New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 5120 for trunk/NEMOGCM/NEMO/OPA_SRC/TRA – NEMO

Ignore:
Timestamp:
2015-03-03T17:11:55+01:00 (9 years ago)
Author:
acc
Message:

#1473. Re-organisation and optimisation of ice shelf cavity option. This commit merges changes from the dev_r5094_UKMO_ISFCLEAN branch onto the trunk. Results will change, even with ln_isfcav=F, due to a return to original definitions of the vertical metrics. All changes have been reviewed and SETTE tested.

Location:
trunk/NEMOGCM/NEMO/OPA_SRC/TRA
Files:
9 edited

Legend:

Unmodified
Added
Removed
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traadv.F90

    r4990 r5120  
    206206      IF( lk_esopa         )   ioptio =          1 
    207207 
    208       IF( ( ln_traadv_muscl .OR. ln_traadv_muscl2 .OR. ln_traadv_ubs .OR. ln_traadv_qck ) .AND. nn_isf .NE. 0 )  & 
     208      IF( ( ln_traadv_muscl .OR. ln_traadv_muscl2 .OR. ln_traadv_ubs .OR. ln_traadv_qck .OR. ln_traadv_tvd_zts ) .AND. ln_isfcav )  & 
    209209      &   CALL ctl_stop( 'Only traadv_cen2 and traadv_tvd is compatible with ice shelf cavity') 
    210210 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traadv_tvd.F90

    r4990 r5120  
    106106      ENDIF 
    107107      ! 
    108       zwi(:,:,:) = 0.e0 ; zwz(:,:,:) = 0.e0 
     108      zwi(:,:,:) = 0.e0 ;  
    109109      ! 
    110110      !                                                          ! =========== 
    111111      DO jn = 1, kjpt                                            ! tracer loop 
    112112         !                                                       ! =========== 
    113          ! 1. Bottom value : flux set to zero 
     113         ! 1. Bottom and k=1 value : flux set to zero 
    114114         ! ---------------------------------- 
    115115         zwx(:,:,jpk) = 0.e0    ;    zwz(:,:,jpk) = 0.e0 
    116116         zwy(:,:,jpk) = 0.e0    ;    zwi(:,:,jpk) = 0.e0 
    117  
     117           
     118         zwz(:,:,1  ) = 0._wp 
    118119         ! 2. upstream advection with initial mass fluxes & intermediate update 
    119120         ! -------------------------------------------------------------------- 
     
    134135 
    135136         ! upstream tracer flux in the k direction 
     137         ! Interior value 
     138         DO jk = 2, jpkm1 
     139            DO jj = 1, jpj 
     140               DO ji = 1, jpi 
     141                  zfp_wk = pwn(ji,jj,jk) + ABS( pwn(ji,jj,jk) ) 
     142                  zfm_wk = pwn(ji,jj,jk) - ABS( pwn(ji,jj,jk) ) 
     143                  zwz(ji,jj,jk) = 0.5 * ( zfp_wk * ptb(ji,jj,jk,jn) + zfm_wk * ptb(ji,jj,jk-1,jn) ) * wmask(ji,jj,jk) 
     144               END DO 
     145            END DO 
     146         END DO 
    136147         ! Surface value 
    137148         IF( lk_vvl ) THEN    
    138             DO jj = 1, jpj 
    139                DO ji = 1, jpi 
    140                   zwz(ji,jj, mikt(ji,jj) ) = 0.e0                         ! volume variable 
    141                END DO 
    142             END DO 
     149            IF ( ln_isfcav ) THEN 
     150               DO jj = 1, jpj 
     151                  DO ji = 1, jpi 
     152                     zwz(ji,jj, mikt(ji,jj) ) = 0.e0          ! volume variable 
     153                  END DO 
     154               END DO 
     155            ELSE 
     156               zwz(:,:,1) = 0.e0          ! volume variable 
     157            END IF 
    143158         ELSE                 
    144             DO jj = 1, jpj 
    145                DO ji = 1, jpi 
    146                   zwz(ji,jj, mikt(ji,jj) ) = pwn(ji,jj,mikt(ji,jj)) * ptb(ji,jj,mikt(ji,jj),jn)   ! linear free surface  
    147                END DO 
    148             END DO    
     159            IF ( ln_isfcav ) THEN 
     160               DO jj = 1, jpj 
     161                  DO ji = 1, jpi 
     162                     zwz(ji,jj, mikt(ji,jj) ) = pwn(ji,jj,mikt(ji,jj)) * ptb(ji,jj,mikt(ji,jj),jn)   ! linear free surface  
     163                  END DO 
     164               END DO    
     165            ELSE 
     166               zwz(:,:,1) = pwn(:,:,1) * ptb(:,:,1,jn)   ! linear free surface 
     167            END IF 
    149168         ENDIF 
    150          ! Interior value 
    151          DO jj = 1, jpj 
    152             DO ji = 1, jpi 
    153                DO jk = mikt(ji,jj)+1, jpkm1 
    154                   zfp_wk = pwn(ji,jj,jk) + ABS( pwn(ji,jj,jk) ) 
    155                   zfm_wk = pwn(ji,jj,jk) - ABS( pwn(ji,jj,jk) ) 
    156                   zwz(ji,jj,jk) = 0.5 * ( zfp_wk * ptb(ji,jj,jk,jn) + zfm_wk * ptb(ji,jj,jk-1,jn) ) 
    157                END DO 
    158             END DO 
    159          END DO 
    160169 
    161170         ! total advective trend 
     
    202211       
    203212         ! antidiffusive flux on k 
    204          zwz(:,:,1) = 0.e0         ! Surface value 
    205          ! 
    206          DO jj = 1, jpj 
    207             DO ji = 1, jpi 
    208                ik=mikt(ji,jj) 
    209                ! surface value 
    210                zwz(ji,jj,1:ik) = 0.e0 
    211                ! Interior value 
    212                DO jk = mikt(ji,jj)+1, jpkm1                     
     213         ! Interior value 
     214         DO jk = 2, jpkm1                     
     215            DO jj = 1, jpj 
     216               DO ji = 1, jpi 
    213217                  zwz(ji,jj,jk) = 0.5 * pwn(ji,jj,jk) * ( ptn(ji,jj,jk,jn) + ptn(ji,jj,jk-1,jn) ) - zwz(ji,jj,jk) 
    214218               END DO 
    215219            END DO 
    216220         END DO 
     221         ! surface value 
     222         IF ( ln_isfcav ) THEN 
     223            DO jj = 1, jpj 
     224               DO ji = 1, jpi 
     225                  zwz(ji,jj,mikt(ji,jj)) = 0.e0 
     226               END DO 
     227            END DO 
     228         ELSE 
     229            zwz(:,:,1) = 0.e0 
     230         END IF 
    217231         CALL lbc_lnk( zwx, 'U', -1. )   ;   CALL lbc_lnk( zwy, 'V', -1. )         ! Lateral bondary conditions 
    218232         CALL lbc_lnk( zwz, 'W',  1. ) 
     
