New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14079 – NEMO

Changeset 14079


Ignore:
Timestamp:
2020-12-04T12:06:34+01:00 (3 years ago)
Author:
nicolasmartin
Message:

#2414 Updating bibtex keys for references in LaTeX files in compliance with previous commit

Location:
NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex
Files:
10 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_DYN.tex

    r14066 r14079  
    657657Note that expression \autoref{eq:DYN_hpg_sco} is commonly used when the variable volume formulation is activated 
    658658(\texttt{vvl?}) because in that case, even with a flat bottom, 
    659 the coordinate surfaces are not horizontal but follow the free surface \citep{levier.treguier.ea_rpt07}. 
     659the coordinate surfaces are not horizontal but follow the free surface \citep{levier.treguier.ea_trpt07}. 
    660660The pressure jacobian scheme (\np[=.true.]{ln_dynhpg_prj}{ln\_dynhpg\_prj}) is available as 
    661661an improved option to \np[=.true.]{ln_dynhpg_sco}{ln\_dynhpg\_sco} when \texttt{vvl?} is active. 
     
    913913external gravity waves in idealized or weakly non-linear cases. 
    914914Although the damping is lower than for the filtered free surface, 
    915 it is still significant as shown by \citet{levier.treguier.ea_rpt07} in the case of an analytical barotropic Kelvin wave. 
     915it is still significant as shown by \citet{levier.treguier.ea_trpt07} in the case of an analytical barotropic Kelvin wave. 
    916916 
    917917\cmtgm{               %%% copy from griffies Book 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_LBC.tex

    r14066 r14079  
    358358 
    359359The BDY module was modelled on the OBC module (see \NEMO\ 3.4) and shares many features and 
    360 a similar coding structure \citep{chanut_rpt05}. 
     360a similar coding structure \citep{chanut_trpt05}. 
    361361The specification of the location of the open boundary is completely flexible and 
    362362allows any type of setup, from regular boundaries to irregular contour (it includes the possibility to set an open boundary able to follow an isobath). 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_LDF.tex

    r11693 r14079  
    418418\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
    419419 
    420 This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 
     420This option refers to the \citep{smagorinsky_MWR63} scheme which is here implemented for momentum only. Smagorinsky chose as a 
    421421characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.: 
    422422 
     
    540540\end{listing} 
    541541 
    542 If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 
     542If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{fox-kemper.ferrari.ea_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 
    543543 
    544544\colorbox{yellow}{TBC} 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_SBC.tex

    r14066 r14079  
    550550initially developed (and are still developed in parallel) in 
    551551the \href{https://brodeau.github.io/aerobulk}{\texttt{AeroBulk}} open-source project 
    552 \citep{brodeau.barnier.ea_JPO17}. 
     552\citep{brodeau.barnier.ea_JPO16}. 
    553553 
    554554%%% Bulk formulae are this: 
     
    592592respectively. $\gamma z$ is a temperature correction term which accounts for the 
    593593adiabatic lapse rate and approximates the potential temperature at height 
    594 $z$ \citep{josey.gulev.ea_2013}. 
     594$z$ \citep{josey.gulev.ea_OCC13}. 
    595595$\mathbf{U}_z$ is the wind speed vector at height $z$ above the sea surface 
    596 (possibly referenced to the surface current $\mathbf{u_0}$, 
    597 \autoref{s_res1}.\autoref{ss_current}). 
     596(possibly referenced to the surface current $\mathbf{u_0}$).%, 
     597%\autoref{s_res1}.\autoref{ss_current}). %% Undefined references 
    598598The bulk scalar wind speed, namely $U_B$, is the scalar wind speed, 
    599599$|\mathbf{U}_z|$, with the potential inclusion of a gustiness contribution. 
     
