Changeset 11690


Ignore:
Timestamp:
2019-10-11T19:05:10+02:00 (11 months ago)
Author:
nicolasmartin
Message:

Update chapters according to previous commit

Location:
NEMO/trunk/doc/latex/NEMO/subfiles
Files:
17 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex

    r11599 r11690  
    113113\begin{figure}[!tb] 
    114114  \centering 
    115   \includegraphics[width=0.66\textwidth]{Fig_zgr} 
     115  \includegraphics[width=0.66\textwidth]{DOMCFG_zgr} 
    116116  \caption[DOMAINcfg: default vertical mesh for ORCA2]{ 
    117117    Default vertical mesh for ORCA2: 30 ocean levels (L30). 
     
    444444\begin{figure}[!ht] 
    445445  \centering 
    446   \includegraphics[width=0.66\textwidth]{Fig_sco_function} 
     446  \includegraphics[width=0.66\textwidth]{DOMCFG_sco_function} 
    447447  \caption[DOMAINcfg: examples of the stretching function applied to a seamount]{ 
    448448    Examples of the stretching function applied to a seamount; 
     
    493493\begin{figure}[!ht] 
    494494  \centering 
    495   \includegraphics[width=0.66\textwidth]{Fig_DOM_compare_coordinates_surface} 
     495  \includegraphics[width=0.66\textwidth]{DOMCFG_compare_coordinates_surface} 
    496496  \caption[DOMAINcfg: comparison of $s$- and $z$-coordinate]{ 
    497497    A comparison of the \citet{song.haidvogel_JCP94} $S$-coordinate (solid lines), 
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_algos.tex

    r11598 r11690  
    311311\begin{figure}[!ht] 
    312312  \centering 
    313   \includegraphics[width=0.66\textwidth]{Fig_ISO_triad} 
     313  \includegraphics[width=0.66\textwidth]{ALGOS_ISO_triad} 
    314314  \caption[Triads used in the Griffies's like iso-neutral diffision scheme for 
    315315    $u$- and $w$-components)]{ 
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex

    r11598 r11690  
    212212\begin{figure}[tb] 
    213213  \centering 
    214   \includegraphics[width=0.66\textwidth]{Fig_GRIFF_triad_fluxes} 
     214  \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_triad_fluxes} 
    215215  \caption[Triads arrangement and tracer gradients to give lateral and vertical tracer fluxes]{ 
    216216    (a) Arrangement of triads $S_i$ and tracer gradients to 
     
    272272\begin{figure}[tb] 
    273273  \centering 
    274   \includegraphics[width=0.66\textwidth]{Fig_GRIFF_qcells} 
     274  \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_qcells} 
    275275  \caption[Triad notation for quarter cells]{ 
    276276    Triad notation for quarter cells. 
     
    657657\begin{figure}[h] 
    658658  \centering 
    659   \includegraphics[width=0.66\textwidth]{Fig_GRIFF_bdry_triads} 
     659  \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_bdry_triads} 
    660660  \caption[Boundary triads]{ 
    661661    (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer points (black dots), 
     
    808808\begin{figure}[h] 
    809809  \centering 
    810   \includegraphics[width=0.66\textwidth]{Fig_GRIFF_MLB_triads} 
     810  \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_MLB_triads} 
    811811  \caption[Definition of mixed-layer depth and calculation of linearly tapered triads]{ 
    812812    Definition of mixed-layer depth and calculation of linearly tapered triads. 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex

    r11599 r11690  
    19671967\begin{figure}[!t] 
    19681968  \centering 
    1969   \includegraphics[width=0.66\textwidth]{Fig_mask_subasins} 
     1969  \includegraphics[width=0.66\textwidth]{DIA_mask_subasins} 
    19701970  \caption[Decomposition of the World Ocean to compute transports as well as 
    19711971  the meridional stream-function]{ 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex

    r11630 r11690  
    6060\begin{figure} 
    6161  \centering 
    62   \includegraphics[width=0.33\textwidth]{Fig_cell} 
     62  \includegraphics[width=0.33\textwidth]{DOM_cell} 
    6363  \caption[Arrangement of variables in the unit cell of space domain]{ 
    6464    Arrangement of variables in the unit cell of space domain. 
     