    358372 
    359373         ! upstream tracer flux in the k direction 
    360          ! Surface value 
    361          IF( lk_vvl ) THEN   ;   zwz(:,:, 1 ) = 0._wp                        ! volume variable 
    362          ELSE                ;   zwz(:,:, 1 ) = pwn(:,:,1) * ptb(:,:,1,jn)   ! linear free surface  
    363          ENDIF 
    364374         ! Interior value 
    365375         DO jk = 2, jpkm1 
     
    372382            END DO 
    373383         END DO 
     384         ! Surface value 
     385         IF( lk_vvl ) THEN 
     386            IF ( ln_isfcav ) THEN 
     387               DO jj = 1, jpj 
     388                  DO ji = 1, jpi 
     389                     zwz(ji,jj, mikt(ji,jj) ) = 0.e0          ! volume variable +    isf 
     390                  END DO 
     391               END DO 
     392            ELSE 
     393               zwz(:,:,1) = 0.e0                              ! volume variable + no isf 
     394            END IF 
     395         ELSE 
     396            IF ( ln_isfcav ) THEN 
     397               DO jj = 1, jpj 
     398                  DO ji = 1, jpi 
     399                     zwz(ji,jj, mikt(ji,jj) ) = pwn(ji,jj,mikt(ji,jj)) * ptb(ji,jj,mikt(ji,jj),jn)   ! linear free surface +    isf 
     400                  END DO 
     401               END DO 
     402            ELSE 
     403               zwz(:,:,1) = pwn(:,:,1) * ptb(:,:,1,jn)                                               ! linear free surface + no isf 
     404            END IF 
     405         ENDIF 
    374406 
    375407         ! total advective trend 
     
    580612         &        paft * tmask + zbig * ( 1._wp - tmask )  ) 
    581613 
    582       DO jj = 2, jpjm1 
    583          DO ji = fs_2, fs_jpim1   ! vector opt. 
    584             DO jk = mikt(ji,jj), jpkm1 
    585                ikm1 = MAX(jk-1,mikt(ji,jj)) 
    586                z2dtt = p2dt(jk) 
    587                 
     614      DO jk = 1, jpkm1 
     615         ikm1 = MAX(jk-1,1) 
     616         z2dtt = p2dt(jk) 
     617         DO jj = 2, jpjm1 
     618            DO ji = fs_2, fs_jpim1   ! vector opt. 
     619 
    588620               ! search maximum in neighbourhood 
    589621               zup = MAX(  zbup(ji  ,jj  ,jk  ),   & 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traldf.F90

    r4990 r5120  
    290290      IF(lwp) WRITE(numout,*) '              homogeneous ocean T = ', zt0, ' S = ',zs0 
    291291 
     292      ! Initialisation of gtui/gtvi in case of no cavity 
     293      IF ( .NOT. ln_isfcav ) THEN 
     294         gtui(:,:,:) = 0.0_wp 
     295         gtvi(:,:,:) = 0.0_wp 
     296      END IF 
    292297      !                                        ! T & S profile (to be coded +namelist parameter 
    293298 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traldf_bilap.F90

    r4990 r5120  
    116116               END DO 
    117117            END DO 
    118  
    119118            !                          !==  Laplacian  ==! 
    120119            ! 
     
    125124               END DO 
    126125            END DO 
     126            ! 
    127127            IF( ln_zps ) THEN                ! set gradient at partial step level (last ocean level) 
    128128               DO jj = 1, jpjm1 
     
    130130                     IF( mbku(ji,jj) == jk )  ztu(ji,jj,jk) = zeeu(ji,jj) * pgu(ji,jj,jn) 
    131131                     IF( mbkv(ji,jj) == jk )  ztv(ji,jj,jk) = zeev(ji,jj) * pgv(ji,jj,jn) 
    132                      ! (ISH) 
    133                      IF( miku(ji,jj) == jk )  ztu(ji,jj,jk) = zeeu(ji,jj) * pgui(ji,jj,jn) 
    134                      IF( mikv(ji,jj) == jk )  ztu(ji,jj,jk) = zeev(ji,jj) * pgvi(ji,jj,jn) 
    135132                  END DO 
    136133               END DO 
    137134            ENDIF 
     135            ! (ISH) 
     136            IF( ln_zps .AND. ln_isfcav ) THEN ! set gradient at partial step level (first ocean level in a cavity) 
     137               DO jj = 1, jpjm1 
     138                  DO ji = 1, jpim1 
     139                     IF( miku(ji,jj) == MAX(jk,2) )  ztu(ji,jj,jk) = zeeu(ji,jj) * pgui(ji,jj,jn) 
     140                     IF( mikv(ji,jj) == MAX(jk,2) )  ztu(ji,jj,jk) = zeev(ji,jj) * pgvi(ji,jj,jn) 
     141                  END DO 
     142               END DO 
     143            ENDIF 
     144            ! 
    138145            DO jj = 2, jpjm1                 ! Second derivative (divergence) time the eddy diffusivity coefficient 
    139146               DO ji = fs_2, fs_jpim1   ! vector opt. 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traldf_iso.F90

    r4990 r5120  
    106106      ! 
    107107      INTEGER  ::  ji, jj, jk, jn   ! dummy loop indices 
     108      INTEGER  ::  ikt 
    108109      REAL(wp) ::  zmsku, zabe1, zcof1, zcoef3   ! local scalars 
    109110      REAL(wp) ::  zmskv, zabe2, zcof2, zcoef4   !   -      - 
     
