New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 5313 for branches/2014/dev_r4650_UKMO11_restart_functionality/DOC – NEMO

Ignore:
Timestamp:
2015-05-29T11:46:03+02:00 (9 years ago)
Author:
timgraham
Message:

Merged head of trunk (r5302) into branch

Location:
branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles
Files:
10 edited
2 copied

Legend:

Unmodified
Added
Removed
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Biblio/Biblio.bib

    r4560 r5313  
    271271  volume = {326}, 
    272272  pages = {677--684} 
     273} 
     274 
     275@ARTICLE{Beckmann2003, 
     276  author = {A. Beckmann and H. Goosse}, 
     277  title = {A parameterization of ice shelf-ocean interaction for climate models}, 
     278  journal = OM 
     279  year = {2003} 
     280  volume = {5} 
     281  pages = {157--170} 
    273282} 
    274283 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Chapters/Chap_DOM.tex

    r4147 r5313  
    493493$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). This option can be used with full step  
    494494bathymetry or $s$-coordinate (hybrid and partial step coordinates have not  
    495 yet been tested in NEMO v2.3).  
     495yet been tested in NEMO v2.3). If using $z$-coordinate with partial step bathymetry 
     496(\np{ln\_zps}~=~true), ocean cavity beneath ice shelves can be open (\np{ln\_isfcav}~=~true). 
    496497 
    497498Contrary to the horizontal grid, the vertical grid is computed in the code and no  
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Chapters/Chap_DYN.tex

    r4759 r5313  
    627627\eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of  
    628628the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point  
    629 ($e_{3w}$).  
     629($e_{3w}$). 
     630  
     631$\bullet$ Traditional coding with adaptation for ice shelf cavities (\np{ln\_dynhpg\_isf}=true). 
     632This scheme need the activation of ice shelf cavities (\np{ln\_isfcav}=true). 
    630633 
    631634$\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np{ln\_dynhpg\_prj}=true) 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Chapters/Chap_MISC.tex

    r4147 r5313  
    141141computational domain is laid out on local processor memories following a 2D  
    142142horizontal splitting. % (see {\S}IV.2-c) ref to the section to be updated 
     143 
     144\subsection{Simple subsetting of input files via netCDF attributes} 
     145 
     146The extended grids for use with the under-shelf ice cavities will result in redundant rows 
     147around Antarctica if the ice cavities are not active. A simple mechanism for subsetting 
     148input files associated with the extended domains has been implemented to avoid the need to 
     149maintain different sets of input fields for use with or without active ice cavities. The 
     150existing 'zoom' options are overly complex for this task and marked for deletion anyway. 
     151This alternative subsetting operates for the j-direction only and works by optionally 
     152looking for and using a global file attribute (named: \np{open\_ocean\_jstart}) to 
     153determine the starting j-row for input. The use of this option is best explained with an 
     154example: Consider an ORCA1 configuration using the extended grid bathymetry and coordinate 
     155files: 
     156\vspace{-10pt} 
     157\begin{alltt} 
     158\tiny 
     159\begin{verbatim} 
     160eORCA1_bathymetry_v2.nc 
     161eORCA1_coordinates.nc 
     162\end{verbatim} 
     163\end{alltt} 
     164\noindent These files define a horizontal domain of 362x332. Assuming the first row with 
     165open ocean wet points in the non-isf bathymetry for this set is row 42 (Fortran indexing) 
     166then the formally correct setting for \np{open\_ocean\_jstart} is 41. Using this value as the 
     167first row to be read will result in a 362x292 domain which is the same size as the original 
     168ORCA1 domain. Thus the extended coordinates and bathymetry files can be used with all the 
     169original input files for ORCA1 if the ice cavities are not active (\np{ln\_isfcav = 
     170.false.}). Full instructions for achieving this are: 
     171 
     172\noindent Add the new attribute to any input files requiring a j-row offset, i.e: 
     173\vspace{-10pt} 
     174\begin{alltt} 
     175\tiny 
     176\begin{verbatim} 
     177ncatted  -a open_ocean_jstart,global,a,d,41 eORCA1_coordinates.nc  
     178ncatted  -a open_ocean_jstart,global,a,d,41 eORCA1_bathymetry_v2.nc 
     179\end{verbatim} 
     180\end{alltt} 
     181  
     182\noindent Add the logical switch to \ngn{namcfg} in the configuration namelist and set true: 
     183%--------------------------------------------namcfg-------------------------------------------------------- 
     184\namdisplay{namcfg_orca1} 
     185%-------------------------------------------------------------------------------------------------------------- 
     186 
     187\noindent Note the j-size of the global domain is the (extended j-size minus 
     188\np{open\_ocean\_jstart} + 1 ) and this must match the size of all datasets other than 
     189bathymetry and coordinates currently. However the option can be extended to any global, 2D 
     190and 3D, netcdf, input field by adding the: 
     191\vspace{-10pt} 
     192\begin{alltt} 
     193\tiny 
     194\begin{verbatim} 
     195lrowattr=ln_use_jattr 
     196\end{verbatim} 
     197\end{alltt} 
     198optional argument to the appropriate \np{iom\_get} call and the \np{open\_ocean\_jstart} attribute to the corresponding input files. It remains the users responsibility to set \np{jpjdta} and \np{jpjglo} values in the \np{namelist\_cfg} file according to their needs. 
    143199 
    144200%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Chapters/Chap_SBC.tex

