Changeset 11680


Ignore:
Timestamp:
2019-10-11T00:15:47+02:00 (12 months ago)
Author:
agn
Message:

Thursday

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11679 r11680  
    658658 
    659659\subsubsection{Evolution of the boundary layer depth} 
     660 
    660661The prognostic equation for the depth of the neutral/unstable boundary layer is given by \citep{grant+etal18}, 
    661662 
     
    671672  + G\left(\delta/h_{\mathrm{ml}} \right)\left[\alpha_{\mathrm{S}}e^{-1.5\, \mathrm{La}_t}-\alpha_{\mathrm{L}} \frac{w_{\mathrm{*L}}^3}{h_{\mathrm{ml}}}\right] 
    672673\end{equation} 
    673 where the factor $G\equiv 1 - \exp (-25\delta/h_{\mathrm{bl}})(1-4\delta/h_{\mathrm{bl}})$ takes care of the lesser efficiency of Langmuir mixing when the mboundary-layer depth is much greater than the Stokes depth, and $\alpha_{\mathrm{B}}$, $\alpha_{S}$  and $\alpha_{\mathrm{L}}$ depend on the ratio of the appropriate eddy turnover time to the inertial timescale $f^{-1}$. Results from the LES suggest $\alpha_{\mathrm{B}}=0.18 F(fh_{\mathrm{bl}}/w_{*C})$, $\alpha_{S}=0.15 F(fh_{\mathrm{bl}}/u_*}$  and $\alpha_{\mathrm{L}}=0.035 F(fh_{\mathrm{bl}}/u_{*L})$, where $F(x)\equiv\tanh(x^{-1}))^{0.69}$. 
     674where the factor $G\equiv 1 - \mathrm{e}^ {-25\delta/h_{\mathrm{bl}}}(1-4\delta/h_{\mathrm{bl}})$ models the lesser efficiency of Langmuir mixing when the boundary-layer depth is much greater than the Stokes depth, and $\alpha_{\mathrm{B}}$, $\alpha_{S}$  and $\alpha_{\mathrm{L}}$ depend on the ratio of the appropriate eddy turnover time to the inertial timescale $f^{-1}$. Results from the LES suggest $\alpha_{\mathrm{B}}=0.18 F(fh_{\mathrm{bl}}/w_{*C})$, $\alpha_{S}=0.15 F(fh_{\mathrm{bl}}/u_*}$  and $\alpha_{\mathrm{L}}=0.035 F(fh_{\mathrm{bl}}/u_{*L})$, where $F(x)\equiv\tanh(x^{-1})^{0.69}$. 
     675 
     676For the stable boundary layer, the equation for the depth of the OSBL is: 
     677 
     678\begin{equation}\label{eq:dhdt-stable} 
     679\max\left(\Delta B_{bl},\frac{w_{*L}^2}{h_\mathrm{bl}}\right)\frac{\partial h_\mathrm{bl}}{\partial t} = \left(0.06 + 0.52\,\frac{ h_\mathrm{bl}}{L_L}\right) \frac{w_{*L}^3}{h_\mathrm{bl}} +\left<\overline{w^\prime b^\prime}\right>_L. 
     680\end{equation}  
     681 
     682Equation. \ref{eq:dhdt-unstable} always leads to the depth of the entraining OSBL increasing (ignoring the effect of the mean vertical motion), but the change in the thickness of the stable OSBL given by Eq. \ref{eq:dhdt-stable} can be positive or negative, depending on the magnitudes of $\left<\overline{w^\prime b^\prime}\right>_L$ and $h_\mathrm{bl}/L_L$. The rate at which the depth of the OSBL can decrease is limited by choosing an effective buoyancy $w_{*L}^2/h_\mathrm{bl}$, in place of $\Delta B_{bl}$ which will be $\approx 0$ for the collapsing OSBL. 
    674683 
    675684 
Note: See TracChangeset for help on using the changeset viewer.