    149150            END DO 
    150151         END DO 
     152 
     153         ! partial cell correction 
    151154         IF( ln_zps ) THEN      ! partial steps correction at the last ocean level  
    152155            DO jj = 1, jpjm1 
    153156               DO ji = 1, fs_jpim1   ! vector opt. 
    154157! IF useless if zpshde defines pgu everywhere 
    155                   IF (mbku(ji,jj) > 1) zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)           
    156                   IF (mbkv(ji,jj) > 1) zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn) 
    157                   ! (ISF) 
     158                  zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)           
     159                  zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn) 
     160               END DO 
     161            END DO 
     162         ENDIF 
     163         IF( ln_zps .AND. ln_isfcav ) THEN      ! partial steps correction at the first wet level beneath a cavity 
     164            DO jj = 1, jpjm1 
     165               DO ji = 1, fs_jpim1   ! vector opt. 
    158166                  IF (miku(ji,jj) > 1) zdit(ji,jj,miku(ji,jj)) = pgui(ji,jj,jn)           
    159167                  IF (mikv(ji,jj) > 1) zdjt(ji,jj,mikv(ji,jj)) = pgvi(ji,jj,jn)      
    160168               END DO 
    161169            END DO 
    162          ENDIF 
     170         END IF 
    163171 
    164172         !!---------------------------------------------------------------------- 
    165173         !!   II - horizontal trend  (full) 
    166174         !!---------------------------------------------------------------------- 
    167 !CDIR PARALLEL DO PRIVATE( zdk1t )  
    168          !                                                ! =============== 
    169          DO jj = 1, jpj                                 ! Horizontal slab 
    170             !                                             ! =============== 
    171             DO ji = 1, jpi   ! vector opt. 
    172                DO jk = mikt(ji,jj), jpkm1 
    173                ! 1. Vertical tracer gradient at level jk and jk+1 
    174                ! ------------------------------------------------ 
    175                ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) 
    176                   zdk1t(ji,jj,jk) = ( ptb(ji,jj,jk,jn) - ptb(ji,jj,jk+1,jn) ) * tmask(ji,jj,jk+1) 
    177                ! 
    178                   IF( jk == mikt(ji,jj) ) THEN  ;   zdkt(ji,jj,jk) = zdk1t(ji,jj,jk) 
    179                   ELSE                          ;   zdkt(ji,jj,jk) = ( ptb(ji,jj,jk-1,jn) - ptb(ji,jj,jk,jn) ) * tmask(ji,jj,jk) 
    180                   ENDIF 
     175!!!!!!!!!!CDIR PARALLEL DO PRIVATE( zdk1t )  
     176            ! 1. Vertical tracer gradient at level jk and jk+1 
     177            ! ------------------------------------------------ 
     178         !  
     179         ! interior value  
     180         DO jk = 2, jpkm1                
     181            DO jj = 1, jpj 
     182               DO ji = 1, jpi   ! vector opt. 
     183                  zdk1t(ji,jj,jk) = ( ptb(ji,jj,jk,jn  ) - ptb(ji,jj,jk+1,jn) ) * wmask(ji,jj,jk+1) 
     184                  ! 
     185                  zdkt(ji,jj,jk)  = ( ptb(ji,jj,jk-1,jn) - ptb(ji,jj,jk,jn  ) ) * wmask(ji,jj,jk) 
    181186               END DO 
    182187            END DO 
    183188         END DO 
    184  
    185             ! 2. Horizontal fluxes 
    186             ! --------------------    
    187          DO jj = 1 , jpjm1 
    188             DO ji = 1, fs_jpim1   ! vector opt. 
    189                DO jk = mikt(ji,jj), jpkm1 
     189         ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) 
     190         zdk1t(:,:,1) = ( ptb(:,:,1,jn  ) - ptb(:,:,2,jn) ) * wmask(:,:,2) 
     191         zdkt (:,:,1) = zdk1t(:,:,1) 
     192         IF ( ln_isfcav ) THEN 
     193            DO jj = 1, jpj 
     194               DO ji = 1, jpi   ! vector opt. 
     195                  ikt = mikt(ji,jj) ! surface level 
     196                  zdk1t(ji,jj,ikt) = ( ptb(ji,jj,ikt,jn  ) - ptb(ji,jj,ikt+1,jn) ) * wmask(ji,jj,ikt+1) 
     197                  zdkt (ji,jj,ikt) = zdk1t(ji,jj,ikt) 
     198               END DO 
     199            END DO 
     200         END IF 
     201 
     202         ! 2. Horizontal fluxes 
     203         ! --------------------    
     204         DO jk = 1, jpkm1 
     205            DO jj = 1 , jpjm1 
     206               DO ji = 1, fs_jpim1   ! vector opt. 
    190207                  zabe1 = ( fsahtu(ji,jj,jk) + pahtb0 ) * re2u_e1u(ji,jj) * fse3u_n(ji,jj,jk) 
    191208                  zabe2 = ( fsahtv(ji,jj,jk) + pahtb0 ) * re1v_e2v(ji,jj) * fse3v_n(ji,jj,jk) 
     
    208225               END DO 
    209226            END DO 
    210          END DO 
    211227 
    212228            ! II.4 Second derivative (divergence) and add to the general trend 
    213229            ! ---------------------------------------------------------------- 
    214          DO jj = 2 , jpjm1 
    215             DO ji = fs_2, fs_jpim1   ! vector opt. 
    216                DO jk = mikt(ji,jj), jpkm1 
    217                   zbtr = 1.0 / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) 
     230            DO jj = 2 , jpjm1 
     231               DO ji = fs_2, fs_jpim1   ! vector opt. 
     232                  zbtr = 1.0 / ( e12t(ji,jj) * fse3t_n(ji,jj,jk) ) 
    218233                  ztra = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk) + zftv(ji,jj,jk) - zftv(ji,jj-1,jk)  ) 
    219234                  pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ztra 
     
    278293            DO jj = 2, jpjm1 
    279294               DO ji = fs_2, fs_jpim1   ! vector opt. 
    280                   zcoef0 = - fsahtw(ji,jj,jk) * tmask(ji,jj,jk) * tmask(ji,jj,jk-1) 
     295                  zcoef0 = - fsahtw(ji,jj,jk) * wmask(ji,jj,jk) 
    281296                  ! 
    282297                  zmsku = 1./MAX(   umask(ji  ,jj,jk-1) + umask(ji-1,jj,jk)      & 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/traldf_lap.F90

    r4990 r5120  
    102102               END DO 
    103103            END DO 
    104             IF( ln_zps ) THEN      ! set gradient at partial step level 
     104            IF( ln_zps ) THEN      ! set gradient at partial step level for the last ocean cell 
    105105               DO jj = 1, jpjm1 
    106106                  DO ji = 1, fs_jpim1   ! vector opt. 
     
