New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6306 for branches/2015 – NEMO

Changeset 6306 for branches/2015


Ignore:
Timestamp:
2016-02-11T18:48:18+01:00 (8 years ago)
Author:
acc
Message:

Branch nemo_v3_6_STABLE (Documentation). Update Chap_ZDF.tex to include loglayer option for bottom friction. Also update namelist parameter references where names have changed

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r6275 r6306  
    261261\end{equation} 
    262262 
    263 At the ocean surface, a non zero length scale is set through the  \np{rn\_lmin0} namelist  
     263At the ocean surface, a non zero length scale is set through the  \np{rn\_mxl0} namelist  
    264264parameter. Usually the surface scale is given by $l_o = \kappa \,z_o$  
    265265where $\kappa = 0.4$ is von Karman's constant and $z_o$ the roughness  
    266266parameter of the surface. Assuming $z_o=0.1$~m \citep{Craig_Banner_JPO94}  
    267 leads to a 0.04~m, the default value of \np{rn\_lsurf}. In the ocean interior  
     267leads to a 0.04~m, the default value of \np{rn\_mxl0}. In the ocean interior  
    268268a minimum length scale is set to recover the molecular viscosity when $\bar{e}$  
    269269reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ). 
     
    294294As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,  
    295295with $e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}~=~67.83 corresponds  
    296 to $\alpha_{CB} = 100$. further setting  \np{ln\_lsurf} to true applies \eqref{ZDF_Lsbc}  
    297 as surface boundary condition on length scale, with $\beta$ hard coded to the Stacet's value. 
     296to $\alpha_{CB} = 100$. Further setting  \np{ln\_mxl0} to true applies \eqref{ZDF_Lsbc}  
     297as surface boundary condition on length scale, with $\beta$ hard coded to the Stacey's value. 
    298298Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters)  
    299299is applied on surface $\bar{e}$ value. 
     
    939939$H = 4000$~m, the resulting friction coefficient is $r = 4\;10^{-4}$~m\;s$^{-1}$.  
    940940This is the default value used in \NEMO. It corresponds to a decay time scale  
    941 of 115~days. It can be changed by specifying \np{rn\_bfric1} (namelist parameter). 
     941of 115~days. It can be changed by specifying \np{rn\_bfri1} (namelist parameter). 
    942942 
    943943For the linear friction case the coefficients defined in the general  
     
    949949\end{split} 
    950950\end{equation} 
    951 When \np{nn\_botfr}=1, the value of $r$ used is \np{rn\_bfric1}.  
     951When \np{nn\_botfr}=1, the value of $r$ used is \np{rn\_bfri1}.  
    952952Setting \np{nn\_botfr}=0 is equivalent to setting $r=0$ and leads to a free-slip  
    953953bottom boundary condition. These values are assigned in \mdl{zdfbfr}.  
     
    956956in the \ifile{bfr\_coef} input NetCDF file. The mask values should vary from 0 to 1.  
    957957Locations with a non-zero mask value will have the friction coefficient increased  
    958 by $mask\_value$*\np{rn\_bfrien}*\np{rn\_bfric1}. 
     958by $mask\_value$*\np{rn\_bfrien}*\np{rn\_bfri1}. 
    959959 
    960960% ------------------------------------------------------------------------------------------------------------- 
     
    976976$e_b = 2.5\;10^{-3}$m$^2$\;s$^{-2}$, while the FRAM experiment \citep{Killworth1992}  
    977977uses $C_D = 1.4\;10^{-3}$ and $e_b =2.5\;\;10^{-3}$m$^2$\;s$^{-2}$.  
    978 The CME choices have been set as default values (\np{rn\_bfric2} and \np{rn\_bfeb2}  
     978The CME choices have been set as default values (\np{rn\_bfri2} and \np{rn\_bfeb2}  
    979979namelist parameters). 
    980980 
     
    991991\end{equation} 
    992992 
    993 The coefficients that control the strength of the non-linear bottom friction are  
    994 initialised as namelist parameters: $C_D$= \np{rn\_bfri2}, and $e_b$ =\np{rn\_bfeb2}.  
    995 Note for applications which treat tides explicitly a low or even zero value of  
    996 \np{rn\_bfeb2} is recommended. From v3.2 onwards a local enhancement of $C_D$  
    997 is possible via an externally defined 2D mask array (\np{ln\_bfr2d}=true).  
    998 See previous section for details. 
     993The coefficients that control the strength of the non-linear bottom friction are 
     994initialised as namelist parameters: $C_D$= \np{rn\_bfri2}, and $e_b$ =\np{rn\_bfeb2}. 
     995Note for applications which treat tides explicitly a low or even zero value of 
     996\np{rn\_bfeb2} is recommended. From v3.2 onwards a local enhancement of $C_D$ is possible 
     997via an externally defined 2D mask array (\np{ln\_bfr2d}=true).  This works in the same way 
     998as for the linear bottom friction case with non-zero masked locations increased by 
     999$mask\_value$*\np{rn\_bfrien}*\np{rn\_bfri2}. 
     1000 
     1001% ------------------------------------------------------------------------------------------------------------- 
     1002%       Bottom Friction Log-layer 
     1003% ------------------------------------------------------------------------------------------------------------- 
     1004\subsection{Log-layer Bottom Friction enhancement (\np{nn\_botfr} = 2, \np{ln\_loglayer} = .true.)} 
     1005\label{ZDF_bfr_loglayer} 
     1006 
     1007In the non-linear bottom friction case, the drag coefficient, $C_D$, can be optionally 
     1008enhanced using a "law of the wall" scaling. If  \np{ln\_loglayer} = .true., $C_D$ is no 
     1009longer constant but is related to the thickness of the last wet layer in each column by: 
     1010 
     1011\begin{equation} 
     1012C_D = \left ( {\kappa \over {\rm log}\left ( 0.5e_{3t}/rn\_bfrz0 \right ) } \right )^2 
     1013\end{equation} 
     1014 
     1015\noindent where $\kappa$ is the von-Karman constant and \np{rn\_bfrz0} is a roughness 
     1016length provided via the namelist. 
     1017 
     1018For stability, the drag coefficient is bounded such that it is kept greater or equal to 
     1019the base \np{rn\_bfri2} value and it is not allowed to exceed the value of an additional 
     1020namelist parameter: \np{rn\_bfri2\_max}, i.e.: 
     1021 
     1022\begin{equation} 
     1023rn\_bfri2 \leq C_D \leq rn\_bfri2\_max 
     1024\end{equation} 
     1025 
     1026\noindent Note also that a log-layer enhancement can also be applied to the top boundary 
     1027friction if under ice-shelf cavities are in use (\np{ln\_isfcav}=.true.).  In this case, the 
     1028relevant namelist parameters are \np{rn\_tfrz0}, \np{rn\_tfri2} 
     1029and \np{rn\_tfri2\_max}. 
    9991030 
    10001031% ------------------------------------------------------------------------------------------------------------- 
Note: See TracChangeset for help on using the changeset viewer.