Changeset 11685


Ignore:
Timestamp:
2019-10-11T00:16:22+02:00 (12 months ago)
Author:
agn
Message:

added OSMOSIS documentation to chap_ZDF.tex

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11684 r11685  
    537537% ------------------------------------------------------------------------------------------------------------- 
    538538\subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})] 
    539 {OSM: OSMOSIS boundary layer scheme (\protect\np{ln_zdfosm}{ln\_zdfosm}\forcode{ = .true.})} 
     539{OSM: OSMOSIS boundary layer scheme (\protect\np{ln_zdfosm}{ln\_zdfosm})} 
    540540\label{subsec:ZDF_osm} 
    541541 
     
    558558    \protect\np{rn_m_la}{rn\_m\_la} is 0.3. The Stokes penetration 
    559559      depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value 
    560       of \SI{5}{m}. 
     560      of 5~m. 
    561561  
    562562  \item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 
     
    565565      spectrum.  Significant wave height and 
    566566      wave-mean period taken from this spectrum are used to calculate the Stokes penetration 
    567       depth, following the approach set out in Breivik(XXxx) 
     567      depth, following the approach set out in  \citet{breivik.janssen.ea_JPO14}. 
    568568  
    569     \item \protect\np[=2]{nn\_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 
     569    \item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 
    570570      taken from  ECMWF wave model output, though only the component parallel 
    571571      to the wind stress is retained. Significant wave height and 
    572572      wave-mean period from ECMWF wave model output are used to calculate the Stokes penetration 
    573       depth, following the approach set out in Breivik(XXxx). 
     573      depth, again following \citet{breivik.janssen.ea_JPO14}. 
    574574 
    575575    \end{description} 
     
    580580   \item \protect\np{ln_kpprimix} {ln\_kpprimix}  Default is \np{.true.}. Switches on KPP-style Ri \#-dependent 
    581581     mixing below the surface boundary layer. If this is set 
    582      \np{.true.}  the following variable settings are honoured: 
     582     \texttt{.true.}  the following variable settings are honoured: 
    583583    \item \protect\np{rn_riinfty}{rn\_riinfty} Critical value of local Ri \# below which 
    584584      shear instability increases vertical mixing from background value. 
    585585    \item \protect\np{rn_difri} {rn\_difri} Maximum value of Ri \#-dependent mixing at $\mathrm{Ri}=0$. 
    586586    \item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify 
    587        diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 ms$^{-2}$).  
     587       diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$).  
    588588 \end{description} 
    589589 Diagnostic output is controlled by: 
     
    599599      mixing. Not taken account of. 
    600600   \item \protect\np{rn_osm_hbl0} {rn\_osm\_hbl0} Depth of initial boundary layer is now set 
    601      by a density criterion similar to that used in calculating hmlp (output as mldr10_1) in zdfmxl.F90. 
     601     by a density criterion similar to that used in calculating \emph{hmlp} (output as \texttt{mldr10\_1}) in \mdl{zdfmxl}. 
    602602\end{description} 
    603603 
     
    612612The OSMOSIS model is fundamentally based on results of Large Eddy 
    613613Simulations (LES) of Langmuir turbulence and aims to fully describe 
    614 this Langmuir regime. The description in this section is of necessity incomplete and further details are available in the manuscript ``The OSMOSIS scheme'', Grant. A (2019); in prep. 
     614this Langmuir regime. The description in this section is of necessity incomplete and further details are available in Grant. A (2019); in prep. 
    615615 
    616616The OSMOSIS turbulent closure scheme is a similarity-scale scheme in 
     
    722722\frac{\partial h_\mathrm{bl}}{\partial t} = W_b - \frac{{\overline{w^\prime b^\prime}}_\mathrm{ent}}{\Delta B_\mathrm{bl}} 
    723723\end{equation} 
    724 where $h_\mathrm{bl}$ is the horizontally-varying depth of the OSBL, $\mathbf{U}_b$ and $W_b$ are the mean horizontal and vertical velocities at the base of the OSBL, ${\overline{w^\prime b^\prime}}_\mathrm{ent}$ is the buoyancy flux due to entrainment and $\Delta B_\mathrm{bl}$ is the difference between the buoyancy averaged over the depth of the OSBL (i.e.\ including the ML and pycnocline) and the buoyancy just below the base of the OSBL. This equation for the case when the pycnocline has a finite thickness, based on the potential energy budget of the OSBL, is the leading term \citep{grant+etal18} of a generalization of that used in mixed-layer models \citet[e.g.][]{kraus.turner_tellus67}, in which the thickness of the pycnocline is taken to be zero. 
     724where $h_\mathrm{bl}$ is the horizontally-varying depth of the OSBL, 
     725$\mathbf{U}_b$ and $W_b$ are the mean horizontal and vertical 
     726velocities at the base of the OSBL, ${\overline{w^\prime 
     727    b^\prime}}_\mathrm{ent}$ is the buoyancy flux due to entrainment 
     728and $\Delta B_\mathrm{bl}$ is the difference between the buoyancy 
     729averaged over the depth of the OSBL (i.e.\ including the ML and 
     730pycnocline) and the buoyancy just below the base of the OSBL. This 
     731equation for the case when the pycnocline has a finite thickness, 
     732based on the potential energy budget of the OSBL, is the leading term 
     733\citep{grant+etal18} of a generalization of that used in mixed-layer 
     734models e.g.\ \citet{kraus.turner_tellus67}, in which the thickness of the pycnocline is taken to be zero. 
    725735 
    726736The entrainment flux for the combination of convective and Langmuir turbulence is given by 
Note: See TracChangeset for help on using the changeset viewer.