    116116                        ztv(ji,jj,jk) = zabe2 * pgv(ji,jj,jn) 
    117117                     ENDIF 
    118                       
    119                      ! (ISH) 
     118                  END DO 
     119               END DO 
     120            ENDIF 
     121            ! (ISH) 
     122            IF( ln_zps .AND. ln_isfcav ) THEN      ! set gradient at partial step level for the first ocean cell 
     123                                                   ! into a cavity 
     124               DO jj = 1, jpjm1 
     125                  DO ji = 1, fs_jpim1   ! vector opt. 
    120126                     ! ice shelf level level MAX(2,jk) => only where ice shelf 
    121127                     iku = miku(ji,jj)  
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/trasbc.F90

    r4990 r5120  
    99   !!            3.3  !  2010-04  (M. Leclair, G. Madec)  Forcing averaged over 2 time steps 
    1010   !!             -   !  2010-09  (C. Ethe, G. Madec) Merge TRA-TRC 
     11   !!            3.6  !  2014-11  (P. Mathiot) isf melting forcing  
    1112   !!---------------------------------------------------------------------- 
    1213 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/trazdf_imp.F90

    r4990 r5120  
    122122            DO jj=1, jpj 
    123123               DO ji=1, jpi 
    124                   zwt(ji,jj,1:mikt(ji,jj)) = 0._wp 
     124                  zwt(ji,jj,1) = 0._wp 
    125125               END DO 
    126126            END DO 
     
    184184            DO jj = 2, jpjm1 
    185185               DO ji = fs_2, fs_jpim1 
    186                   zwt(ji,jj,1:mikt(ji,jj)) = zwd(ji,jj,1:mikt(ji,jj)) 
    187                   DO jk = mikt(ji,jj)+1, jpkm1 
     186                  zwt(ji,jj,1) = zwd(ji,jj,1) 
     187               END DO 
     188            END DO 
     189            DO jk = 2, jpkm1 
     190               DO jj = 2, jpjm1 
     191                  DO ji = fs_2, fs_jpim1 
    188192                     zwt(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwt(ji,jj,jk-1) 
    189193                  END DO 
     
    196200         DO jj = 2, jpjm1 
    197201            DO ji = fs_2, fs_jpim1 
    198                ze3tb = ( 1. - r_vvl ) + r_vvl * fse3t_b(ji,jj,mikt(ji,jj)) 
    199                ze3tn = ( 1. - r_vvl ) + r_vvl * fse3t(ji,jj,mikt(ji,jj)) 
    200                pta(ji,jj,mikt(ji,jj),jn) = ze3tb * ptb(ji,jj,mikt(ji,jj),jn)                     & 
    201                   &                      + p2dt(mikt(ji,jj)) * ze3tn * pta(ji,jj,mikt(ji,jj),jn) 
    202                DO jk = mikt(ji,jj)+1, jpkm1 
     202               ze3tb = ( 1. - r_vvl ) + r_vvl * fse3t_b(ji,jj,1) 
     203               ze3tn = ( 1. - r_vvl ) + r_vvl * fse3t(ji,jj,1) 
     204               pta(ji,jj,1,jn) = ze3tb * ptb(ji,jj,1,jn)                     & 
     205                  &                      + p2dt(1) * ze3tn * pta(ji,jj,1,jn) 
     206            END DO 
     207         END DO 
     208         DO jk = 2, jpkm1 
     209            DO jj = 2, jpjm1 
     210               DO ji = fs_2, fs_jpim1 
    203211                  ze3tb = ( 1. - r_vvl ) + r_vvl * fse3t_b(ji,jj,jk) 
    204212                  ze3tn = ( 1. - r_vvl ) + r_vvl * fse3t  (ji,jj,jk) 
     
    213221            DO ji = fs_2, fs_jpim1 
    214222               pta(ji,jj,jpkm1,jn) = pta(ji,jj,jpkm1,jn) / zwt(ji,jj,jpkm1) * tmask(ji,jj,jpkm1) 
    215                DO jk = jpk-2, mikt(ji,jj), -1 
     223            END DO 
     224         END DO 
     225         DO jk = jpk-2, 1, -1 
     226            DO jj = 2, jpjm1 
     227               DO ji = fs_2, fs_jpim1 
    216228                  pta(ji,jj,jk,jn) = ( pta(ji,jj,jk,jn) - zws(ji,jj,jk) * pta(ji,jj,jk+1,jn) )   & 
    217229                     &             / zwt(ji,jj,jk) * tmask(ji,jj,jk) 
  • trunk/NEMOGCM/NEMO/OPA_SRC/TRA/zpshde.F90

    r4990 r5120  
    88   !!             -   !  2004-03  (C. Ethe)  adapted for passive tracers 
    99   !!            3.3  !  2010-05  (C. Ethe, G. Madec)  merge TRC-TRA  
     10   !!            3.6  !  2014-11  (P. Mathiot) Add zps_hde_isf (needed to open a cavity) 
    1011   !!====================================================================== 
    1112    
     
    2728   PRIVATE 
    2829 
    29    PUBLIC   zps_hde    ! routine called by step.F90 
     30   PUBLIC   zps_hde     ! routine called by step.F90 
     31   PUBLIC   zps_hde_isf ! routine called by step.F90 
    3032 
    3133   !! * Substitutions 
     