    151151\begin{figure} 
    152152  \centering 
    153   \includegraphics[width=0.5\textwidth]{Fig_zgr_e3} 
     153  \includegraphics[width=0.5\textwidth]{DOM_zgr_e3} 
    154154  \caption[Comparison of grid-point position, vertical grid-size and scale factors]{ 
    155155    Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, 
     
    265265\begin{figure} 
    266266  \centering 
    267   \includegraphics[width=0.33\textwidth]{Fig_index_hor} 
     267  \includegraphics[width=0.33\textwidth]{DOM_index_hor} 
    268268  \caption[Horizontal integer indexing]{ 
    269269    Horizontal integer indexing used in the \fortran\ code. 
     
    316316\begin{figure} 
    317317  \centering 
    318   \includegraphics[width=0.33\textwidth]{Fig_index_vert} 
     318  \includegraphics[width=0.33\textwidth]{DOM_index_vert} 
    319319  \caption[Vertical integer indexing]{ 
    320320    Vertical integer indexing used in the \fortran\ code. 
     
    474474\begin{figure} 
    475475  \centering 
    476   \includegraphics[width=0.5\textwidth]{Fig_z_zps_s_sps} 
     476  \includegraphics[width=0.5\textwidth]{DOM_z_zps_s_sps} 
    477477  \caption[Ocean bottom regarding coordinate systems ($z$, $s$ and hybrid $s-z$)]{ 
    478478    The ocean bottom as seen by the model: 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex

    r11599 r11690  
    311311\begin{figure}[!ht] 
    312312  \centering 
    313   \includegraphics[width=0.66\textwidth]{Fig_DYN_een_triad} 
     313  \includegraphics[width=0.66\textwidth]{DYN_een_triad} 
    314314  \caption[Triads used in the energy and enstrophy conserving scheme (EEN)]{ 
    315315    Triads used in the energy and enstrophy conserving scheme (EEN) for 
     
    846846\begin{figure}[!t] 
    847847  \centering 
    848   \includegraphics[width=0.66\textwidth]{Fig_DYN_dynspg_ts} 
     848  \includegraphics[width=0.66\textwidth]{DYN_dynspg_ts} 
    849849  \caption[Split-explicit time stepping scheme for the external and internal modes]{ 
    850850    Schematic of the split-explicit time stepping scheme for the external and internal modes. 
     
    14801480\begin{figure}[!ht] 
    14811481  \centering 
    1482   \includegraphics[width=0.66\textwidth]{Fig_WAD_dynhpg} 
     1482  \includegraphics[width=0.66\textwidth]{DYN_WAD_dynhpg} 
    14831483  \caption[Combinations controlling the limiting of the horizontal pressure gradient in 
    14841484  wetting and drying regimes]{ 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex

    r11598 r11690  
    7979\begin{figure}[!t] 
    8080  \centering 
    81   \includegraphics[width=0.66\textwidth]{Fig_LBC_uv} 
     81  \includegraphics[width=0.66\textwidth]{LBC_uv} 
    8282  \caption[Lateral boundary at $T$-level]{ 
    8383    Lateral boundary (thick line) at T-level. 
     
    104104\begin{figure}[!p] 
    105105  \centering 
    106   \includegraphics[width=0.66\textwidth]{Fig_LBC_shlat} 
     106  \includegraphics[width=0.66\textwidth]{LBC_shlat} 
    107107  \caption[Lateral boundary conditions]{ 
    108108    Lateral boundary conditions 
     
    201201\begin{figure}[!t] 
    202202  \centering 
    203   \includegraphics[width=0.66\textwidth]{Fig_LBC_jperio} 
     203  \includegraphics[width=0.66\textwidth]{LBC_jperio} 
    204204  \caption[Setting of east-west cyclic and symmetric across the Equator boundary conditions]{ 
    205205    Setting of (a) east-west cyclic (b) symmetric across the Equator boundary conditions} 
     
    219219\begin{figure}[!t] 
    220220  \centering 
    221   \includegraphics[width=0.66\textwidth]{Fig_North_Fold_T} 
     221  \includegraphics[width=0.66\textwidth]{LBC_North_Fold_T} 
    222222  \caption[North fold boundary in ORCA 2\deg, 1/4\deg and 1/12\deg]{ 
    223223    North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($jperio=4$), 
     
