Changeset 12159


Ignore:
Timestamp:
2019-12-10T16:34:01+01:00 (8 months ago)
Author:
laurent
Message:

Improving the SBCBLK doc…

Location:
NEMO/branches/2019/dev_r12072_MERGE_OPTION2_2019/doc/latex/NEMO
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r12072_MERGE_OPTION2_2019/doc/latex/NEMO/main/bibliography.bib

    r11674 r12159  
    400400} 
    401401 
    402 @article{         brodeau.barnier.ea_JPO16, 
    403   title         = "Climatologically Significant Effects of Some Approximations in the Bulk Parameterizations of Turbulent AirSea Fluxes", 
     402@article{         brodeau.barnier.ea_JPO17, 
     403  title         = "Climatologically Significant Effects of Some Approximations in the Bulk Parameterizations of Turbulent Air{\textendash}Sea Fluxes", 
    404404  pages         = "5--28", 
    405405  journal       = "Journal of Physical Oceanography", 
     
    407407  number        = "1", 
    408408  author        = "Brodeau, Laurent and Barnier, Bernard and Gulev, Sergey K. and Woods, Cian", 
    409   year          = "2016", 
     409  year          = "2017", 
    410410  month         = "jan", 
    411411  publisher     = "American Meteorological Society", 
     
    31343134  doi           = "10.1029/92jc00911" 
    31353135} 
     3136 
     3137@article{large.yeager_CD09, 
     3138author="Large, W. G. and Yeager, S. G.", 
     3139title="The Global Climatology of an Interannually Varying Air-Sea Flux Data Set", 
     3140pages = "341--364", 
     3141journal="Climate Dynamics", 
     3142volume = "33", 
     3143number = "2-3", 
     3144year="2009", 
     3145month = "aug", 
     3146publisher = "Springer Science and Business Media LLC", 
     3147doi="10.1007/s00382-008-0441-3" 
     3148} 
     3149 
     3150@book{sverdrup.johnson.ea_1942, 
     3151author = {H. U. Sverdrup and Martin W. Johnson and Richard H. Fleming}, 
     3152title = {The Oceans, Their Physics, Chemistry, and General Biology}, 
     3153publisher = {Prentice-Hall}, 
     3154address = {New York}, 
     3155year = {1942}, 
     3156pages = {1087}, 
     3157} 
     3158 
     3159@article{kraus.businger_QJRMS96, 
     3160author = "E. B. Kraus and J. A. Businger", 
     3161title = "Atmosphere-ocean interaction.", 
     3162journal="Quarterly Journal of the Royal Meteorological Society",, 
     3163year = "1996", 
     3164volume = "122", 
     3165number = "529", 
     3166pages = "324-325", 
     3167publisher = "John Wiley & Sons, Ltd", 
     3168issn = "1477-870X", 
     3169doi = "10.1002/qj.49712252914" 
     3170} 
     3171 
     3172@article{josey.gulev.ea_2013, 
     3173title = "Exchanges through the ocean surface", 
     3174journal = "Ocean Circulation and Climate - A 21st Century Perspective, Int. Geophys. Ser.", 
     3175year = "2013", 
     3176author = "S. A. Josey and S. Gulev and L. Yu", 
     3177pages = "115-140, edited by G. Siedler et al., Academic Press, Oxford", 
     3178volume = "103", 
     3179doi = "10.1016/B978-0-12-391851-2.00005-2" 
     3180} 
     3181 
     3182@article{fairall.bradley.ea_JGR96, 
     3183  year = "1996", 
     3184 journal = "Journal of Geophysical Research: Oceans", 
     3185  month = "jan", 
     3186  publisher = "American Geophysical Union", 
     3187  volume = "101", 
     3188  number = "C1", 
     3189  pages = "1295-1308", 
     3190  author = "C. W. Fairall and E. F. Bradley and J. S. Godfrey and G. A. Wick and J. B. Edson and G. S. Young", 
     3191  title = "Cool-skin and warm-layer effects on sea surface temperature", 
     3192  doi = "10.1029/95jc03190" 
     3193} 
     3194 
     3195@article{zeng.beljaars_GRL05, 
     3196  year = "2005", 
     3197  month = "jul", 
     3198  publisher = "American Geophysical Union", 
     3199  volume = "32", 
     3200  number = "14", 
     3201  author = "Xubin Zeng and Anton Beljaars", 
     3202  title = "A prognostic scheme of sea surface skin temperature for modeling and data assimilation", 
     3203  journal = "Geophysical Research Letters", 
     3204  doi = "10.1029/2005gl023030" 
     3205} 
     3206 
  • NEMO/branches/2019/dev_r12072_MERGE_OPTION2_2019/doc/latex/NEMO/subfiles/chap_SBC.tex