    4042 
    4143   SUBROUTINE zps_hde( kt, kjpt, pta, pgtu, pgtv,   & 
     44      &                          prd, pgru, pgrv    ) 
     45      !!---------------------------------------------------------------------- 
     46      !!                     ***  ROUTINE zps_hde  *** 
     47      !!                     
     48      !! ** Purpose :   Compute the horizontal derivative of T, S and rho 
     49      !!      at u- and v-points with a linear interpolation for z-coordinate 
     50      !!      with partial steps. 
     51      !! 
     52      !! ** Method  :   In z-coord with partial steps, scale factors on last  
     53      !!      levels are different for each grid point, so that T, S and rd  
     54      !!      points are not at the same depth as in z-coord. To have horizontal 
     55      !!      gradients again, we interpolate T and S at the good depth :  
     56      !!      Linear interpolation of T, S    
     57      !!         Computation of di(tb) and dj(tb) by vertical interpolation: 
     58      !!          di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~ 
     59      !!          dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~ 
     60      !!         This formulation computes the two cases: 
     61      !!                 CASE 1                   CASE 2   
     62      !!         k-1  ___ ___________   k-1   ___ ___________ 
     63      !!                    Ti  T~                  T~  Ti+1 
     64      !!                  _____                        _____ 
     65      !!         k        |   |Ti+1     k           Ti |   | 
     66      !!                  |   |____                ____|   | 
     67      !!              ___ |   |   |           ___  |   |   | 
     68      !!                   
     69      !!      case 1->   e3w(i+1) >= e3w(i) ( and e3w(j+1) >= e3w(j) ) then 
     70      !!          t~ = t(i+1,j  ,k) + (e3w(i+1) - e3w(i)) * dk(Ti+1)/e3w(i+1) 
     71      !!        ( t~ = t(i  ,j+1,k) + (e3w(j+1) - e3w(j)) * dk(Tj+1)/e3w(j+1)  ) 
     72      !!          or 
     73      !!      case 2->   e3w(i+1) <= e3w(i) ( and e3w(j+1) <= e3w(j) ) then 
     74      !!          t~ = t(i,j,k) + (e3w(i) - e3w(i+1)) * dk(Ti)/e3w(i ) 
     75      !!        ( t~ = t(i,j,k) + (e3w(j) - e3w(j+1)) * dk(Tj)/e3w(j ) ) 
     76      !!          Idem for di(s) and dj(s)           
     77      !! 
     78      !!      For rho, we call eos which will compute rd~(t~,s~) at the right 
     79      !!      depth zh from interpolated T and S for the different formulations 
     80      !!      of the equation of state (eos). 
     81      !!      Gradient formulation for rho : 
     82      !!          di(rho) = rd~ - rd(i,j,k)   or   rd(i+1,j,k) - rd~ 
     83      !! 
     84      !! ** Action  : compute for top interfaces 
     85      !!              - pgtu, pgtv: horizontal gradient of tracer at u- & v-points 
     86      !!              - pgru, pgrv: horizontal gradient of rho (if present) at u- & v-points 
     87      !!---------------------------------------------------------------------- 
     88      INTEGER                              , INTENT(in   )           ::  kt          ! ocean time-step index 
     89      INTEGER                              , INTENT(in   )           ::  kjpt        ! number of tracers 
     90      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in   )           ::  pta         ! 4D tracers fields 
     91      REAL(wp), DIMENSION(jpi,jpj,    kjpt), INTENT(  out)           ::  pgtu, pgtv  ! hor. grad. of ptra at u- & v-pts  
     92      REAL(wp), DIMENSION(jpi,jpj,jpk     ), INTENT(in   ), OPTIONAL ::  prd         ! 3D density anomaly fields 
     93      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pgru, pgrv  ! hor. grad of prd at u- & v-pts (bottom) 
     94      ! 
     95      INTEGER  ::   ji, jj, jn      ! Dummy loop indices 
     96      INTEGER  ::   iku, ikv, ikum1, ikvm1   ! partial step level (ocean bottom level) at u- and v-points 
     97      REAL(wp) ::  ze3wu, ze3wv, zmaxu, zmaxv  ! temporary scalars 
     98      REAL(wp), DIMENSION(jpi,jpj)      ::  zri, zrj, zhi, zhj   ! NB: 3rd dim=1 to use eos 
     99      REAL(wp), DIMENSION(jpi,jpj,kjpt) ::  zti, ztj             !  
     100      !!---------------------------------------------------------------------- 
     101      ! 
     102      IF( nn_timing == 1 )  CALL timing_start( 'zps_hde') 
     103      ! 
     104      pgtu(:,:,:)=0.0_wp ; pgtv(:,:,:)=0.0_wp ; 
     105      zti (:,:,:)=0.0_wp ; ztj (:,:,:)=0.0_wp ; 
     106      zhi (:,:  )=0.0_wp ; zhj (:,:  )=0.0_wp ; 
     107      ! 
     108      DO jn = 1, kjpt      !==   Interpolation of tracers at the last ocean level   ==! 
     109         ! 
     110         DO jj = 1, jpjm1 
     111            DO ji = 1, jpim1 
     112               iku = mbku(ji,jj)   ;   ikum1 = MAX( iku - 1 , 1 )    ! last and before last ocean level at u- & v-points 
     113               ikv = mbkv(ji,jj)   ;   ikvm1 = MAX( ikv - 1 , 1 )    ! if level first is a p-step, ik.m1=1 
     114               ze3wu = fse3w(ji+1,jj  ,iku) - fse3w(ji,jj,iku) 
     115               ze3wv = fse3w(ji  ,jj+1,ikv) - fse3w(ji,jj,ikv) 
     116               ! 
     117               ! i- direction 
     118               IF( ze3wu >= 0._wp ) THEN      ! case 1 
     119                  zmaxu =  ze3wu / fse3w(ji+1,jj,iku) 
     120                  ! interpolated values of tracers 
     121                  zti (ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) ) 
     122                  ! gradient of  tracers 
     123                  pgtu(ji,jj,jn) = umask(ji,jj,1) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) ) 
     124               ELSE                           ! case 2 
     125                  zmaxu = -ze3wu / fse3w(ji,jj,iku) 
     126                  ! interpolated values of tracers 
     127                  zti (ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) ) 
     128                  ! gradient of tracers 
     129                  pgtu(ji,jj,jn) = umask(ji,jj,1) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) ) 
     130               ENDIF 
     131               ! 
     132               ! j- direction 
     133               IF( ze3wv >= 0._wp ) THEN      ! case 1 
     134                  zmaxv =  ze3wv / fse3w(ji,jj+1,ikv) 
     135                  ! interpolated values of tracers 
     136                  ztj (ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) ) 
     137                  ! gradient of tracers 
     138                  pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) ) 
     139               ELSE                           ! case 2 
     140                  zmaxv =  -ze3wv / fse3w(ji,jj,ikv) 
     141                  ! interpolated values of tracers 
     142                  ztj (ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) ) 
     143                  ! gradient of tracers 
     144                  pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) ) 
     145               ENDIF 
     146            END DO 
     147         END DO 
     148         CALL lbc_lnk( pgtu(:,:,jn), 'U', -1. )   ;   CALL lbc_lnk( pgtv(:,:,jn), 'V', -1. )   ! Lateral boundary cond. 
     149         ! 
     150      END DO 
     151 
     152      ! horizontal derivative of density anomalies (rd) 
     153      IF( PRESENT( prd ) ) THEN         ! depth of the partial step level 
     154         pgru(:,:)=0.0_wp   ; pgrv(:,:)=0.0_wp ;  
     155         DO jj = 1, jpjm1 
     156            DO ji = 1, jpim1 
     157               iku = mbku(ji,jj) 
     158               ikv = mbkv(ji,jj) 
     159               ze3wu  = fse3w(ji+1,jj  ,iku) - fse3w(ji,jj,iku) 
     160               ze3wv  = fse3w(ji  ,jj+1,ikv) - fse3w(ji,jj,ikv) 
     161               IF( ze3wu >= 0._wp ) THEN   ;   zhi(ji,jj) = fsdept(ji  ,jj,iku)     ! i-direction: case 1 
     162               ELSE                        ;   zhi(ji,jj) = fsdept(ji+1,jj,iku)     ! -     -      case 2 
     163               ENDIF 
     164               IF( ze3wv >= 0._wp ) THEN   ;   zhj(ji,jj) = fsdept(ji,jj  ,ikv)     ! j-direction: case 1 
     165               ELSE                        ;   zhj(ji,jj) = fsdept(ji,jj+1,ikv)     ! -     -      case 2 
     166               ENDIF 
     167            END DO 
     168         END DO 
     169 
     170         ! Compute interpolated rd from zti, ztj for the 2 cases at the depth of the partial 
     171         ! step and store it in  zri, zrj for each  case 
     172         CALL eos( zti, zhi, zri )   
     173         CALL eos( ztj, zhj, zrj ) 
     174 
     175         ! Gradient of density at the last level  
     176         DO jj = 1, jpjm1 
     177            DO ji = 1, jpim1 
     178               iku = mbku(ji,jj) 
     179               ikv = mbkv(ji,jj) 
     180               ze3wu  = fse3w(ji+1,jj  ,iku) - fse3w(ji,jj,iku) 
     181               ze3wv  = fse3w(ji  ,jj+1,ikv) - fse3w(ji,jj,ikv) 
     182               IF( ze3wu >= 0._wp ) THEN   ;   pgru(ji,jj) = umask(ji,jj,1) * ( zri(ji  ,jj    ) - prd(ji,jj,iku) )   ! i: 1 
     183               ELSE                        ;   pgru(ji,jj) = umask(ji,jj,1) * ( prd(ji+1,jj,iku) - zri(ji,jj    ) )   ! i: 2 
     184               ENDIF 
     185               IF( ze3wv >= 0._wp ) THEN   ;   pgrv(ji,jj) = vmask(ji,jj,1) * ( zrj(ji,jj      ) - prd(ji,jj,ikv) )   ! j: 1 
     186               ELSE                        ;   pgrv(ji,jj) = vmask(ji,jj,1) * ( prd(ji,jj+1,ikv) - zrj(ji,jj    ) )   ! j: 2 
     187               ENDIF 
     188            END DO 
     189         END DO 
     190         CALL lbc_lnk( pgru , 'U', -1. )   ;   CALL lbc_lnk( pgrv , 'V', -1. )   ! Lateral boundary conditions 
     191         ! 
     192      END IF 
     193      ! 
     194      IF( nn_timing == 1 )  CALL timing_stop( 'zps_hde') 
     195      ! 
     196   END SUBROUTINE zps_hde 
     197   ! 
     198   SUBROUTINE zps_hde_isf( kt, kjpt, pta, pgtu, pgtv,   & 
    42199      &                          prd, pgru, pgrv, pmru, pmrv, pgzu, pgzv, pge3ru, pge3rv,  & 
    43       &                   sgtu, sgtv, sgru, sgrv, smru, smrv, sgzu, sgzv, sge3ru, sge3rv ) 
     200      &                   pgtui, pgtvi, pgrui, pgrvi, pmrui, pmrvi, pgzui, pgzvi, pge3rui, pge3rvi ) 
    44201      !!---------------------------------------------------------------------- 
    45202      !!                     ***  ROUTINE zps_hde  *** 
     
