New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 2080 – NEMO

Changeset 2080


Ignore:
Timestamp:
2010-09-09T15:11:04+02:00 (14 years ago)
Author:
cbricaud
Message:

add documentation for DEV_r1784_GLS

Location:
branches/DEV_r1784_GLS/DOC/TexFiles
Files:
1 added
2 edited

Legend:

Unmodified
Added
Removed
  • branches/DEV_r1784_GLS/DOC/TexFiles/Biblio/Biblio.bib

    r1225 r2080  
    8585 
    8686@STRING{Tellus = {Tellus}} 
     87 
     88@STRING{RGSP = {Rev. Geophys. Space Phys.} 
    8789 
    8890@ARTICLE{Adcroft_Campin_OM04, 
     
    523525} 
    524526 
     527@ARTICLE{Canuto_2001, 
     528  author = {V. M. Canuto and A. Howard and Y. Cheng and M. S. Dubovikov}, 
     529  title = {Ocean turbulence. PartI: One-point closure model-momentum and heat vertical diffusivities}, 
     530  journal = JPO, 
     531  year = {2001}, 
     532  volume = {24, 12}, 
     533  pages = {2546-2559}, 
     534  owner = {gr}, 
     535  timestamp = {2010.09.09} 
     536} 
     537 
    525538@ARTICLE{Cox1987, 
    526539  author = {M. Cox}, 
     
    532545  owner = {gm}, 
    533546  timestamp = {2007.08.03} 
     547} 
     548 
     549@ARTICLE{Craig_Banner_1994, 
     550  author = {P. D. Banner and M. L. Banner}, 
     551  title = {Modeling wave-enhanced turbulence in the ocean surface layer}, 
     552  journal = JPO, 
     553  year = {1994}, 
     554  volume = {24, 12}, 
     555  pages = {2546-2559}, 
     556  owner = {g5}, 
     557  timestamp = {2010.09.09} 
    534558} 
    535559 
     
    705729  owner = {gm}, 
    706730  timestamp = {2007.08.04} 
     731} 
     732 
     733@ARTICLE{Galperin_1988, 
     734  author = {B. Galperin and L. H. Kantha and S. Hassid and A. Rosati}, 
     735  title = {A quasi-equilibrium turbulent energy model for geophysical flows}, 
     736  journal = JAS, 
     737  year = {1988}, 
     738  volume = {45}, 
     739  pages = {55-62}, 
     740  owner = {gr}, 
     741  timestamp = {2010.09.09} 
    707742} 
    708743 
     
    10831118  owner = {gm}, 
    10841119  timestamp = {2008.08.31} 
     1120} 
     1121 
     1122@ARTICLE{Kantha_Clayson_1994, 
     1123  author = {L. H. Kantha and C. A. Clayson}, 
     1124  title = {An improved mixed layer model for geophysical applications}, 
     1125  journal = JGR, 
     1126  year = {1994}, 
     1127  volume = {99}, 
     1128  pages = {25235-25266}, 
     1129  owner = {gr}, 
     1130  timestamp = {2010.09.09} 
    10851131} 
    10861132 
     
    15841630} 
    15851631 
     1632@ARTICLE{Mellor_Yamada_1982, 
     1633  author = {G. L. Mellor and T. Yamada}, 
     1634  title = {Development of a turbulence closure model for geophysical fluid problems}, 
     1635  journal = RGSP, 
     1636  year = {1982}, 
     1637  volume = {20}, 
     1638  pages = {851-875}, 
     1639  owner = {gr}, 
     1640  timestamp = {2010.09.09} 
     1641} 
     1642 
    15861643@ARTICLE{Merryfield1999, 
    15871644  author = {W. J. Merryfield and G. Holloway and A. E. Gargett}, 
     
    17911848  owner = {gm}, 
    17921849  timestamp = {2007.08.04} 
     1850} 
     1851 
     1852@ARTICLE{Rodi_1987, 
     1853  author = {W. Rodi}, 
     1854  title = {Examples of calculation methods for flow and mixing in stratified fluids}, 
     1855  journal = JGR, 
     1856  year = {1987}, 
     1857  volume = {92, C5}, 
     1858  pages = {5305-5328}, 
     1859  owner = {gr}, 
     1860  timestamp = {2010.09.09} 
    17931861} 
    17941862 
     
    22142282} 
    22152283 
     2284@ARTICLE{Umlauf_Burchard_2003, 
     2285  author = {L. Umlauf and H. Burchard}, 
     2286  title = {A generic length-scale equation for geophysical turbulence models}, 
     2287  journal = {Journal of Marine Systems},  
     2288  year = {2003}, 
     2289  volume = {61}, 
     2290  pages = {235-265}, 
     2291  number = {2}, 
     2292  owner = {gr}, 
     2293  timestamp = {2010.09.09} 
     2294} 
     2295 
    22162296@BOOK{UNESCO1983, 
    22172297  title = {Algorithms for computation of fundamental property of sea water}, 
     