    272272\begin{figure}[!t] 
    273273  \centering 
    274   \includegraphics[width=0.66\textwidth]{Fig_mpp} 
     274  \includegraphics[width=0.66\textwidth]{LBC_mpp} 
    275275  \caption{Positioning of a sub-domain when massively parallel processing is used} 
    276276  \label{fig:LBC_mpp} 
     
    325325\begin{figure}[!ht] 
    326326  \centering 
    327   \includegraphics[width=0.66\textwidth]{Fig_mppini2} 
     327  \includegraphics[width=0.66\textwidth]{LBC_mppini2} 
    328328  \caption[Atlantic domain defined for the CLIPPER projet]{ 
    329329    Example of Atlantic domain defined for the CLIPPER projet. 
     
    596596\begin{figure}[!t] 
    597597  \centering 
    598   \includegraphics[width=0.66\textwidth]{Fig_LBC_bdy_geom} 
     598  \includegraphics[width=0.66\textwidth]{LBC_bdy_geom} 
    599599  \caption[Geometry of unstructured open boundary]{Example of geometry of unstructured open boundary} 
    600600  \label{fig:LBC_bdy_geom} 
     
    631631\begin{figure}[!t] 
    632632  \centering 
    633   \includegraphics[width=0.66\textwidth]{Fig_LBC_nc_header} 
     633  \includegraphics[width=0.66\textwidth]{LBC_nc_header} 
    634634  \caption[Header for a \protect\ifile{coordinates.bdy} file]{ 
    635635    Example of the header for a \protect\ifile{coordinates.bdy} file} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex

    r11599 r11690  
    237237\begin{figure}[!ht] 
    238238  \centering 
    239   \includegraphics[width=0.66\textwidth]{Fig_LDF_ZDF1} 
     239  \includegraphics[width=0.66\textwidth]{LDF_ZDF1} 
    240240  \caption{Averaging procedure for isopycnal slope computation} 
    241241  \label{fig:LDF_ZDF1} 
     
    263263\begin{figure}[!ht] 
    264264  \centering 
    265   \includegraphics[width=0.66\textwidth]{Fig_eiv_slp} 
     265  \includegraphics[width=0.66\textwidth]{LDF_eiv_slp} 
    266266  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{ 
    267267    Vertical profile of the slope used for lateral mixing in the mixed layer: 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex

    r11598 r11690  
    711711\begin{figure} 
    712712  \centering 
    713   \includegraphics[width=0.66\textwidth]{Fig_OBS_avg_rec} 
     713  \includegraphics[width=0.66\textwidth]{OBS_avg_rec} 
    714714  \caption[Observational weights with a rectangular footprint]{ 
    715715    Weights associated with each model grid box (blue lines and numbers) 
     
    720720\begin{figure} 
    721721  \centering 
    722   \includegraphics[width=0.66\textwidth]{Fig_OBS_avg_rad} 
     722  \includegraphics[width=0.66\textwidth]{OBS_avg_rad} 
    723723  \caption[Observational weights with a radial footprint]{ 
    724724    Weights associated with each model grid box (blue lines and numbers) 
     
    798798\begin{figure} 
    799799  \centering 
    800   \includegraphics[width=0.66\textwidth]{Fig_ASM_obsdist_local} 
     800  \includegraphics[width=0.66\textwidth]{OBS_obsdist_local} 
    801801  \caption[Observations with the geographical distribution]{ 
    802802    Example of the distribution of observations with 
     
    825825\begin{figure} 
    826826  \centering 
    827   \includegraphics[width=0.66\textwidth]{Fig_ASM_obsdist_global} 
     827  \includegraphics[width=0.66\textwidth]{OBS_obsdist_global} 
    828828  \caption[Observations with the round-robin distribution]{ 
    829829    Example of the distribution of observations with 
     
    11641164\begin{figure} 
    11651165  \centering 
    1166   \includegraphics[width=0.66\textwidth]{Fig_OBS_dataplot_main} 
     1166  \includegraphics[width=0.66\textwidth]{OBS_dataplot_main} 
    11671167  \caption{Main window of dataplot} 
    11681168  \label{fig:OBS_dataplotmain} 
     