    602602$T_s$ is the sea surface temperature. $q_s$ is the saturation specific humidity 
    603603of air at temperature $T_s$; it includes a 2\% reduction to account for the 
    604 presence of salt in seawater \citep{sverdrup.johnson.ea_1942,kraus.businger_QJRMS96}. 
     604presence of salt in seawater \citep{sverdrup.johnson.ea_bk42,kraus.businger_QJRMS96}. 
    605605Depending on the bulk parametrization used, $T_s$ can either be the temperature 
    606606at the air-sea interface (skin temperature, hereafter SSST) or at typically a 
     
    617617 
    618618For more details on all these aspects the reader is invited to refer 
    619 to \citet{brodeau.barnier.ea_JPO17}. 
     619to \citet{brodeau.barnier.ea_JPO16}. 
    620620 
    621621\subsection{Bulk parametrizations} 
     
    633633 
    634634\begin{itemize} 
    635 \item NCAR, formerly known as CORE, \citep{large.yeager_rpt04,large.yeager_CD09} 
     635\item NCAR, formerly known as CORE, \citep{large.yeager_trpt04,large.yeager_CD09} 
    636636\item COARE 3.0 \citep{fairall.bradley.ea_JC03} 
    637637\item COARE 3.6 \citep{edson.jampana.ea_JPO13} 
     
    642642bulk parametrization are built around improvements in the representation of the 
    643643effects of waves on 
    644 fluxes \citep{edson.jampana.ea_JPO13,brodeau.barnier.ea_JPO17}. This includes 
     644fluxes \citep{edson.jampana.ea_JPO13,brodeau.barnier.ea_JPO16}. This includes 
    645645improved relationships of surface roughness, and whitecap fraction on wave 
    646646parameters. It is therefore recommended to chose version 3.6 over 3. 
     
    663663 
    664664For the cool-skin scheme parametrization COARE and ECMWF algorithms share the same 
    665 basis: \citet{fairall.bradley.ea_JGR96}. With some minor updates based 
     665basis: \citet{fairall.bradley.ea_JGRO96}. With some minor updates based 
    666666on \citet{zeng.beljaars_GRL05} for ECMWF, and \citet{fairall.ea_19} for COARE 
    6676673.6. 
     
    837837%their neutral transfer coefficients relationships with neutral wind. 
    838838%\begin{itemize} 
    839 %\item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
     839%\item NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): The NCAR bulk formulae have been developed by \citet{large.yeager_trpt04}. 
    840840%  They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
    841841%  They use an inertial dissipative method to compute the turbulent transfer coefficients 
    842842%  (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
    843 %  This \citet{large.yeager_rpt04} dataset is available through 
     843%  This \citet{large.yeager_trpt04} dataset is available through 
    844844%  the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
    845845%  Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
     
    859859 For sea-ice, three possibilities can be selected: 
    860860a constant transfer coefficient (1.4e-3; default 
    861 value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), 
     861value), \citet{lupkes.gryanik.ea_JGRA12} (\np{ln_Cd_L12}{ln\_Cd\_L12}), 
    862862and \citet{lupkes.gryanik_JGR15} (\np{ln_Cd_L15}{ln\_Cd\_L15}) parameterizations 
    863863\texttt{\#out\_of\_place.} 
     
    868868\item Constant value (\forcode{Cd_ice=1.4e-3}): 
    869869  default constant value used for momentum and heat neutral transfer coefficients 
    870 \item \citet{lupkes.gryanik.ea_JGR12} (\np[=.true.]{ln_Cd_L12}{ln\_Cd\_L12}): 
     870\item \citet{lupkes.gryanik.ea_JGRA12} (\np[=.true.]{ln_Cd_L12}{ln\_Cd\_L12}): 
    871871  This scheme adds a dependency on edges at leads, melt ponds and flows 
    872872  of the constant neutral air-ice drag. After some approximations, 
     
    12041204  \begin{description} 
    12051205  \item [{\np[=1]{nn_isfblk}{nn\_isfblk}}]: The melt rate is based on a balance between the upward ocean heat flux and 
    1206     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 
     1206    the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_trpt06}. 
    12071207  \item [{\np[=2]{nn_isfblk}{nn\_isfblk}}]: The melt rate and the heat flux are based on a 3 equations formulation 
    12081208    (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation). 
     