    r4661 r5313  
    11% ================================================================ 
    2 % Chapter � Surface Boundary Condition (SBC, ICB)  
    3 % ================================================================ 
    4 \chapter{Surface Boundary Condition (SBC, ICB) } 
     2% Chapter � Surface Boundary Condition (SBC, ISF, ICB)  
     3% ================================================================ 
     4\chapter{Surface Boundary Condition (SBC, ISF, ICB) } 
    55\label{SBC} 
    66\minitoc 
     
    4848below ice-covered areas (using observed ice-cover or a sea-ice model)  
    4949(\np{nn\_ice}~=~0,1, 2 or 3); the addition of river runoffs as surface freshwater  
    50 fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of a freshwater flux adjustment  
    51 in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
     50fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of isf melting as lateral inflow (parameterisation)  
     51(\np{nn\_isf}~=~2 or 3 and \np{ln\_isfcav}~=~false) or as surface flux at the land-ice ocean interface 
     52(\np{nn\_isf}~=~1 or 4 and \np{ln\_isfcav}~=~true);  
     53the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
    5254transformation of the solar radiation (if provided as daily mean) into a diurnal  
    5355cycle (\np{ln\_dm2dc}~=~true); and a neutral drag coefficient can be read from an external wave  
     
    6062Finally, the different options that further modify the fluxes applied to the ocean are discussed. 
    6163One of these is modification by icebergs (see \S\ref{ICB_icebergs}), which act as drifting sources of fresh water. 
     64Another example of modification is that due to the ice shelf melting/freezing (see \S\ref{SBC_isf}),  
     65which provides additional sources of fresh water. 
    6266 
    6367 
     
    686690air temperature, sea-surface temperature, cloud cover and relative humidity. 
    687691Sensible heat and latent heat fluxes are computed by classical 
    688 bulk formulae parameterized according to \citet{Kondo1975}. 
     692bulk formulae parameterised according to \citet{Kondo1975}. 
    689693Details on the bulk formulae used can be found in \citet{Maggiore_al_PCE98} and \citet{Castellari_al_JMS1998}. 
    690694 
     
    826830\Pi-g\delta = (1+k-h) \Pi_{A}(\lambda,\phi) 
    827831\end{equation} 
    828 with $k$ a number of Love estimated to 0.6 which parametrized the astronomical tidal land, 
    829 and $h$ a number of Love to 0.3 which parametrized the parametrization due to the astronomical tidal land. 
     832with $k$ a number of Love estimated to 0.6 which parameterised the astronomical tidal land, 
     833and $h$ a number of Love to 0.3 which parameterised the parameterisation due to the astronomical tidal land. 
    830834 
    831835% ================================================================ 
     