    11741174\begin{figure} 
    11751175  \centering 
    1176   \includegraphics[width=0.66\textwidth]{Fig_OBS_dataplot_prof} 
     1176  \includegraphics[width=0.66\textwidth]{OBS_dataplot_prof} 
    11771177  \caption[Profile plot from dataplot]{ 
    11781178    Profile plot from dataplot produced by right clicking on a point in the main window} 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex

    r11599 r11690  
    986986\begin{figure}[!t] 
    987987  \centering 
    988   \includegraphics[width=0.66\textwidth]{Fig_SBC_isf} 
     988  \includegraphics[width=0.66\textwidth]{SBC_isf} 
    989989  \caption[Ice shelf location and fresh water flux definition]{ 
    990990    Illustration of the location where the fwf is injected and 
     
    13071307\begin{figure}[!t] 
    13081308  \centering 
    1309   \includegraphics[width=0.66\textwidth]{Fig_SBC_diurnal} 
     1309  \includegraphics[width=0.66\textwidth]{SBC_diurnal} 
    13101310  \caption[Reconstruction of the diurnal cycle variation of short wave flux]{ 
    13111311    Example of reconstruction of the diurnal cycle variation of short wave flux from 
     
    13411341\begin{figure}[!t] 
    13421342  \centering 
    1343   \includegraphics[width=0.66\textwidth]{Fig_SBC_dcy} 
     1343  \includegraphics[width=0.66\textwidth]{SBC_dcy} 
    13441344  \caption[Reconstruction of the diurnal cycle variation of short wave flux on an ORCA2 grid]{ 
    13451345    Example of reconstruction of the diurnal cycle variation of short wave flux from 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex

    r11630 r11690  
    110110\begin{figure} 
    111111  \centering 
    112   \includegraphics[width=0.66\textwidth]{Fig_adv_scheme} 
     112  \includegraphics[width=0.66\textwidth]{TRA_adv_scheme} 
    113113  \caption[Ways to evaluate the tracer value and the amount of tracer exchanged]{ 
    114114    Schematic representation of some ways used to evaluate the tracer value at $u$-point and 
     
    880880\begin{figure} 
    881881  \centering 
    882   \includegraphics[width=0.66\textwidth]{Fig_TRA_Irradiance} 
     882  \includegraphics[width=0.66\textwidth]{TRA_Irradiance} 
    883883  \caption[Penetration profile of the downward solar irradiance calculated by four models]{ 
    884884    Penetration profile of the downward solar irradiance calculated by four models. 
     
    904904\begin{figure} 
    905905  \centering 
    906   \includegraphics[width=0.66\textwidth]{Fig_TRA_geoth} 
     906  \includegraphics[width=0.66\textwidth]{TRA_geoth} 
    907907  \caption[Geothermal heat flux]{ 
    908908    Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 
     
    10201020\begin{figure} 
    10211021  \centering 
    1022   \includegraphics[width=0.33\textwidth]{Fig_BBL_adv} 
     1022  \includegraphics[width=0.33\textwidth]{TRA_BBL_adv} 
    10231023  \caption[Advective/diffusive bottom boundary layer]{ 
    10241024    Advective/diffusive Bottom Boundary Layer. 
     
    13941394\begin{figure} 
    13951395  \centering 
    1396   \includegraphics[width=0.33\textwidth]{Fig_partial_step_scheme} 
     1396  \includegraphics[width=0.33\textwidth]{TRA_partial_step_scheme} 
    13971397  \caption[Discretisation of the horizontal difference and average of tracers in 
    13981398  the $z$-partial step coordinate]{ 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11685 r11690  
    248248\begin{figure}[!t] 
    249249  \centering 
    250   \includegraphics[width=0.66\textwidth]{Fig_mixing_length} 
     250  \includegraphics[width=0.66\textwidth]{ZDF_mixing_length} 
    251251  \caption[Mixing length computation]{Illustration of the mixing length computation} 
    252252  \label{fig:ZDF_mixing_length} 
     