    14471447Then using the routine \rou{sbcblk\_algo\_ncar} and starting from the neutral drag coefficent provided, 
    14481448the drag coefficient is computed according to the stable/unstable conditions of the 
    1449 air-sea interface following \citet{large.yeager_rpt04}. 
     1449air-sea interface following \citet{large.yeager_trpt04}. 
    14501450 
    14511451%% ================================================================================================= 
     
    15581558 
    15591559The surface stress felt by the ocean is the atmospheric stress minus the net stress going 
    1560 into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not 
     1560into the waves \citep{janssen.breivik.ea_trpt13}. Therefore, when waves are growing, momentum and energy is spent and is not 
    15611561available for forcing the mean circulation, while in the opposite case of a decaying sea 
    15621562state, more momentum is available for forcing the ocean. 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r14066 r14079  
    532532the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{burchard_OM02}. 
    533533Evaluation of the 4 GLS turbulent closure schemes can be found in \citet{warner.sherwood.ea_OM05} in ROMS model and 
    534  in \citet{reffray.guillaume.ea_GMD15} for the \NEMO\ model. 
     534 in \citet{reffray.bourdalle-badie.ea_GMD15} for the \NEMO\ model. 
    535535 
    536536% ------------------------------------------------------------------------------------------------------------- 
     
    608608classical shear turbulence. Instead they are in a regime known as 
    609609`Langmuir turbulence',  dominated by an 
    610 interaction between the currents and the Stokes drift of the surface waves \citep[e.g.][]{mcwilliams.ea_JFM97}. 
     610interaction between the currents and the Stokes drift of the surface waves \citep[e.g.][]{mcwilliams.sullivan.ea_JFM97}. 
    611611This regime is characterised by strong vertical turbulent motion, and appears when the surface Stokes drift $u_{s0}$ is much greater than the friction velocity $u_{\ast}$. More specifically Langmuir turbulence is thought to be crucial where the turbulent Langmuir number $\mathrm{La}_{t}=(u_{\ast}/u_{s0}) > 0.4$. 
    612612 
     
    617617The OSMOSIS turbulent closure scheme is a similarity-scale scheme in 
    618618the same spirit as the K-profile 
    619 parameterization (KPP) scheme of \citet{large.ea_RG97}. 
     619parameterization (KPP) scheme of \citet{large.mcwilliams.ea_RG94}. 
    620620A specified shape of diffusivity, scaled by the (OSBL) depth 
    621621$h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 
     
    628628as in KPP, it is set by a prognostic equation that is informed by 
    629629energy budget considerations reminiscent of the classical mixed layer 
    630 models of \citet{kraus.turner_tellus67}. 
     630models of \citet{kraus.turner_T67}. 
    631631The model also includes an explicit parametrization of the structure 
    632632of the pycnocline (the stratified region at the bottom of the OSBL). 
    633633 
    634634Presently, mixing below the OSBL is handled by the Richardson 
    635 number-dependent mixing scheme used in \citet{large.ea_RG97}. 
     635number-dependent mixing scheme used in \citet{large.mcwilliams.ea_RG94}. 
    636636 
    637637Convective parameterizations such as described in \autoref{sec:ZDF_conv} 
     
