) \ie\ information required by flux computation or sea-ice 
    143 % 
    144141%\mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add 
    145142%a word on runoff: included in surface bc or add as lateral obc{\ldots}. 
    146 % 
    147143%Sbcmod manage the ``providing'' (fourniture) to the ocean the 7 fields 
    148 % 
    149144%Fluxes update only each nf\_sbc time step (namsbc) explain relation 
    150145%between nf\_sbc and nf\_ice, do we define nf\_blk??? ? only one 
    151146%nf\_sbc 
    152 % 
    153147%Explain here all the namlist namsbc variable{\ldots}. 
    154 % 
    155148% explain : use or not of surface currents 
    156 % 
    157149%\colorbox{yellow}{End Miss } 
    158150 
     
    889881 
    890882%\gmcomment{  word doc of runoffs: 
    891 % 
    892883%In the current \NEMO\ setup river runoff is added to emp fluxes, these are then applied at just the sea surface as a volume change (in the variable volume case this is a literal volume change, and in the linear free surface case the free surface is moved) and a salt flux due to the concentration/dilution effect.  There is also an option to increase vertical mixing near river mouths; this gives the effect of having a 3d river.  All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface. 
    893884%Our aim was to code the option to specify the temperature and salinity of river runoff, (as well as the amount), along with the depth that the river water will affect.  This would make it possible to model low salinity outflow, such as the Baltic, and would allow the ocean temperature to be affected by river runoff. 
     
    13131304\subsection[Diurnal cycle (\textit{sbcdcy.F90})]{Diurnal cycle (\protect\mdl{sbcdcy})} 
    13141305\label{subsec:SBC_dcy} 
    1315 % 
    13161306 
    13171307\begin{figure}[!t] 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex

    r11598 r11599  
    530530\label{subsec:TRA_ldf_iso_triad} 
    531531 
    532 %&&    Standard rotated (bi-)laplacian operator 
    533 %&& ---------------------------------------------- 
    534532%% ================================================================================================= 
    535533\subsubsection[Standard rotated (bi-)laplacian operator (\textit{traldf\_iso.F90})]{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})} 
     
    574572They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. 
    575573 
    576 %&&     Triad rotated (bi-)laplacian operator 
    577 %&&  ------------------------------------------- 
    578574%% ================================================================================================= 
    579575\subsubsection[Triad rotated (bi-)laplacian operator (\forcode{ln_traldf_triad})]{Triad rotated (bi-)laplacian operator (\protect\np{ln_traldf_triad}{ln\_traldf\_triad})} 
     
    593589normal to the bottom and normal to the surface are set to zero. 
    594590 
    595 %&&    Option for the rotated operators 
    596 %&& ---------------------------------------------- 
    597591%% ================================================================================================= 
    598592\subsubsection{Option for the rotated operators} 
     
    12701264 
    12711265%    =====>>>>> TO BE written 
    1272 % 
    12731266 
    12741267%% ================================================================================================= 
     
    13651358Sensitivity of the advection schemes to the way horizontal averages are performed in the vicinity of 
    13661359partial cells should be further investigated in the near future. 
    1367 %%% 
    13681360\gmcomment{gm :   this last remark has to be done} 
    1369 %%% 
    13701361 
    13711362\onlyinsubfile{\input{../../global/epilogue}} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11598 r11599  
    771771\label{subsec:ZDF_ddm} 
    772772 
    773 % 
    774773%\nlst{namzdf_ddm} 
    775774 
     
    858857\label{sec:ZDF_drg} 
    859858 
    860 % 
    861859\begin{listing} 
    862860  \nlst{namdrg} 
     
    11271125\label{subsec:ZDF_tmx_new} 
    11281126 
    1129 % 
    11301127\begin{listing} 
    11311128  \nlst{namzdf_iwm} 
     
    11801177$h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of 
    11811178the abyssal hill topography \citep{goff_JGR10} and the latitude. 
    1182 % 
    11831179% Jc: input files names ? 
    11841180 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex

    r11598 r11599  
    7878the surface height, again so long as $\eta > -H$. 
    7979 
    80 %%% 
    8180%  essai update time splitting... 
    82 %%% 
    8381 
    8482%% ================================================================================================= 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex

    r11598 r11599  
    3030\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here, 
    3131  would help  ==> to be added} 
    32 %%%% 
    3332 
    3433Having defined the continuous equations in \autoref{chap:MB}, we need now to choose a time discretization, 
     
    294293the namelist variable \np[=0]{nn_euler}{nn\_euler}. Other options to control the time integration of the model 
    295294are defined through the  \nam{run}{run} namelist variables. 
    296 %%% 
    297295\gmcomment{ 
    298296add here how to force the restart to contain only one time step for operational purposes 
     
    304302a word on the check of restart  ..... 
    305303} 
    306 %%% 
    307304 
    308305\gmcomment{       % add a subsection here 
     
    321318}        %% end add 
    322319 
    323 %% 
    324320\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme 
    325321 
     
    371367\end{flalign*} 
    372368 
    373 %% 
    374369} 
    375370 
Note: See TracChangeset for help on using the changeset viewer.