New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6303 – NEMO

Changeset 6303


Ignore:
Timestamp:
2016-02-10T17:18:53+01:00 (8 years ago)
Author:
acc
Message:

Branch nemo_v3_6_STABLE (Documentation). Update Chap_LDF.tex to include Smagorinsky options. Also add a couple of references to Biblio.bib

Location:
branches/2015/nemo_v3_6_STABLE/DOC/TexFiles
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Biblio/Biblio.bib

    r6275 r6303  
    12631263} 
    12641264 
     1265@ARTICLE{Griffies_Hallberg_MWR00, 
     1266  author = {S.M. Griffies and R. Hallberg}, 
     1267  title = {Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models}, 
     1268  journal = MWR, 
     1269  year = {2000}, 
     1270  volume = {128(8)}, 
     1271  pages = {2935--2946} 
     1272} 
     1273 
    12651274@ARTICLE{Guilyardi_al_JC04, 
    12661275  author = {E. Guilyardi and S. Gualdi and J. M. Slingo and A. Navarra and P. Delecluse  
     
    27662775  year = {2004}, 
    27672776  pages = {245--263}, 
     2777} 
     2778 
     2779@INBOOK{Smagorinsky_93, 
     2780  author = {Smagorinsky, J.}, 
     2781  chapter = {Some historical remarks on the use of non-linear viscosities}, 
     2782  title = {Large Eddy Simulation of Complex Engineering and Geophysical Flows}, 
     2783  pages = {3--36}, 
     2784  year = {1993}, 
     2785  publisher = {Cambridge University Press, B. Galperin and S. A. Orszag (eds.)}, 
    27682786} 
    27692787 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_LDF.tex

    r6275 r6303  
    6868When none of the \textbf{key\_dynldf\_...} and \textbf{key\_traldf\_...} keys are  
    6969defined, a constant value is used over the whole ocean for momentum and  
    70 tracers, which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist  
     70tracers, which is specified through the \np{rn\_ahm\_0\_lap} and \np{rn\_aht\_0} namelist  
    7171parameters. 
    7272 
     
    7777mixing coefficients will require 3D arrays. In the 1D option, a hyperbolic variation  
    7878of the lateral mixing coefficient is introduced in which the surface value is  
    79 \np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value,  
     79\np{rn\_aht\_0} (\np{rn\_ahm\_0\_lap}), the bottom value is 1/4 of the surface value,  
    8080and the transition takes place around z=300~m with a width of 300~m  
    8181($i.e.$ both the depth and the width of the inflection point are set to 300~m).  
     
    9393\end{equation} 
    9494where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked  
    95 ocean domain, and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer)  
     95ocean domain, and $A_o^l$ is the \np{rn\_ahm\_0\_lap} (momentum) or \np{rn\_aht\_0} (tracer)  
    9696namelist parameter. This variation is intended to reflect the lesser need for subgrid  
    9797scale eddy mixing where the grid size is smaller in the domain. It was introduced in  
     
    105105Other formulations can be introduced by the user for a given configuration.  
    106106For example, in the ORCA2 global ocean model (see Configurations), the laplacian  
    107 viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
    108 north and south and decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s  
     107viscosity operator uses \np{rn\_ahm\_0\_lap}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
     108north and south and decreases linearly to \np{rn\_aht\_0}~= 2.10$^3$ m$^2$/s  
    109109at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. This modification  
    110110can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}.  
     