    82239      !! 
    83240      !! ** Action  : compute for top and bottom interfaces 
    84       !!              - pgtu, pgtv, sgtu, sgtv: horizontal gradient of tracer at u- & v-points 
    85       !!              - pgru, pgrv, sgru, sgtv: horizontal gradient of rho (if present) at u- & v-points 
    86       !!              - pmru, pmrv, smru, smrv: horizontal sum of rho at u- & v- point (used in dynhpg with vvl) 
    87       !!              - pgzu, pgzv, sgzu, sgzv: horizontal gradient of z at u- and v- point (used in dynhpg with vvl) 
    88       !!              - pge3ru, pge3rv, sge3ru, sge3rv: horizontal gradient of rho weighted by local e3w at u- & v-points  
     241      !!              - pgtu, pgtv, pgtui, pgtvi: horizontal gradient of tracer at u- & v-points 
     242      !!              - pgru, pgrv, pgrui, pgtvi: horizontal gradient of rho (if present) at u- & v-points 
     243      !!              - pmru, pmrv, pmrui, pmrvi: horizontal sum of rho at u- & v- point (used in dynhpg with vvl) 
     244      !!              - pgzu, pgzv, pgzui, pgzvi: horizontal gradient of z at u- and v- point (used in dynhpg with vvl) 
     245      !!              - pge3ru, pge3rv, pge3rui, pge3rvi: horizontal gradient of rho weighted by local e3w at u- & v-points  
    89246      !!---------------------------------------------------------------------- 
    90247      INTEGER                              , INTENT(in   )           ::  kt          ! ocean time-step index 
     
    92249      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in   )           ::  pta         ! 4D tracers fields 
    93250      REAL(wp), DIMENSION(jpi,jpj,    kjpt), INTENT(  out)           ::  pgtu, pgtv  ! hor. grad. of ptra at u- & v-pts  
    94       REAL(wp), DIMENSION(jpi,jpj,    kjpt), INTENT(  out)           ::  sgtu, sgtv  ! hor. grad. of stra at u- & v-pts (ISF) 
     251      REAL(wp), DIMENSION(jpi,jpj,    kjpt), INTENT(  out)           ::  pgtui, pgtvi  ! hor. grad. of stra at u- & v-pts (ISF) 
    95252      REAL(wp), DIMENSION(jpi,jpj,jpk     ), INTENT(in   ), OPTIONAL ::  prd         ! 3D density anomaly fields 
    96253      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pgru, pgrv      ! hor. grad of prd at u- & v-pts (bottom) 
     
    98255      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pgzu, pgzv      ! hor. grad of z   at u- & v-pts (bottom) 
    99256      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pge3ru, pge3rv  ! hor. grad of prd weighted by local e3w at u- & v-pts (bottom) 
    100       REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  sgru, sgrv      ! hor. grad of prd at u- & v-pts (top) 
    101       REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  smru, smrv      ! hor. sum  of prd at u- & v-pts (top) 
    102       REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  sgzu, sgzv      ! hor. grad of z   at u- & v-pts (top) 
    103       REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  sge3ru, sge3rv  ! hor. grad of prd weighted by local e3w at u- & v-pts (top) 
     257      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pgrui, pgrvi      ! hor. grad of prd at u- & v-pts (top) 
     258      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pmrui, pmrvi      ! hor. sum  of prd at u- & v-pts (top) 
     259      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pgzui, pgzvi      ! hor. grad of z   at u- & v-pts (top) 
     260      REAL(wp), DIMENSION(jpi,jpj         ), INTENT(  out), OPTIONAL ::  pge3rui, pge3rvi  ! hor. grad of prd weighted by local e3w at u- & v-pts (top) 
    104261      ! 
    105262      INTEGER  ::   ji, jj, jn      ! Dummy loop indices 
     
