New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6012 for branches/2015/dev_MetOffice_merge_2015/DOC – NEMO

Ignore:
Timestamp:
2015-12-07T16:11:45+01:00 (8 years ago)
Author:
mathiot
Message:

merge MetO branch with dev_r5151_UKMO_ISF

Location:
branches/2015/dev_MetOffice_merge_2015/DOC/TexFiles
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/dev_MetOffice_merge_2015/DOC/TexFiles/Biblio/Biblio.bib

    r6005 r6012  
    289289  author = {A. Beckmann and H. Goosse}, 
    290290  title = {A parameterization of ice shelf-ocean interaction for climate models}, 
    291   journal = OM 
    292   year = {2003} 
    293   volume = {5} 
     291  journal = OM, 
     292  year = {2003}, 
     293  volume = {5}, 
    294294  pages = {157--170} 
    295295} 
     
    13721372} 
    13731373 
     1374@ARTICLE{Holland1999,  
     1375  author = {D. Holland and A. Jenkins}, 
     1376  title = {Modeling Thermodynamic Ice-Ocean Interactions at the Base of an Ice Shelf}, 
     1377  journal = JPO, 
     1378  year = {1999}, 
     1379  volume = {29},   
     1380  pages = {1787--1800}, 
     1381} 
     1382 
    13741383@ARTICLE{HollowayOM86, 
    13751384  author = {Greg Holloway}, 
     
    15161525  journal = GRL, 
    15171526  pages = {811--814} 
     1527} 
     1528 
     1529@ARTICLE{Jenkins1991, 
     1530  author = {A. Jenkins}, 
     1531  title = {A one-dimensional model of ice shelf-ocean interaction}, 
     1532  journal = JGR, 
     1533  year = {1991}, 
     1534  volume = {96},  number = {C11}, 
     1535  pages = {2298--2312} 
     1536} 
     1537 
     1538@ARTICLE{Jenkins2010, 
     1539  author = {A. Jenkins}, 
     1540  title = {observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica}, 
     1541  journal = JPO, 
     1542  year = {2010}, 
     1543  volume = {40},  number = {10}, 
     1544  pages = {2298--2312} 
    15181545} 
    15191546 
     
    19231950  volume = {51}, 
    19241951  pages = {737--769} 
     1952} 
     1953 
     1954@ARTICLE{Losch2008, 
     1955  author = {M. Losch}, 
     1956  title = {Modeling ice shelf cavities in a z coordinate ocean general circulation model}, 
     1957  journal = JGR, 
     1958  year = {2008}, 
     1959  volume = {113},  number = {C13}, 
    19251960} 
    19261961 
  • branches/2015/dev_MetOffice_merge_2015/DOC/TexFiles/Chapters/Chap_SBC.tex

    r6006 r6012  
    4949(\np{nn\_ice}~=~0,1, 2 or 3); the addition of river runoffs as surface freshwater  
    5050fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of isf melting as lateral inflow (parameterisation)  
    51 (\np{nn\_isf}~=~2 or 3 and \np{ln\_isfcav}~=~false) or as surface flux at the land-ice ocean interface 
    52 (\np{nn\_isf}~=~1 or 4 and \np{ln\_isfcav}~=~true);  
     51 or as surface flux at the land-ice ocean interface (\np{ln\_isf}=~true);  
    5352the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
    5453transformation of the solar radiation (if provided as daily mean) into a diurnal  
     
    958957\namdisplay{namsbc_isf} 
    959958%-------------------------------------------------------------------------------------------------------- 
    960 Namelist variable in \ngn{namsbc}, \np{nn\_isf},  control the kind of ice shelf representation used.  
     959Namelist variable in \ngn{namsbc}, \np{nn\_isf}, control the kind of ice shelf representation used.  
    961960\begin{description} 
    962961\item[\np{nn\_isf}~=~1] 
    963 The ice shelf cavity is represented. The fwf and heat flux are computed.  
     962The ice shelf cavity is represented. The fwf and heat flux are computed. 2 bulk formulations are available: the ISOMIP one (\np{nn\_isfblk = 1}) described in (\np{nn\_isfblk = 2}), the 3 equation formulation described in \citet{Jenkins1991}. In addition to this,  
     9633 different way to compute the exchange coefficient are available. $\gamma\_{T/S}$ is constant (\np{nn\_gammablk = 0}), $\gamma\_{T/S}$ is velocity dependant \citep{Jenkins2010} (\np{nn\_gammablk = 1}) and $\gamma\_{T/S}$ is velocity dependant and stratification dependent \citep{Holland1999} (\np{nn\_gammablk = 2}). For each of them, the thermal/salt exchange coefficient (\np{rn\_gammat0} and \np{rn\_gammas0}) have to be specified (the default values are for the ISOMIP case).  
    964964Full description, sensitivity and validation in preparation.  
    965965 
     
    969969(\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}~=~3).  
    970970Furthermore the fwf is computed using the \citet{Beckmann2003} parameterisation of isf melting.  
    971 The effective melting length (\np{sn\_Leff\_isf}) is read from a file. 
     971The effective melting length (\np{sn\_Leff\_isf}) is read from a file and the exchange coefficients are set as (\np{rn\_gammat0}) and (\np{rn\_gammas0}). 
    972972 
    973973\item[\np{nn\_isf}~=~3] 
     