    120120\subsubsection{Space and Time Varying Mixing Coefficients} 
    121121 
    122 There is no default specification of space and time varying mixing coefficient.  
    123 The only case available is specific to the ORCA2 and ORCA05 global ocean  
    124 configurations. It provides only a tracer  
    125 mixing coefficient for eddy induced velocity (ORCA2) or both iso-neutral and  
    126 eddy induced velocity (ORCA05) that depends on the local growth rate of  
    127 baroclinic instability. This specification is actually used when an ORCA key  
     122There are no default specifications of space and time varying mixing coefficient.  One 
     123available case is specific to the ORCA2 and ORCA05 global ocean configurations. It 
     124provides only a tracer mixing coefficient for eddy induced velocity (ORCA2) or both 
     125iso-neutral and eddy induced velocity (ORCA05) that depends on the local growth rate of 
     126baroclinic instability. This specification is actually used when an ORCA key 
    128127and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
     128 
     129\subsubsection{Smagorinsky viscosity (\key{dynldf\_c3d} and \key{dynldf\_smag})} 
     130 
     131The \key{dynldf\_smag} key activates a 3D, time-varying viscosity that depends on the 
     132resolved motions. Following \citep{Smagorinsky_93} the viscosity coefficient is set 
     133proportional to a local deformation rate based on the horizontal shear and tension, 
     134namely: 
     135 
     136\begin{equation} 
     137A_{m_{Smag}} = \left(\frac{{\sf CM_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
     138\end{equation} 
     139 
     140\noindent where the deformation rate $\vert{D}\vert$ is given by  
     141 
     142\begin{equation} 
     143\vert{D}\vert=\sqrt{\left({\frac{\partial{u}} {\partial{x}}} 
     144                         -{\frac{\partial{v}} {\partial{y}}}\right)^2 
     145                 +  \left({\frac{\partial{u}} {\partial{y}}} 
     146                         +{\frac{\partial{v}} {\partial{x}}}\right)^2}  
     147\end{equation} 
     148 
     149\noindent and $L$ is the local gridscale given by: 
     150 
     151\begin{equation} 
     152L^2 = \frac{2{e_1}^2 {e_2}^2}{\left ( {e_1}^2 + {e_2}^2 \right )} 
     153\end{equation} 
     154 
     155\citep{Griffies_Hallberg_MWR00} suggest values in the range 2.2 to 4.0 of the coefficient 
     156$\sf CM_{Smag}$ for oceanic flows. This value is set via the \np{rn\_cmsmag\_1} namelist 
     157parameter. An additional parameter: \np{rn\_cmsh} is included in NEMO for experimenting 
     158with the contribution of the shear term. A value of 1.0 (the default) calculates the 
     159deformation rate as above; a value of 0.0 will discard the shear term entirely. 
     160 
     161For numerical stability, the calculated viscosity is bounded according to the following: 
     162 
     163\begin{equation} 
     164{\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_ahm\_m\_lap\right ) \geq A_{m_{Smag}}  
     165                                                                  \geq rn\_ahm\_0\_lap 
     166\end{equation} 
     167 
     168\noindent with both parameters for the upper and lower bounds being provided via the 
     169indicated namelist parameters. 
     170 
     171\bigskip When $ln\_dynldf\_bilap = .true.$, a biharmonic version of the Smagorinsky 
     172viscosity is also available which sets a coefficient for the biharmonic viscosity as: 
     173 
     174\begin{equation} 
     175B_{m_{Smag}} = - \left(\frac{{\sf CM_{bSmag}}}{\pi}\right)^2 {L^4\over 8}\vert{D}\vert 
     176\end{equation} 
     177 
     178\noindent which is bounded according to: 
     179 
     180\begin{equation} 
     181{\rm MAX}\left (-{ L^4\over {64\Delta{t}}}, rn\_ahm\_m\_blp\right ) \leq B_{m_{Smag}}  
     182                                                                    \leq rn\_ahm\_0\_blp 
     183\end{equation} 
     184 
     185\noindent Note the reversal of the inequalities here because NEMO requires the biharmonic 
     186coefficients as negative numbers. $\sf CM_{bSmag}$ is set via the \np{rn\_cmsmag\_2} 
     187namelist parameter and the bounding values have corresponding entries in the namelist too. 
     188 
     189\bigskip The current implementation in NEMO also allows for 3D, time-varying diffusivities 
     190to be set using the Smagorinsky approach. Users should note that this option is not 
     191recommended for many applications since diffusivities will tend to be largest near 
     192boundaries (where shears are greatest) leading to spurious upwellings 
     193(\citep{Griffies_Bk04}, chapter 18.3.4). Nevertheless the option is there for those 
     194wishing to experiment. This choice requires both \key{traldf\_c3d} and \key{traldf\_smag} 
     195and uses the \np{rn\_chsmag} (${\sf CH_{Smag}}$), \np{rn\_smsh} and \np{rn\_aht\_m} 
     196namelist parameters in an analogous way to \np{rn\_cmsmag\_1}, \np{rn\_cmsh} and 
     197\np{rn\_ahm\_m\_lap} (see above) to set the diffusion coefficient: 
     198 
     199\begin{equation} 
     200A_{h_{Smag}} = \left(\frac{{\sf CH_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
     201\end{equation} 
     202 
     203  
     204For numerical stability, the calculated diffusivity is bounded according to the following: 
     205 
     206\begin{equation} 
     207{\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_aht\_m\right ) \geq A_{h_{Smag}}  
     208                                                             \geq rn\_aht\_0 
     209\end{equation} 
     210 
     211 
    129212 
    130213$\ $\newline    % force a new ligne 
     
    144227(3) for isopycnal diffusion on momentum or tracers, an additional purely  
    145228horizontal background diffusion with uniform coefficient can be added by  
    146 setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, a background horizontal  
     229setting a non zero value of \np{rn\_ahmb\_0} or \np{rn\_ahtb\_0}, a background horizontal  
    147230eddy viscosity or diffusivity coefficient (namelist parameters whose default  
    148231values are $0$). However, the technique used to compute the isopycnal  
Note: See TracChangeset for help on using the changeset viewer.