    r11693 r12159  
    4545 
    4646\begin{itemize} 
    47 \item a bulk formulation (\np[=.true.]{ln_blk}{ln\_blk} with four possible bulk algorithms), 
     47\item a bulk formulation (\np[=.true.]{ln_blk}{ln\_blk}), featuring a selection of four bulk parameterization algorithms, 
    4848\item a flux formulation (\np[=.true.]{ln_flx}{ln\_flx}), 
    4949\item a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler), 
     
    504504\label{sec:SBC_flx} 
    505505 
     506% Laurent: DO NOT mix up ``bulk formulae'' (the classic equation) and the ``bulk 
     507% parameterization'' (i.e NCAR, COARE, ECMWF...) 
     508 
    506509\begin{listing} 
    507510  \nlst{namsbc_flx} 
     
    520523See \autoref{subsec:SBC_ssr} for its specification. 
    521524 
    522 %% ================================================================================================= 
     525 
     526 
     527 
     528 
     529 
     530 
     531%% ================================================================================================= 
     532\pagebreak 
     533\newpage 
    523534\section[Bulk formulation (\textit{sbcblk.F90})]{Bulk formulation (\protect\mdl{sbcblk})} 
    524535\label{sec:SBC_blk} 
     536 
     537% L. Brodeau, December 2019... 
    525538 
    526539\begin{listing} 
     