    534534 
    535535% ------------------------------------------------------------------------------------------------------------- 
    536 %        OSM OSMOSIS BL Scheme  
     536%        OSM OSMOSIS BL Scheme 
    537537% ------------------------------------------------------------------------------------------------------------- 
    538538\subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})] 
     
    559559      depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value 
    560560      of 5~m. 
    561   
     561 
    562562  \item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 
    563563      assumed to be parallel to the surface wind stress, with 
     
    566566      wave-mean period taken from this spectrum are used to calculate the Stokes penetration 
    567567      depth, following the approach set out in  \citet{breivik.janssen.ea_JPO14}. 
    568   
     568 
    569569    \item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 
    570570      taken from  ECMWF wave model output, though only the component parallel 
     
    585585    \item \protect\np{rn_difri} {rn\_difri} Maximum value of Ri \#-dependent mixing at $\mathrm{Ri}=0$. 
    586586    \item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify 
    587        diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$).  
     587       diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$). 
    588588 \end{description} 
    589589 Diagnostic output is controlled by: 
     
    618618parameterization (KPP) scheme of \citet{large.ea_RG97}. 
    619619A specified shape of diffusivity, scaled by the (OSBL) depth 
    620 $h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the  
     620$h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 
    621621boundary layer 
    622622$-h_{\mathrm{BL}}<z<\eta$. The turbulent closure model 
     
    627627as in KPP, it is set by a prognostic equation that is informed by 
    628628energy budget considerations reminiscent of the classical mixed layer 
    629 models of \citet{kraus.turner_tellus67}.  
     629models of \citet{kraus.turner_tellus67}. 
    630630The model also includes an explicit parametrization of the structure 
    631631of the pycnocline (the stratified region at the bottom of the OSBL). 
     
    643643\begin{figure}[!t] 
    644644  \begin{center} 
    645     \includegraphics[width=0.7\textwidth]{Fig_ZDF_OSM_structure_of_OSBL} 
     645    %\includegraphics[width=0.7\textwidth]{ZDF_OSM_structure_of_OSBL} 
    646646    \caption{ 
    647647      \protect\label{fig: OSBL_structure} 
     
    655655\begin{equation}\label{eq:w_La} 
    656656w_{*L}= \left(u_*^2 u_{s\,0}\right)^{1/3}; 
    657 \end{equation}  
     657\end{equation} 
    658658but at times the Stokes drift may be weak due to e.g.\ ice cover, short fetch, misalignment with the surface stress, etc.\ so  a composite velocity scale is assumed for the stable (warming) boundary layer: 
    659659\begin{equation}\label{eq:composite-nu} 
     
    690690where $\beta_d$ and $\beta_\nu$ are parameters that are determined by matching Eqs \ref{eq:diff-unstable} and \ref{eq:visc-unstable} to the eddy diffusivity and viscosity at the base of the well-mixed layer, given by 
    691691% 
    692 \begin{equation}\label{eq:diff-wml-base}  
     692\begin{equation}\label{eq:diff-wml-base} 
    693693K_{d,\mathrm{ml}}=K_{\nu,\mathrm{ml}}=\,0.16\,\omega_* \Delta h. 
    694694\end{equation} 
     
    702702% 
    703703The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The eddy diffusivity/viscosity depends on the stability parameter $h_{\mathrm{bl}}/{L_L}$ where $ L_L$ is analogous to the Obukhov length, but for Langmuir turbulence: 
    704 \begin{equation}\label{eq:L_L}  
     704\begin{equation}\label{eq:L_L} 
    705705  L_L=-w_{*L}^3/\left<\overline{w^\prime b^\prime}\right>_L, 
    706706\end{equation} 
     
    745745\begin{equation}\label{eq:dhdt-stable} 
    746746\max\left(\Delta B_{bl},\frac{w_{*L}^2}{h_\mathrm{bl}}\right)\frac{\partial h_\mathrm{bl}}{\partial t} = \left(0.06 + 0.52\,\frac{ h_\mathrm{bl}}{L_L}\right) \frac{w_{*L}^3}{h_\mathrm{bl}} +\left<\overline{w^\prime b^\prime}\right>_L. 
    747 \end{equation}  
     747\end{equation} 
    748748 
    749749Equation. \ref{eq:dhdt-unstable} always leads to the depth of the entraining OSBL increasing (ignoring the effect of the mean vertical motion), but the change in the thickness of the stable OSBL given by Eq. \ref{eq:dhdt-stable} can be positive or negative, depending on the magnitudes of $\left<\overline{w^\prime b^\prime}\right>_L$ and $h_\mathrm{bl}/L_L$. The rate at which the depth of the OSBL can decrease is limited by choosing an effective buoyancy $w_{*L}^2/h_\mathrm{bl}$, in place of $\Delta B_{bl}$ which will be $\approx 0$ for the collapsing OSBL. 
     