    945949 
    946950%} 
    947  
    948  
     951% ================================================================ 
     952%        Ice shelf melting 
     953% ================================================================ 
     954\section   [Ice shelf melting (\textit{sbcisf})] 
     955                        {Ice shelf melting (\mdl{sbcisf})} 
     956\label{SBC_isf} 
     957%------------------------------------------namsbc_isf---------------------------------------------------- 
     958\namdisplay{namsbc_isf} 
     959%-------------------------------------------------------------------------------------------------------- 
     960Namelist variable in \ngn{namsbc}, \np{nn\_isf},  control the kind of ice shelf representation used.  
     961\begin{description} 
     962\item[\np{nn\_isf}~=~1] 
     963The ice shelf cavity is represented. The fwf and heat flux are computed.  
     964Full description, sensitivity and validation in preparation.  
     965 
     966\item[\np{nn\_isf}~=~2] 
     967A parameterisation of isf is used. The ice shelf cavity is not represented.  
     968The fwf is distributed along the ice shelf edge between the depth of the average grounding line (GL) 
     969(\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}~=~3).  
     970Furthermore the fwf is computed using the \citet{Beckmann2003} parameterisation of isf melting.  
     971The effective melting length (\np{sn\_Leff\_isf}) is read from a file. 
     972 
     973\item[\np{nn\_isf}~=~3] 
     974A simple parameterisation of isf is used. The ice shelf cavity is not represented.  
     975The fwf (\np{sn\_rnfisf}) is distributed along the ice shelf edge between the depth of the average grounding line (GL) 
     976(\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}). 
     977Full description, sensitivity and validation in preparation. 
     978 
     979\item[\np{nn\_isf}~=~4] 
     980The ice shelf cavity is represented. However, the fwf (\np{sn\_fwfisf}) and heat flux (\np{sn\_qisf}) are  
     981not computed but specified from file.  
     982\end{description} 
     983 
     984\np{nn\_isf}~=~1 and \np{nn\_isf}~=~2 compute a melt rate based on the water masse properties, ocean velocities and depth. 
     985 This flux is thus highly dependent of the model resolution (horizontal and vertical), realism of the water masse onto the shelf ... 
     986 
     987\np{nn\_isf}~=~3 and \np{nn\_isf}~=~4 read the melt rate and heat flux from a file. You have total control of the fwf scenario. 
     988 
     989 This can be usefull if the water masses on the shelf are not realistic or the resolution (horizontal/vertical) are too  
     990coarse to have realistic melting or for sensitivity studies where you want to control your input.  
     991Full description, sensitivity and validation in preparation.  
     992 
     993There is 2 ways to apply the fwf to NEMO. The first possibility (\np{ln\_divisf}~=~false) applied the fwf 
     994 and heat flux directly on the salinity and temperature tendancy. The second possibility (\np{ln\_divisf}~=~true) 
     995 apply the fwf as for the runoff fwf (see \S\ref{SBC_rnf}). The mass/volume addition due to the ice shelf melting is, 
     996 at each relevant depth level, added to the horizontal divergence (\textit{hdivn}) in the subroutine \rou{sbc\_isf\_div}  
     997(called from \mdl{divcur}).  
     998% 
    949999% ================================================================ 
    9501000%        Handling of icebergs 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r4147 r5313  
    830830% Bottom Friction 
    831831% ================================================================ 
    832 \section  [Bottom Friction (\textit{zdfbfr})]   {Bottom Friction (\mdl{zdfbfr} module)} 
     832\section  [Bottom and top Friction (\textit{zdfbfr})]   {Bottom Friction (\mdl{zdfbfr} module)} 
    833833\label{ZDF_bfr} 
    834834 
     