    530543\end{listing} 
    531544 
    532 In the bulk formulation, the surface boundary condition fields are computed with bulk formulae using atmospheric fields 
    533 and ocean (and sea-ice) variables averaged over \np{nn_fsbc}{nn\_fsbc} time-step. 
    534  
    535 The atmospheric fields used depend on the bulk formulae used. 
    536 In forced mode, when a sea-ice model is used, a specific bulk formulation is used. 
    537 Therefore, different bulk formulae are used for the turbulent fluxes computation 
    538 over the ocean and over sea-ice surface. 
    539 For the ocean, four bulk formulations are available thanks to the \href{https://brodeau.github.io/aerobulk/}{Aerobulk} package (\citet{brodeau.barnier.ea_JPO16}): 
    540 the NCAR (formerly named CORE), COARE 3.0, COARE 3.5 and ECMWF bulk formulae. 
    541 The choice is made by setting to true one of the following namelist variable: 
    542  \np{ln_NCAR}{ln\_NCAR}, \np{ln_COARE_3p0}{ln\_COARE\_3p0},  \np{ln_COARE_3p5}{ln\_COARE\_3p5} and  \np{ln_ECMWF}{ln\_ECMWF}. 
    543 For sea-ice, three possibilities can be selected: 
    544 a constant transfer coefficient (1.4e-3; default value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), and \citet{lupkes.gryanik_JGR15} (\np{ln_Cd_L15}{ln\_Cd\_L15}) parameterizations 
     545If the bulk formulation is selected (\np[=.true.]{ln_blk}{ln\_blk}), the air-sea 
     546fluxes associated with surface boundary conditions are estimated by means of the 
     547traditional \emph{bulk formulae}. As input, bulk formulae rely on a prescribed 
     548near-surface atmosphere state (typically extracted from a weather reanalysis) 
     549and the prognostic sea (-ice) surface state averaged over \np{nn_fsbc}{nn\_fsbc} 
     550time-step(s). 
     551 
     552% Turbulent air-sea fluxes are computed using the sea surface properties and 
     553% atmospheric SSVs at height $z$ above the sea surface, with the traditional 
     554% aerodynamic bulk formulae: 
     555 
     556Note: all the NEMO Fortran routines involved in the present section have been 
     557 initially developed (and are still developed in parallel) in 
     558 the \href{https://brodeau.github.io/aerobulk/}{\texttt{AeroBulk}} open-source project 
     559\citep{brodeau.barnier.ea_JPO17}. 
     560 
     561%%% Bulk formulae are this: 
     562\subsection{Bulk formulae}\label{subsec:SBC_blkform} 
     563% 
     564In NEMO, the set of equations that relate each component of the surface fluxes 
     565to the near-surface atmosphere and sea surface states writes 
     566% 
     567\begin{subequations}\label{eq_bulk} 
     568  \label{eq:SBC_bulk_form} 
     569  \begin{eqnarray} 
     570    \mathbf{\tau} &=& \rho~ C_D ~ \mathbf{U}_z  ~ U_B \\ 
     571    Q_H           &=& \rho~C_H~C_P~\big[ \theta_z - T_s \big] ~ U_B \\ 
     572    E             &=& \rho~C_E    ~\big[    q_s   - q_z \big] ~ U_B \\ 
     573    Q_L           &=& -L_v \, E \\ 
     574    % 
     575    Q_{sr}        &=& (1 - a) Q_{sw\downarrow} \\ 
     576    Q_{ir}        &=& \delta (Q_{lw\downarrow} -\sigma T_s^4) 
     577  \end{eqnarray} 
     578\end{subequations} 
     579% 
     580with 
     581   \[ \theta_z \simeq T_z+\gamma z \] 
     582   \[  q_s \simeq 0.98\,q_{sat}(T_s,p_a ) \] 
     583% 
     584from which, the the non-solar heat flux is \[ Q_{ns} = Q_L + Q_H + Q_{ir} \] 
     585% 
     586where $\mathbf{\tau}$ is the wind stress vector, $Q_H$ the sensible heat flux, 
     587$E$ the evaporation, $Q_L$ the latent heat flux, and $Q_{ir}$ the net longwave 
     588flux. 
     589% 
     590$Q_{sw\downarrow}$ and $Q_{lw\downarrow}$ are the surface downwelling shortwave 
     591and longwave radiative fluxes, respectively. 
     592% 
     593Note: a positive sign for $\mathbf{\tau}$, $Q_H$, $Q_L$, $Q_{sr}$ or $Q_{ir}$ 
     594implies a gain of the relevant quantity for the ocean, while a positive $E$ 
     595implies a freshwater loss for the ocean. 
     596% 
     597$\rho$ is the density of air. $C_D$, $C_H$ and $C_E$ are the bulk transfer 
     598coefficients for momentum, sensible heat, and moisture, respectively. 
     599% 
     600$C_P$ is the heat capacity of moist air, and $L_v$ is the latent heat of 
     601vaporization of water. 
     602% 
     603$\theta_z$, $T_z$ and $q_z$ are the potential temperature, absolute temperature, 
     604and specific humidity of air at height $z$ above the sea surface, 
     605respectively. $\gamma z$ is a temperature correction term which accounts for the 
     606adiabatic lapse rate and approximates the potential temperature at height 
     607$z$ \citep{josey.gulev.ea_2013}. 
     608% 
     609$\mathbf{U}_z$ is the wind speed vector at height $z$ above the sea surface 
     610(possibly referenced to the surface current $\mathbf{u_0}$, 
     611section \ref{s_res1}.\ref{ss_current}). 
     612% 
     613The bulk scalar wind speed, namely $U_B$, is the scalar wind speed, 
     614$|\mathbf{U}_z|$, with the potential inclusion of a gustiness contribution. 
     615% 