    756756\begin{figure}[!t] 
    757757  \centering 
    758   \includegraphics[width=0.66\textwidth]{Fig_ZDF_TKE_time_scheme} 
     758  \includegraphics[width=0.66\textwidth]{ZDF_TKE_time_scheme} 
    759759  \caption[Subgrid kinetic energy integration in GLS and TKE schemes]{ 
    760760    Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and 
     
    868868\begin{figure}[!htb] 
    869869  \centering 
    870   \includegraphics[width=0.66\textwidth]{Fig_npc} 
     870  \includegraphics[width=0.66\textwidth]{ZDF_npc} 
    871871  \caption[Unstable density profile treated by the non penetrative convective adjustment algorithm]{ 
    872872    Example of an unstable density profile treated by 
     
    10131013\begin{figure}[!t] 
    10141014  \centering 
    1015   \includegraphics[width=0.66\textwidth]{Fig_zdfddm} 
     1015  \includegraphics[width=0.66\textwidth]{ZDF_ddm} 
    10161016  \caption[Diapycnal diffusivities for temperature and salt in regions of salt fingering and 
    10171017  diffusive convection]{ 
     
    14911491\begin{figure}[!t] 
    14921492  \centering 
    1493   \includegraphics[width=0.66\textwidth]{Fig_ZDF_zad_Aimp_coeff} 
     1493  \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_coeff} 
    14941494  \caption[Partitioning coefficient used to partition vertical velocities into parts]{ 
    14951495    The value of the partitioning coefficient (\cf) used to partition vertical velocities into 
     
    15311531\begin{figure}[!t] 
    15321532  \centering 
    1533   \includegraphics[width=0.66\textwidth]{Fig_ZDF_zad_Aimp_overflow_frames} 
     1533  \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_frames} 
    15341534  \caption[OVERFLOW: time-series of temperature vertical cross-sections]{ 
    15351535    A time-series of temperature vertical cross-sections for the OVERFLOW test case. 
     
    16111611\begin{figure}[!t] 
    16121612  \centering 
    1613   \includegraphics[width=0.66\textwidth]{Fig_ZDF_zad_Aimp_overflow_all_rdt} 
     1613  \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_all_rdt} 
    16141614  \caption[OVERFLOW: sample temperature vertical cross-sections from mid- and end-run]{ 
    16151615    Sample temperature vertical cross-sections from mid- and end-run using 
     
    16241624\begin{figure}[!t] 
    16251625  \centering 
    1626   \includegraphics[width=0.66\textwidth]{Fig_ZDF_zad_Aimp_maxCf} 
     1626  \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf} 
    16271627  \caption[OVERFLOW: maximum partitioning coefficient during a series of test runs]{ 
    16281628    The maximum partitioning coefficient during a series of test runs with 
     
    16351635\begin{figure}[!t] 
    16361636  \centering 
    1637   \includegraphics[width=0.66\textwidth]{Fig_ZDF_zad_Aimp_maxCf_loc} 
     1637  \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf_loc} 
    16381638  \caption[OVERFLOW: maximum partitioning coefficient for the case overlaid]{ 
    16391639    The maximum partitioning coefficient for the \forcode{nn_rdt=10.0} case overlaid with 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_cfgs.tex

    r11598 r11690  
    9393\begin{figure}[!t] 
    9494  \centering 
    95   \includegraphics[width=0.66\textwidth]{Fig_ORCA_NH_mesh} 
     95  \includegraphics[width=0.66\textwidth]{CFGS_ORCA_NH_mesh} 
    9696  \caption[ORCA mesh conception]{ 
    9797    ORCA mesh conception. 
     