    23082388  owner = {gm}, 
    23092389  timestamp = {2007.08.04} 
     2390} 
     2391 
     2392@ARTICLE{Wilcox_1988, 
     2393  author = {D. C. Wilcox}, 
     2394  title = {Reassessment of the scale-determining equation for advanced turbulence models}, 
     2395  journal = {AIAA journal}, 
     2396  year = {1988}, 
     2397  volume = {26, 11}, 
     2398  pages = {1299-1310}, 
     2399  owner = {gr}, 
     2400  timestamp = {2010.09.09} 
    23102401} 
    23112402 
  • branches/DEV_r1784_GLS/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r2055 r2080  
    233233 
    234234% ------------------------------------------------------------------------------------------------------------- 
     235%        GLS Generic Length Scale Scheme  
     236% ------------------------------------------------------------------------------------------------------------- 
     237\subsection{GLS Generic Length Scale (\key{zdfgls})} 
     238\label{ZDF_gls} 
     239 
     240%--------------------------------------------namgls--------------------------------------------------------- 
     241\namdisplay{namgls} 
     242%-------------------------------------------------------------------------------------------------------------- 
     243 
     244The model allows to resolve two prognostic equations for turbulent  
     245kinetic energy $\bar {e}$ and a generic length scale \citep{Umlauf_Burchard_2003}. Thanks to the latter, commonly  
     246used closures can be retrieved: $k-kl$ \citep{Mellor_Yamada_1982}, $k-{\epsilon }$ \citep{Rodi_1987} and $k-{\omega }$  
     247\citep{Wilcox_1988}. These equations could be written in a generic form with the incorporation  
     248of a new variable : ${\psi} = (C^{0}_{\mu})^{p} \ {\bar{e}}^{m} \ l^{n}$. 
     249 
     250\begin{equation} \label{Eq_zdfgls_e} 
     251\frac{\partial \bar{e}}{\partial t} =  
     252\frac{A^{vm}}{{\sigma_e} {e_3} }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2 
     253                                                        +\left( {\frac{\partial v}{\partial k}} \right)^2} \right] 
     254-A^{vT}\,N^2 
     255+\frac{1}{e_3}  \;\frac{\partial }{\partial k}\left[ {\frac{A^{vm}}{e_3 } 
     256                                \;\frac{\partial \bar{e}}{\partial k}} \right] 
     257- \epsilon \; 
     258\end{equation} 
     259 
     260\begin{equation} \label{Eq_zdfgls_psi} 
     261\frac{\partial \psi}{\partial t} = \frac{\psi}{\bar{e}}  
     262(\frac{{C_1}A^{vm}}{{\sigma_{\psi}} {e_3} }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2 
     263                                                        +\left( {\frac{\partial v}{\partial k}} \right)^2} \right] 
     264-{C_3}A^{vT}\,N^2- C_2{\epsilon}Fw)  
     265+\frac{1}{e_3}  \;\frac{\partial }{\partial k}\left[ {\frac{A^{vm}}{e_3 } 
     266                                \;\frac{\partial \psi}{\partial k}} \right]\; 
     267\end{equation} 
     268 
     269\begin{equation} \label{Eq_zdfgls_kz} 
     270   \begin{split} 
     271         A^{vm} &= C_{\mu} \ \sqrt {\bar{e}} \ l         \\ 
     272         A^{vT} &= C_{\mu'}\ \sqrt {\bar{e}} \ l 
     273   \end{split} 
     274\end{equation} 
     275 
     276\begin{equation} \label{Eq_zdfgls_eps} 
     277{\epsilon} = (C^{0}_{\mu}) \frac{\bar {e}^{3/2}}{l} \; 
     278\end{equation} 
     279where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}) and $\epsilon$ the dissipation rate. 
     280In function of the parameters k, m and n, common turbulent closure could be retrieved. 
     281The constants C1, C2, C3, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function (Fw) depends of the choice of the turbulence model. 
     282%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     283\begin{figure}[!h] 
     284\centering 
     285\includegraphics[scale=0.7]{./TexFiles/Figures/tabgls.png} 
     286\caption {Values of the parameters in function of the model of turbulence.} 
     287\label{tabgls} 
     288\end{figure} 
     289%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     290 
     291About the Mellor-Yamada model, the negativity of n allows to use a wall function to force 
     292the convergence of the mixing length towards Kzb (K: Kappa and zb: rugosity length) value 
     293near physical boundaries (logarithmic boundary layer law). $C_{\mu}$ and $C_{\mu'}$ are calculated from stability functions  
     294of \citet{Galperin_1988}, \citet{Kantha_Clayson_1994} or \citet{Canuto_2001}. 
     295$C^{0}_{\mu}$ depends of the choice of the stability function. 
     296 
     297The boundary condition at the surface and the bottom could be calculated thanks to Diriclet or Neumann condition. 
     298The wave effect on the mixing could be also being considered \citep{Craig_Banner_1994}. 
     299 
     300------------------------------------------------------------------------------------------------------------- 
    235301%        K Profile Parametrisation (KPP)  
    236302% ------------------------------------------------------------------------------------------------------------- 
     
    247313\colorbox{yellow}{Add a description of KPP here.} 
    248314 
    249 % ------------------------------------------------------------------------------------------------------------- 
    250 %        GLS Vertical scheme 
    251 % ------------------------------------------------------------------------------------------------------------- 
    252 \subsection{Generic length-scale equation model of Umlauf and Burchard (2003) (\key{zdfgls}) } 
    253 \label{ZDF_gls} 
    254  
    255 %--------------------------------------------namgls-------------------------------------------------------- 
    256 \namdisplay{namgls} 
    257 %-------------------------------------------------------------------------------------------------------------- 
    258 The model allows to resolve two prognostic equations for turbulent kinetic energy and a generic length scale.  
    259  
    260 \colorbox{yellow}{More explanations, with equations, will come soon. } 
    261315 
    262316% ================================================================ 
Note: See TracChangeset for help on using the changeset viewer.