     616$a$ and $\delta$ are the albedo and emissivity of the sea surface, respectively.\\ 
     617% 
     618%$p_a$ is the mean sea-level pressure (SLP). 
     619% 
     620$T_s$ is the sea surface temperature. $q_s$ is the saturation specific humidity 
     621of air at temperature $T_s$; it includes a 2\% reduction to account for the 
     622presence of salt in seawater \citep{sverdrup.johnson.ea_1942,kraus.businger_QJRMS96}. 
     623Depending on the bulk parametrization used, $T_s$ can either be the temperature 
     624at the air-sea interface (skin temperature, hereafter SSST) or at typically a 
     625few tens of centimeters below the surface (bulk sea surface temperature, 
     626hereafter SST). 
     627% 
     628The SSST differs from the SST due to the contributions of two effects of 
     629opposite sign, the \emph{cool skin} and \emph{warm layer} (hereafter CS and WL, 
     630respectively, see section\,\ref{subsec:SBC_skin}). 
     631% 
     632Technically, when the ECMWF or COARE* bulk parametrizations are selected 
     633(\np[=.true.]{ln_ECMWF}{ln\_ECMWF} or \np[=.true.]{ln_COARE*}{ln\_COARE\*}), 
     634$T_s$ is the SSST, as opposed to the NCAR bulk parametrization 
     635(\np[=.true.]{ln_NCAR}{ln\_NCAR}) for which $T_s$ is the bulk SST (\ie~temperature 
     636at first T-point level). 
     637 
     638For more details on all these aspects the reader is invited to refer 
     639to \citet{brodeau.barnier.ea_JPO17}. 
     640 
     641 
     642 
     643\subsection{Bulk parametrizations}\label{subsec:SBC_blk_ocean} 
     644%%%\label{subsec:SBC_param} 
     645 
     646Accuracy of the estimate of surface turbulent fluxes by means of bulk formulae 
     647strongly relies on that of the bulk transfer coefficients: $C_D$, $C_H$ and 
     648$C_E$. They are estimated with what we refer to as a \emph{bulk 
     649parametrization} algorithm. When relevant, these algorithms also perform the 
     650height adjustment of humidity and temperature to the wind reference measurement 
     651height (from \np{rn_zqt}{rn\_zqt} to \np{rn_zu}{rn\_zu}). 
     652 
     653 
     654 
     655For the open ocean, four bulk parametrization algorithms are available in NEMO: 
     656\begin{itemize} 
     657\item NCAR, formerly known as CORE, \citep{large.yeager_rpt04,large.yeager_CD09} 
     658\item COARE 3.0 \citep{fairall.bradley.ea_JC03} 
     659\item COARE 3.6 \citep{edson.jampana.ea_JPO13} 
     660\item ECMWF (IFS documentation, cy45) 
     661\end{itemize} 
     662 
     663 
     664With respect to version 3, the principal advances in version 3.6 of the COARE 
     665bulk parametrization are built around improvements in the representation of the 
     666effects of waves on 
     667fluxes \citep{edson.jampana.ea_JPO13,brodeau.barnier.ea_JPO17}. This includes 
     668improved relationships of surface roughness, and whitecap fraction on wave 
     669parameters. It is therefore recommended to chose version 3.6 over 3. 
     670 
     671 
     672 
     673 
     674\subsection{Cool-skin and warm-layer parametrizations}\label{subsec:SBC_skin} 
     675%\subsection[Cool-skin and warm-layer parameterizations 
     676%(\forcode{ln_skin_cs} \& \forcode{ln_skin_wl})]{Cool-skin and warm-layer parameterizations (\protect\np{ln_skin_cs}{ln\_skin\_cs} \& \np{ln_skin_wl}{ln\_skin\_wl})} 
     677%\label{subsec:SBC_skin} 
     678% 
     679As opposed to the NCAR bulk parametrization, more advanced bulk 
     680parametrizations such as COARE3.x and ECMWF are meant to be used with the skin 
     681temperature $T_s$ rather than the bulk SST (which, in NEMO is the temperature at 
     682the first T-point level, see section\,\ref{subsec:SBC_blkform}). 
     683% 
     684As such, the relevant cool-skin and warm-layer parametrization must be 
     685activated through \np[=T]{ln_skin_cs}{ln\_skin\_cs} 
     686and \np[=T]{ln_skin_wl}{ln\_skin\_wl} to use COARE3.x or ECMWF in a consistent 
     687way. 
     688 
     689\texttt{\#LB: ADD BLBLA ABOUT THE TWO CS/WL PARAMETRIZATIONS (ECMWF and COARE) !!!} 
     690 
     691For the cool-skin scheme parametrization COARE and ECMWF algorithms share the same 
     692basis: \citet{fairall.bradley.ea_JGR96}. With some minor updates based 
     693on \citet{zeng.beljaars_GRL05} for ECMWF, and \citet{fairall.ea_19} for COARE 
     6943.6. 
     695 
     696For the warm-layer scheme, ECMWF is based on \citet{zeng.beljaars_GRL05} with a 
     697recent update from \citet{takaya.bidlot.ea_JGR10} (consideration of the 
     698turbulence input from Langmuir circulation). 
     699 
     700Importantly, COARE warm-layer scheme \citep{fairall.ea_19} includes a prognostic 
     701equation for the thickness of the warm-layer, while it is considered as constant 
     702in the ECWMF algorithm. 
     703 
     704\begin{figure}[!t] 
     705  \centering 
     706  \includegraphics[width=0.96\textwidth]{SBC_dT_skin-SST} 
     707  \caption[Skin temperature]{Hourly difference between skin temperature and 