    110267      !!---------------------------------------------------------------------- 
    111268      ! 
    112       IF( nn_timing == 1 )  CALL timing_start( 'zps_hde') 
     269      IF( nn_timing == 1 )  CALL timing_start( 'zps_hde_isf') 
    113270      ! 
    114271      pgtu(:,:,:)=0.0_wp ; pgtv(:,:,:)=0.0_wp ; 
    115       sgtu(:,:,:)=0.0_wp ; sgtv(:,:,:)=0.0_wp ; 
     272      pgtui(:,:,:)=0.0_wp ; pgtvi(:,:,:)=0.0_wp ; 
    116273      zti (:,:,:)=0.0_wp ; ztj (:,:,:)=0.0_wp ; 
    117274      zhi (:,:  )=0.0_wp ; zhj (:,:  )=0.0_wp ; 
     
    256413                  zti(ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,iku+1,jn) - pta(ji+1,jj,iku,jn) ) 
    257414                  ! gradient of tracers 
    258                   sgtu(ji,jj,jn) = umask(ji,jj,iku) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) ) 
     415                  pgtui(ji,jj,jn) = umask(ji,jj,iku) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) ) 
    259416               ELSE                           ! case 2 
    260417                  zmaxu = - ze3wu / fse3w(ji,jj,iku+1) 
     
    262419                  zti(ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,iku+1,jn) - pta(ji,jj,iku,jn) ) 
    263420                  ! gradient of  tracers 
    264                   sgtu(ji,jj,jn) = umask(ji,jj,iku) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) ) 
     421                  pgtui(ji,jj,jn) = umask(ji,jj,iku) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) ) 
    265422               ENDIF 
    266423               ! 
     
    271428                  ztj(ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikv+1,jn) - pta(ji,jj+1,ikv,jn) ) 
    272429                  ! gradient of tracers 
    273                   sgtv(ji,jj,jn) = vmask(ji,jj,ikv) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) ) 
     430                  pgtvi(ji,jj,jn) = vmask(ji,jj,ikv) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) ) 
    274431               ELSE                           ! case 2 
    275432                  zmaxv =  - ze3wv / fse3w(ji,jj,ikv+1) 
     
    277434                  ztj(ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikv+1,jn) - pta(ji,jj,ikv,jn) ) 
    278435                  ! gradient of tracers 
    279                   sgtv(ji,jj,jn) = vmask(ji,jj,ikv) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) ) 
     436                  pgtvi(ji,jj,jn) = vmask(ji,jj,ikv) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) ) 
    280437               ENDIF 
    281438            END DO!! 
    282439         END DO!! 
    283          CALL lbc_lnk( sgtu(:,:,jn), 'U', -1. )   ;   CALL lbc_lnk( sgtv(:,:,jn), 'V', -1. )   ! Lateral boundary cond. 
     440         CALL lbc_lnk( pgtui(:,:,jn), 'U', -1. )   ;   CALL lbc_lnk( pgtvi(:,:,jn), 'V', -1. )   ! Lateral boundary cond. 
    284441         ! 
    285442      END DO 
     
    287444      ! horizontal derivative of density anomalies (rd) 
    288445      IF( PRESENT( prd ) ) THEN         ! depth of the partial step level 
    289          sgru(:,:)  =0.0_wp ; sgrv(:,:)  =0.0_wp ; 
    290          sgzu(:,:)  =0.0_wp ; sgzv(:,:)  =0.0_wp ; 
    291          smru(:,:)  =0.0_wp ; smru(:,:)  =0.0_wp ; 
    292          sge3ru(:,:)=0.0_wp ; sge3rv(:,:)=0.0_wp ; 
     446         pgrui(:,:)  =0.0_wp ; pgrvi(:,:)  =0.0_wp ; 
     447         pgzui(:,:)  =0.0_wp ; pgzvi(:,:)  =0.0_wp ; 
     448         pmrui(:,:)  =0.0_wp ; pmrui(:,:)  =0.0_wp ; 
     449         pge3rui(:,:)=0.0_wp ; pge3rvi(:,:)=0.0_wp ; 
    293450 
    294451         DO jj = 1, jpjm1 
     