    987987\np{nn\_isf}~=~3 and \np{nn\_isf}~=~4 read the melt rate and heat flux from a file. You have total control of the fwf scenario. 
    988988 
    989  This can be usefull if the water masses on the shelf are not realistic or the resolution (horizontal/vertical) are too  
     989This can be usefull if the water masses on the shelf are not realistic or the resolution (horizontal/vertical) are too  
    990990coarse to have realistic melting or for sensitivity studies where you want to control your input.  
    991991Full description, sensitivity and validation in preparation.  
    992992 
    993 There is 2 ways to apply the fwf to NEMO. The first possibility (\np{ln\_divisf}~=~false) applied the fwf 
    994  and heat flux directly on the salinity and temperature tendancy. The second possibility (\np{ln\_divisf}~=~true) 
    995  apply the fwf as for the runoff fwf (see \S\ref{SBC_rnf}). The mass/volume addition due to the ice shelf melting is, 
    996  at each relevant depth level, added to the horizontal divergence (\textit{hdivn}) in the subroutine \rou{sbc\_isf\_div}  
    997 (called from \mdl{divcur}).  
     993\np{rn\_hisf\_tbl} is the top boundary layer (tbl) thickness used by the Losch parametrisation \citep{Losch2008} to compute the melt. if 0, temperature/salt/velocity in the top cell is used to compute the melt. 
     994Otherwise, NEMO used the mean value into the tbl.  
    998995 
    999996\section{ Ice sheet coupling} 
  • branches/2015/dev_MetOffice_merge_2015/DOC/TexFiles/Namelist/namsbc

    r5120 r6012  
    1919   ln_dm2dc    = .false.   !  daily mean to diurnal cycle on short wave 
    2020   ln_rnf      = .true.    !  runoffs                                   (T => fill namsbc_rnf) 
    21    nn_isf      = 0         !  ice shelf melting/freezing                (/=0 => fill namsbc_isf) 
    22                            !  0 =no isf                  1 = presence of ISF 
    23                            !  2 = bg03 parametrisation   3 = rnf file for isf 
    24                            !  4 = ISF fwf specified 
    25                            !  option 1 and 4 need ln_isfcav = .true. (domzgr) 
     21   ln_isf      = .false.   !  ice shelf melting/freezing                (T => fill namsbc_isf) 
    2622   ln_ssr      = .true.    !  Sea Surface Restoring on T and/or S       (T => fill namsbc_ssr) 
    2723   nn_fwb      = 3         !  FreshWater Budget: =0 unchecked 
  • branches/2015/dev_MetOffice_merge_2015/DOC/TexFiles/Namelist/namsbc_isf

    r5120 r6012  
    22&namsbc_isf    !  Top boundary layer (ISF) 
    33!----------------------------------------------------------------------- 
     4   nn_isf      = -99       !  ice shelf melting/freezing                (/=0 => fill namsbc_isf) 
     5                           !  1 = ISF explicit (cavity open) 
     6                           !  2 = bg03 parametrisation (cavity closed)   
     7                           !  3 = ISF  specified in depth along the calving front (cavity closed) 
     8                           !  4 = ISF melting specified (cavity open) 
     9                           !  option 1 and 4 need ln_isfcav = .true. (domzgr) 
    410!              ! file name ! frequency (hours) ! variable ! time interpol. !  clim   ! 'yearly'/ ! weights  ! rotation ! 
    511!              !           !  (if <0  months)  !   name   !    (logical)   !  (T/F)  ! 'monthly' ! filename ! pairing  ! 
    612! nn_isf == 4 
    7    sn_qisf      = 'rnfisf' ,         -12      ,'sohflisf',    .false.      , .true.  , 'yearly'  ,  ''      ,   '' 
    813   sn_fwfisf    = 'rnfisf' ,         -12      ,'sowflisf',    .false.      , .true.  , 'yearly'  ,  ''      ,   '' 
    914! nn_isf == 3 
    1015   sn_rnfisf    = 'runoffs' ,         -12      ,'sofwfisf',    .false.      , .true.  , 'yearly'  ,  ''      ,   '' 
    11 ! nn_isf == 2 and 3 
     16! nn_isf == 2 or 3 
    1217   sn_depmax_isf = 'runoffs' ,       -12        ,'sozisfmax' ,   .false.  , .true.  , 'yearly'  ,  ''      ,   '' 
    1318   sn_depmin_isf = 'runoffs' ,       -12        ,'sozisfmin' ,   .false.  , .true.  , 'yearly'  ,  ''      ,   '' 
    1419! nn_isf == 2 
    1520   sn_Leff_isf = 'rnfisf' ,       0          ,'Leff'         ,   .false.  , .true.  , 'yearly'  ,  ''      ,   '' 
    16 ! for all case 
    17    ln_divisf   = .true.  ! apply isf melting as a mass flux or in the salinity trend. (maybe I should remove this option as for runoff?) 
    1821! only for nn_isf = 1 or 2 
    1922   rn_gammat0  = 1.0e-4   ! gammat coefficient used in blk formula 
    2023   rn_gammas0  = 1.0e-4   ! gammas coefficient used in blk formula 
     24! only for nn_isf = 1 or 4 
     25   nn_isfblk   =  1       ! 1 ISOMIP ; 2 conservative (3 equation formulation, Jenkins et al. 1991 ??) 
    2126! only for nn_isf = 1 
    22    nn_isfblk   =  1       ! 1 ISOMIP ; 2 conservative (3 equation formulation, Jenkins et al. 1991 ??) 
    23    rn_hisf_tbl =  30.      ! thickness of the top boundary layer           (Losh et al. 2008) 
     27   rn_hisf_tbl =  30.     ! thickness of the top boundary layer           (Losh et al. 2008) 
    2428                          ! 0 => thickness of the tbl = thickness of the first wet cell 
    25    ln_conserve = .true.   ! conservative case (take into account meltwater advection) 
    2629   nn_gammablk = 1        ! 0 = cst Gammat (= gammat/s) 
    2730                          ! 1 = velocity dependend Gamma (u* * gammat/s)  (Jenkins et al. 2010) 
Note: See TracChangeset for help on using the changeset viewer.