     708  bulk SST (1\,m deep) simulated by the NEMO \texttt{STATION\_ASF} test-case, 
     709  based on in-situ data from PAPA station (50.1\deg N, 144.9\deg W) in 2018; for 
     710  two different sets of ``bulk algorithm + cool-skin/warm-layer 
     711  parametrizations'': COARE 3.6 and ECMWF.} 
     712  \label{fig:SBC_dT_skin-SST} 
     713\end{figure} 
     714 
     715 
     716% 
     717 
     718 
     719 
     720\subsection{Appropriate use of each bulk parametrization} 
     721 
     722\subsubsection{NCAR} 
     723 
     724NCAR bulk parametrizations (formerly known as CORE) is meant to be used with the 
     725CORE II atmospheric forcing \citep{large.yeager_CD09}. The expected sea surface 
     726temperature is the bulk SST. Hence the following namelist parameters must be 
     727set: 
     728% 
     729\begin{verbatim} 
     730  ... 
     731  ln_NCAR    = .true. 
     732  ... 
     733  rn_zqt     = 10.     ! Air temperature & humidity reference height (m) 
     734  rn_zu      = 10.     ! Wind vector reference height (m) 
     735  ... 
     736  ln_skin_cs = .false. ! use the cool-skin parameterization 
     737  ln_skin_wl = .false. ! use the warm-layer parameterization 
     738  ... 
     739  ln_humi_sph = .true. ! humidity "sn_humi" is specific humidity  [kg/kg] 
     740\end{verbatim} 
     741 
     742 
     743\subsubsection{ECMWF} 
     744% 
     745With an atmospheric forcing based on a reanalysis of the ECMWF, such as the 
     746Drakkar Forcing Set \citep{brodeau.barnier.ea_OM10}, we strongly recommend to 
     747use the ECMWF bulk parametrizations with the cool-skin and warm-layer 
     748parametrizations activated. In ECMWF reanalyzes, since air temperature and 
     749humidity are provided at the 2\,m height, and given that the humidity is 
     750distributed as the dew-point temperature, the namelist must be tuned as follows: 
     751% 
     752\begin{verbatim} 
     753  ... 
     754  ln_ECMWF   = .true. 
     755  ...      
     756  rn_zqt     =  2.     ! Air temperature & humidity reference height (m) 
     757  rn_zu      = 10.     ! Wind vector reference height (m) 
     758  ... 
     759  ln_skin_cs = .true. ! use the cool-skin parameterization 
     760  ln_skin_wl = .true. ! use the warm-layer parameterization 
     761  ... 
     762  ln_humi_dpt = .true. !  humidity "sn_humi" is dew-point temperature [K] 
     763  ... 
     764\end{verbatim} 
     765% 
     766Note: when \np{ln_ECMWF}{ln\_ECMWF} is selected, the selection 
     767of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitly 
     768triggers the use of the ECMWF cool-skin and warm-layer parametrizations, 
     769respectively (found in \textit{sbcblk\_skin\_ecmwf.F90}). 
     770 
     771 
     772\subsubsection{COARE 3.x} 
     773% 
     774Since the ECMWF parametrization is largely based on the COARE* parametrization, 
     775the two algorithms are very similar in terms of structure and closure 
     776approach. As such, the namelist tuning for COARE 3.x is identical to that of 
     777ECMWF: 
     778% 
     779\begin{verbatim} 
     780  ... 
     781  ln_COARE3p6 = .true. 
     782  ...      
     783  ln_skin_cs = .true. ! use the cool-skin parameterization 
     784  ln_skin_wl = .true. ! use the warm-layer parameterization 
     785  ... 
     786\end{verbatim} 
     787 
     788Note: when \np[=T]{ln_COARE3p0}{ln\_COARE3p0} is selected, the selection 
     789of \np{ln_skin_cs}{ln\_skin\_cs} and \np{ln_skin_wl}{ln\_skin\_wl} implicitly 
     790triggers the use of the COARE cool-skin and warm-layer parametrizations, 
     791respectively (found in \textit{sbcblk\_skin\_coare.F90}). 
     792 
     793 
     794%lulu 
     795 
     796 
     797 
     798% In a typical bulk algorithm, the BTCs under neutral stability conditions are 
     799% defined using \emph{in-situ} flux measurements while their dependence on the 
     800% stability is accounted through the \emph{Monin-Obukhov Similarity Theory} and 
     801% the \emph{flux-profile} relationships \citep[\eg{}][]{Paulson_1970}. BTCs are 
     802% functions of the wind speed and the near-surface stability of the atmospheric 
     803% surface layer (hereafter ASL), and hence, depend on $U_B$, $T_s$, $T_z$, $q_s$ 
     804% and $q_z$. 
     805 
     806 
     807 
     808\subsection{Prescribed near-surface atmospheric state} 
     809 
     810The atmospheric fields used depend on the bulk formulae used.  In forced mode, 
     811when a sea-ice model is used, a specific bulk formulation is used.  Therefore, 
     812different bulk formulae are used for the turbulent fluxes computation over the 
     813ocean and over sea-ice surface. 
     814% 
     815 
     816%The choice is made by setting to true one of the following namelist 
     817%variable: \np{ln_NCAR}{ln\_NCAR}, \np{ln_COARE_3p0}{ln\_COARE\_3p0}, \np{ln_COARE_3p6}{ln\_COARE\_3p6} 
     818%and \np{ln_ECMWF}{ln\_ECMWF}.  
    545819 
    546820Common options are defined through the \nam{sbc_blk}{sbc\_blk} namelist variables. 
     