    748748based on the potential energy budget of the OSBL, is the leading term 
    749749\citep{grant+etal18} of a generalization of that used in mixed-layer 
    750 models e.g.\ \citet{kraus.turner_tellus67}, in which the thickness of the pycnocline is taken to be zero. 
     750models e.g.\ \citet{kraus.turner_T67}, in which the thickness of the pycnocline is taken to be zero. 
    751751 
    752752The entrainment flux for the combination of convective and Langmuir turbulence is given by 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_cfgs.tex

    r11693 r14079  
    198198(see \autoref{tab:CFGS_ORCA} and \autoref{fig:DOM_zgr_e3}). 
    199199The bottom topography and the coastlines are derived from the global atlas of Smith and Sandwell (1997). 
    200 The default forcing uses the boundary forcing from \citet{large.yeager_rpt04} (see \autoref{subsec:SBC_blk_ocean}), 
     200The default forcing uses the boundary forcing from \citet{large.yeager_trpt04} (see \autoref{subsec:SBC_blk_ocean}), 
    201201which was developed for the purpose of running global coupled ocean-ice simulations without 
    202202an interactive atmosphere. 
    203 This \citet{large.yeager_rpt04} dataset is available through 
     203This \citet{large.yeager_trpt04} dataset is available through 
    204204the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}{GFDL web site}. 
    205 The "normal year" of \citet{large.yeager_rpt04} has been chosen of the \NEMO\ distribution since release v3.3. 
     205The "normal year" of \citet{large.yeager_trpt04} has been chosen of the \NEMO\ distribution since release v3.3. 
    206206 
    207207ORCA\_R2 pre-defined configuration can also be run with multiply online nested zooms (\ie\ with AGRIF, \key{agrif} defined). 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11693 r14079  
    706706In this case, the free surface equation is nonlinear, 
    707707and the variations of volume are fully taken into account. 
    708 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on 
     708These coordinates systems is presented in a report \citep{levier.treguier.ea_trpt07} available on 
    709709the \NEMO\ web site. 
    710710 
     
    841841This problem can be at least partially overcome by mixing $s$-coordinate and 
    842842step-like representation of bottom topography 
    843 \citep{gerdes_JGR93*a,gerdes_JGR93*b,madec.delecluse.ea_JPO96}. 
     843\citep{gerdes_JGR93,gerdes_JGR93*a,madec.delecluse.ea_JPO96}. 
    844844However, the definition of the model domain vertical coordinate becomes then a non-trivial thing for 
    845845a realistic bottom topography: 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex

    r11693 r14079  
    3030 
    3131In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
    32 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
     32These coordinates systems is presented in a report \citep{levier.treguier.ea_trpt07} available on the \NEMO\ web site. 
    3333 
    3434\colorbox{yellow}{  end of to be updated} 
     
    170170 
    171171The split-explicit formulation has a damping effect on external gravity waves, 
    172 which is weaker than the filtered free surface but still significant as shown by \citet{levier.treguier.ea_rpt07} in 
     172which is weaker than the filtered free surface but still significant as shown by \citet{levier.treguier.ea_trpt07} in 
    173173the case of an analytical barotropic Kelvin wave. 
    174174 
     
    306306 
    307307In the non-linear free surface formulation, the variations of volume are fully taken into account. 
    308 This option is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
     308This option is presented in a report \citep{levier.treguier.ea_trpt07} available on the \NEMO\ web site. 
    309309The three time-stepping methods (explicit, split-explicit and filtered) are the same as in 
    310310\autoref{?:DYN_spg_linear?} except that the ocean depth is now time-dependent. 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/global/annex_D.tex

    r13841 r14079  
    3232 
    3333To satisfy part of these aims, \NEMO\ is written with a coding standard which is close to the ECMWF rules, 
    34 named DOCTOR \citep{gibson_rpt86}.  
     34named DOCTOR \citep{gibson_trpt86}.  
    3535These rules present some advantages like: 
    3636 
  • NEMO/branches/2020/dev_r13787_doc_latex_recovery/doc/latex/global/coding_rules.tex

    r13841 r14079  
    2424 
    2525To satisfy part of these aims, \NEMO\ is written with a coding standard which is close to the ECMWF rules, 
    26 named DOCTOR \citep{gibson_rpt86}. 
     26named DOCTOR \citep{gibson_trpt86}. 
    2727These rules present some advantages like: 
    2828 
Note: See TracChangeset for help on using the changeset viewer.