    837837%-------------------------------------------------------------------------------------------------------------- 
    838838 
    839 Options are defined through the  \ngn{nambfr} namelist variables. 
     839Options to define the top and bottom friction are defined through the  \ngn{nambfr} namelist variables. 
     840The top friction is activated only if the ice shelf cavities are opened (\np{ln\_isfcav}~=~true). 
     841As the friction processes at the top and bottom are the represented similarly, only the bottom friction is described in detail. 
     842 
    840843Both the surface momentum flux (wind stress) and the bottom momentum  
    841844flux (bottom friction) enter the equations as a condition on the vertical  
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Namelist/nambfr

    r4147 r5313  
    55                           !                              = 2 : nonlinear friction 
    66   rn_bfri1    =    4.e-4  !  bottom drag coefficient (linear case) 
    7    rn_bfri2    =    1.e-3  !  bottom drag coefficient (non linear case) 
     7   rn_bfri2    =    1.e-3  !  bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T 
     8   rn_bfri2_max =   1.e-1  !  max. bottom drag coefficient (non linear case and ln_loglayer=T) 
    89   rn_bfeb2    =    2.5e-3 !  bottom turbulent kinetic energy background  (m2/s2) 
    9    rn_bfrz0    =    3.e-3  ! bottom roughness for loglayer bfr coeff  
     10   rn_bfrz0    =    3.e-3  !  bottom roughness [m] if ln_loglayer=T 
    1011   ln_bfr2d    = .false.   !  horizontal variation of the bottom friction coef (read a 2D mask file ) 
    1112   rn_bfrien   =    50.    !  local multiplying factor of bfr (ln_bfr2d=T) 
     13   rn_tfri1    =    4.e-4  !  top drag coefficient (linear case) 
     14   rn_tfri2    =    2.5e-3 !  top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T 
     15   rn_tfri2_max =   1.e-1  !  max. top drag coefficient (non linear case and ln_loglayer=T) 
     16   rn_tfeb2    =    0.0    !  top turbulent kinetic energy background  (m2/s2) 
     17   rn_tfrz0    =    3.e-3  !  top roughness [m] if ln_loglayer=T 
     18   ln_tfr2d    = .false.   !  horizontal variation of the top friction coef (read a 2D mask file ) 
     19   rn_tfrien   =    50.    !  local multiplying factor of tfr (ln_tfr2d=T) 
     20 
    1221   ln_bfrimp   = .true.    !  implicit bottom friction (requires ln_zdfexp = .false. if true) 
     22   ln_loglayer = .false.   !  logarithmic formulation (non linear case) 
    1323/ 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Namelist/namdyn_hpg

    r4147 r5313  
    55   ln_hpg_zps  = .true.    !  z-coordinate - partial steps (interpolation) 
    66   ln_hpg_sco  = .false.   !  s-coordinate (standard jacobian formulation) 
     7   ln_hpg_isf  = .false.   !  s-coordinate (sco ) adapted to ice shelf cavity 
    78   ln_hpg_djc  = .false.   !  s-coordinate (Density Jacobian with Cubic polynomial) 
    89   ln_hpg_prj  = .false.   !  s-coordinate (Pressure Jacobian scheme) 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Namelist/namsbc

    r4230 r5313  
    1919   ln_dm2dc    = .false.   !  daily mean to diurnal cycle on short wave 
    2020   ln_rnf      = .true.    !  runoffs                                   (T => fill namsbc_rnf) 
     21   nn_isf      = 0         !  ice shelf melting/freezing                (/=0 => fill namsbc_isf) 
     22                           !  0 =no isf                  1 = presence of ISF 
     23                           !  2 = bg03 parametrisation   3 = rnf file for isf 
     24                           !  4 = ISF fwf specified 
     25                           !  option 1 and 4 need ln_isfcav = .true. (domzgr) 
    2126   ln_ssr      = .true.    !  Sea Surface Restoring on T and/or S       (T => fill namsbc_ssr) 
    2227   nn_fwb      = 3         !  FreshWater Budget: =0 unchecked 
  • branches/2014/dev_r4650_UKMO11_restart_functionality/DOC/TexFiles/Namelist/namzgr

    r3294 r5313  
    55   ln_zps      = .true.    !  z-coordinate - partial steps   (T/F) 
    66   ln_sco      = .false.   !  s- or hybrid z-s-coordinate    (T/F) 
     7   ln_isfcav   = .false.   !  ice shelf cavity               (T/F) 
    78/ 
Note: See TracChangeset for help on using the changeset viewer.