    553827    Variable description                 & Model variable & Units              & point \\ 
    554828    \hline 
    555     i-component of the 10m air velocity  & utau           & $m.s^{-1}$         & T     \\ 
     829    i-component of the 10m air velocity  & wndi           & $m.s^{-1}$         & T     \\ 
    556830    \hline 
    557     j-component of the 10m air velocity  & vtau           & $m.s^{-1}$         & T     \\ 
     831    j-component of the 10m air velocity  & wndj           & $m.s^{-1}$         & T     \\ 
    558832    \hline 
    559     10m air temperature                  & tair           & \r{}$K$            & T     \\ 
     833    10m air temperature                  & tair           & $K$               & T     \\ 
    560834    \hline 
    561     Specific humidity                    & humi           & \%                 & T     \\ 
     835    Specific humidity                    & humi           & $-$               & T     \\ 
     836    Relative humidity                    & ~              & $\%$              & T     \\ 
     837    Dew-point temperature                & ~              & $K$               & T     \\     
    562838    \hline 
    563     Incoming long wave radiation         & qlw            & $W.m^{-2}$         & T     \\ 
     839    Downwelling longwave radiation       & qlw            & $W.m^{-2}$         & T     \\ 
    564840    \hline 
    565     Incoming short wave radiation        & qsr            & $W.m^{-2}$         & T     \\ 
     841    Downwelling shortwave radiation      & qsr            & $W.m^{-2}$         & T     \\ 
    566842    \hline 
    567843    Total precipitation (liquid + solid) & precip         & $Kg.m^{-2}.s^{-1}$ & T     \\ 
     