    120120\begin{figure}[!tbp] 
    121121  \centering 
    122   \includegraphics[width=0.66\textwidth]{Fig_ORCA_NH_msh05_e1_e2} 
    123   \includegraphics[width=0.66\textwidth]{Fig_ORCA_aniso} 
     122  \includegraphics[width=0.66\textwidth]{CFGS_ORCA_NH_msh05_e1_e2} 
     123  \includegraphics[width=0.66\textwidth]{CFGS_ORCA_aniso} 
    124124  \caption[Horizontal scale factors and ratio of anisotropy for ORCA 0.5\deg\ mesh]{ 
    125125    \textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and 
     
    264264\begin{figure}[!t] 
    265265  \centering 
    266   \includegraphics[width=0.66\textwidth]{Fig_GYRE} 
     266  \includegraphics[width=0.66\textwidth]{CFGS_GYRE} 
    267267  \caption[Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54]{ 
    268268    Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54. 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_misc.tex

    r11598 r11690  
    9494\begin{figure}[!tbp] 
    9595  \centering 
    96   \includegraphics[width=0.66\textwidth]{Fig_Gibraltar} 
    97   \includegraphics[width=0.66\textwidth]{Fig_Gibraltar2} 
     96  \includegraphics[width=0.66\textwidth]{MISC_Gibraltar} 
     97  \includegraphics[width=0.66\textwidth]{MISC_Gibraltar2} 
    9898  \caption[Two methods to defined the Gibraltar strait]{ 
    9999    Example of the Gibraltar strait defined in a 1\deg\ $\times$ 1\deg\ mesh. 
     
    111111\begin{figure}[!tbp] 
    112112  \centering 
    113   \includegraphics[width=0.66\textwidth]{Fig_closea_mask_example} 
     113  \includegraphics[width=0.66\textwidth]{MISC_closea_mask_example} 
    114114  \caption[Mask fields for the \protect\mdl{closea} module]{ 
    115115    Example of mask fields for the \protect\mdl{closea} module. 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11630 r11690  
    130130\begin{figure} 
    131131  \centering 
    132   \includegraphics[width=0.66\textwidth]{Fig_I_ocean_bc} 
     132  \includegraphics[width=0.66\textwidth]{MB_ocean_bc} 
    133133  \caption[Ocean boundary conditions]{ 
    134134    The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 
     
    327327\begin{figure} 
    328328  \centering 
    329   \includegraphics[width=0.33\textwidth]{Fig_I_earth_referential} 
     329  \includegraphics[width=0.33\textwidth]{MB_earth_referential} 
    330330  \caption[Geographical and curvilinear coordinate systems]{ 
    331331    the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 
     
    692692\begin{figure} 
    693693  \centering 
    694   \includegraphics[width=0.66\textwidth]{Fig_z_zstar} 
     694  \includegraphics[width=0.66\textwidth]{MB_z_zstar} 
    695695  \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 
    696696    \begin{enumerate*}[label=(\textit{\alph*})] 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex

    r11599 r11690  
    147147\begin{figure}[!t] 
    148148  \centering 
    149   \includegraphics[width=0.66\textwidth]{Fig_DYN_dynspg_ts} 
     149  \includegraphics[width=0.66\textwidth]{MBZ_DYN_dynspg_ts} 
    150150  \caption[Schematic of the split-explicit time stepping scheme for 
    151151  the barotropic and baroclinic modes, after \citet{Griffies2004?}]{ 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex

    r11630 r11690  
    216216\begin{figure} 
    217217  \centering 
    218   \includegraphics[width=0.66\textwidth]{Fig_TimeStepping_flowchart_v4} 
     218  \includegraphics[width=0.66\textwidth]{TD_TimeStepping_flowchart_v4} 
    219219  \caption[Leapfrog time stepping sequence with split-explicit free surface]{ 
    220220    Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface. 
     
    276276\begin{figure} 
    277277  \centering 
    278   \includegraphics[width=0.66\textwidth]{Fig_MLF_forcing} 
     278  \includegraphics[width=0.66\textwidth]{TD_MLF_forcing} 
    279279  \caption[Forcing integration methods for modified leapfrog (top and bottom)]{ 
    280280    Illustration of forcing integration methods. 
Note: See TracChangeset for help on using the changeset viewer.