    321478               ze3wv  = (gdepw_0(ji,jj+1,ikv+1) - gdept_0(ji,jj+1,ikv)) - (gdepw_0(ji,jj,ikv+1) - gdept_0(ji,jj,ikv)) 
    322479               IF( ze3wu >= 0._wp ) THEN 
    323                  sgzu  (ji,jj) = (fsde3w(ji+1,jj,iku) + ze3wu) - fsde3w(ji,jj,iku) 
    324                  sgru  (ji,jj) = umask(ji,jj,iku)   * ( zri(ji,jj) - prd(ji,jj,iku) )          ! i: 1 
    325                  smru  (ji,jj) = umask(ji,jj,iku)   * ( zri(ji,jj) + prd(ji,jj,iku) )          ! i: 1  
    326                  sge3ru(ji,jj) = umask(ji,jj,iku+1)                                                                  & 
     480                 pgzui  (ji,jj) = (fsde3w(ji+1,jj,iku) + ze3wu) - fsde3w(ji,jj,iku) 
     481                 pgrui  (ji,jj) = umask(ji,jj,iku)   * ( zri(ji,jj) - prd(ji,jj,iku) )          ! i: 1 
     482                 pmrui  (ji,jj) = umask(ji,jj,iku)   * ( zri(ji,jj) + prd(ji,jj,iku) )          ! i: 1  
     483                 pge3rui(ji,jj) = umask(ji,jj,iku+1)                                                                  & 
    327484                                * ( (fse3w(ji+1,jj,iku+1) - ze3wu) * (zri(ji,jj    ) + prd(ji+1,jj,iku+1) + 2._wp)   & 
    328485                                   - fse3w(ji  ,jj,iku+1)          * (prd(ji,jj,iku) + prd(ji  ,jj,iku+1) + 2._wp)   ) ! i: 1 
    329486               ELSE 
    330                  sgzu  (ji,jj) = fsde3w(ji+1,jj,iku) - (fsde3w(ji,jj,iku) - ze3wu) 
    331                  sgru  (ji,jj) = umask(ji,jj,iku)   * ( prd(ji+1,jj,iku) - zri(ji,jj) )      ! i: 2 
    332                  smru  (ji,jj) = umask(ji,jj,iku)   * ( prd(ji+1,jj,iku) + zri(ji,jj) )      ! i: 2 
    333                  sge3ru(ji,jj) = umask(ji,jj,iku+1)                                                                   & 
     487                 pgzui  (ji,jj) = fsde3w(ji+1,jj,iku) - (fsde3w(ji,jj,iku) - ze3wu) 
     488                 pgrui  (ji,jj) = umask(ji,jj,iku)   * ( prd(ji+1,jj,iku) - zri(ji,jj) )      ! i: 2 
     489                 pmrui  (ji,jj) = umask(ji,jj,iku)   * ( prd(ji+1,jj,iku) + zri(ji,jj) )      ! i: 2 
     490                 pge3rui(ji,jj) = umask(ji,jj,iku+1)                                                                   & 
    334491                                * (  fse3w(ji+1,jj,iku+1)          * (prd(ji+1,jj,iku) + prd(ji+1,jj,iku+1) + 2._wp)  & 
    335492                                   -(fse3w(ji  ,jj,iku+1) + ze3wu) * (zri(ji,jj      ) + prd(ji  ,jj,iku+1) + 2._wp)  )     ! i: 2 
    336493               ENDIF 
    337494               IF( ze3wv >= 0._wp ) THEN 
    338                  sgzv  (ji,jj) = (fsde3w(ji,jj+1,ikv) + ze3wv) - fsde3w(ji,jj,ikv)  
    339                  sgrv  (ji,jj) = vmask(ji,jj,ikv)   * ( zrj(ji,jj  ) - prd(ji,jj,ikv) )        ! j: 1 
    340                  smrv  (ji,jj) = vmask(ji,jj,ikv)   * ( zrj(ji,jj  ) + prd(ji,jj,ikv) )        ! j: 1 
    341                  sge3rv(ji,jj) = vmask(ji,jj,ikv+1)                                                                  &  
     495                 pgzvi  (ji,jj) = (fsde3w(ji,jj+1,ikv) + ze3wv) - fsde3w(ji,jj,ikv)  
     496                 pgrvi  (ji,jj) = vmask(ji,jj,ikv)   * ( zrj(ji,jj  ) - prd(ji,jj,ikv) )        ! j: 1 
     497                 pmrvi  (ji,jj) = vmask(ji,jj,ikv)   * ( zrj(ji,jj  ) + prd(ji,jj,ikv) )        ! j: 1 
     498                 pge3rvi(ji,jj) = vmask(ji,jj,ikv+1)                                                                  &  
    342499                                * ( (fse3w(ji,jj+1,ikv+1) - ze3wv) * ( zrj(ji,jj    ) + prd(ji,jj+1,ikv+1) + 2._wp)  & 
    343500                                   - fse3w(ji,jj  ,ikv+1)          * ( prd(ji,jj,ikv) + prd(ji,jj  ,ikv+1) + 2._wp)  ) ! j: 1 
    344501                                  ! + 2 due to the formulation in density and not in anomalie in hpg sco 
    345502               ELSE 
    346                  sgzv  (ji,jj) = fsde3w(ji,jj+1,ikv) - (fsde3w(ji,jj,ikv) - ze3wv) 
    347                  sgrv  (ji,jj) = vmask(ji,jj,ikv)   * ( prd(ji,jj+1,ikv) - zrj(ji,jj) )     ! j: 2 
    348                  smrv  (ji,jj) = vmask(ji,jj,ikv)   * ( prd(ji,jj+1,ikv) + zrj(ji,jj) )     ! j: 2 
    349                  sge3rv(ji,jj) = vmask(ji,jj,ikv+1)                                                                   & 
     503                 pgzvi  (ji,jj) = fsde3w(ji,jj+1,ikv) - (fsde3w(ji,jj,ikv) - ze3wv) 
     504                 pgrvi  (ji,jj) = vmask(ji,jj,ikv)   * ( prd(ji,jj+1,ikv) - zrj(ji,jj) )     ! j: 2 
     505                 pmrvi  (ji,jj) = vmask(ji,jj,ikv)   * ( prd(ji,jj+1,ikv) + zrj(ji,jj) )     ! j: 2 
     506                 pge3rvi(ji,jj) = vmask(ji,jj,ikv+1)                                                                   & 
    350507                                * (  fse3w(ji,jj+1,ikv+1)          * ( prd(ji,jj+1,ikv) + prd(ji,jj+1,ikv+1) + 2._wp) & 
    351508                                   -(fse3w(ji,jj  ,ikv+1) + ze3wv) * ( zrj(ji,jj      ) + prd(ji,jj  ,ikv+1) + 2._wp) )  ! j: 2 
     
    353510            END DO 
    354511         END DO 
    355          CALL lbc_lnk( sgru   , 'U', -1. )   ;   CALL lbc_lnk( sgrv   , 'V', -1. )   ! Lateral boundary conditions 
    356          CALL lbc_lnk( smru   , 'U',  1. )   ;   CALL lbc_lnk( smrv   , 'V',  1. )   ! Lateral boundary conditions 
    357          CALL lbc_lnk( sgzu   , 'U', -1. )   ;   CALL lbc_lnk( sgzv   , 'V', -1. )   ! Lateral boundary conditions 
    358          CALL lbc_lnk( sge3ru , 'U', -1. )   ;   CALL lbc_lnk( sge3rv , 'V', -1. )   ! Lateral boundary conditions 
     512         CALL lbc_lnk( pgrui   , 'U', -1. )   ;   CALL lbc_lnk( pgrvi   , 'V', -1. )   ! Lateral boundary conditions 
     513         CALL lbc_lnk( pmrui   , 'U',  1. )   ;   CALL lbc_lnk( pmrvi   , 'V',  1. )   ! Lateral boundary conditions 
     514         CALL lbc_lnk( pgzui   , 'U', -1. )   ;   CALL lbc_lnk( pgzvi   , 'V', -1. )   ! Lateral boundary conditions 
     515         CALL lbc_lnk( pge3rui , 'U', -1. )   ;   CALL lbc_lnk( pge3rvi , 'V', -1. )   ! Lateral boundary conditions 
    359516         ! 
    360517      END IF   
    361518      ! 
    362       IF( nn_timing == 1 )  CALL timing_stop( 'zps_hde') 
    363       ! 
    364    END SUBROUTINE zps_hde 
    365  
     519      IF( nn_timing == 1 )  CALL timing_stop( 'zps_hde_isf') 
     520      ! 
     521   END SUBROUTINE zps_hde_isf 
    366522   !!====================================================================== 
    367523END MODULE zpshde 
Note: See TracChangeset for help on using the changeset viewer.