    584860 
    585861\np{cn_dir}{cn\_dir} is the directory of location of bulk files 
    586 \np{ln_taudif}{ln\_taudif} is the flag to specify if we use Hight Frequency (HF) tau information (.true.) or not (.false.) 
     862%\np{ln_taudif}{ln\_taudif} is the flag to specify if we use High Frequency (HF) tau information (.true.) or not (.false.) 
    587863\np{rn_zqt}{rn\_zqt}: is the height of humidity and temperature measurements (m) 
    588864\np{rn_zu}{rn\_zu}: is the height of wind measurements (m) 
     
    595871Its range must be between zero and one, and it is recommended to set it to 0 at low-resolution (ORCA2 configuration). 
    596872 
    597 As for the flux formulation, information about the input data required by the model is provided in 
     873As for the flux parametrization, information about the input data required by the model is provided in 
    598874the namsbc\_blk namelist (see \autoref{subsec:SBC_fldread}). 
    599875 
    600 %% ================================================================================================= 
    601 \subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk\_algo\_coare.F90, sbcblk\_algo\_coare3p5.F90, sbcblk\_algo\_ecmwf.F90, sbcblk\_algo\_ncar.F90})]{Ocean-Atmosphere Bulk formulae (\mdl{sbcblk\_algo\_coare}, \mdl{sbcblk\_algo\_coare3p5}, \mdl{sbcblk\_algo\_ecmwf}, \mdl{sbcblk\_algo\_ncar})} 
    602 \label{subsec:SBC_blk_ocean} 
    603  
    604 Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
    605 COARE 3.0, COARE 3.5 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently 
    606 their neutral transfer coefficients relationships with neutral wind. 
    607 \begin{itemize} 
    608 \item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
    609   They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
    610   They use an inertial dissipative method to compute the turbulent transfer coefficients 
    611   (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
    612   This \citet{large.yeager_rpt04} dataset is available through 
    613   the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
    614   Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    615   This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
    616 \item COARE 3.0 (\np[=.true.]{ln_COARE_3p0}{ln\_COARE\_3p0}): See \citet{fairall.bradley.ea_JC03} for more details 
    617 \item COARE 3.5 (\np[=.true.]{ln_COARE_3p5}{ln\_COARE\_3p5}): See \citet{edson.jampana.ea_JPO13} for more details 
    618 \item ECMWF (\np[=.true.]{ln_ECMWF}{ln\_ECMWF}): Based on \href{https://www.ecmwf.int/node/9221}{IFS (Cy31)} implementation and documentation. 
    619   Surface roughness lengths needed for the Obukhov length are computed following \citet{beljaars_QJRMS95}. 
    620 \end{itemize} 
     876 
     877\subsubsection{Air humidity} 
     878 
     879Air humidity can be provided as three different parameters: specific humidity 
     880[kg/kg], relative humidity [\%], or dew-point temperature [K] (LINK to namelist 
     881parameters)... 
     882 
     883 
     884~\\ 
     885 
     886 
     887 
     888 
     889 
     890 
     891 
     892 
     893 
     894 
     895%% ================================================================================================= 
     896%\subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk\_algo\_coare3p0.F90, sbcblk\_algo\_coare3p6.F90, %sbcblk\_algo\_ecmwf.F90, sbcblk\_algo\_ncar.F90})]{Ocean-Atmosphere Bulk formulae (\mdl{sbcblk\_algo\_coare3p0}, %\mdl{sbcblk\_algo\_coare3p6}, \mdl{sbcblk\_algo\_ecmwf}, \mdl{sbcblk\_algo\_ncar})} 
     897%\label{subsec:SBC_blk_ocean} 
     898 
     899%Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
     900%COARE 3.0, COARE 3.6 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently 
     901%their neutral transfer coefficients relationships with neutral wind. 
     902%\begin{itemize} 
     903%\item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
     904%  They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
     905%  They use an inertial dissipative method to compute the turbulent transfer coefficients 
     906%  (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
     907%  This \citet{large.yeager_rpt04} dataset is available through 
     908%  the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
     909%  Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
     910%  This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
     911%\item COARE 3.0 (\np[=.true.]{ln_COARE_3p0}{ln\_COARE\_3p0}): See \citet{fairall.bradley.ea_JC03} for more details 
     912%\item COARE 3.6 (\np[=.true.]{ln_COARE_3p6}{ln\_COARE\_3p6}): See \citet{edson.jampana.ea_JPO13} for more details 
     913%\item ECMWF (\np[=.true.]{ln_ECMWF}{ln\_ECMWF}): Based on \href{https://www.ecmwf.int/node/9204}{IFS (Cy40r1)} %implementation and documentation. 
     914%  Surface roughness lengths needed for the Obukhov length are computed 
     915%  following \citet{beljaars_QJRMS95}. 
     916%\end{itemize} 
    621917 
    622918%% ================================================================================================= 
    623919\subsection{Ice-Atmosphere Bulk formulae} 
    624920\label{subsec:SBC_blk_ice} 
     921 
     922 
     923\texttt{\#out\_of\_place:} 
     924 For sea-ice, three possibilities can be selected: 
     925a constant transfer coefficient (1.4e-3; default 
     926value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), 
     927and \citet{lupkes.gryanik_JGR15} (\np{ln_Cd_L15}{ln\_Cd\_L15}) parameterizations 
     928\texttt{\#out\_of\_place.} 
     929 
     930 
     931 
    625932 
    626933Surface turbulent fluxes between sea-ice and the atmosphere can be computed in three different ways: 
Note: See TracChangeset for help on using the changeset viewer.