New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6322 for branches/2015/nemo_v3_6_STABLE – NEMO

Ignore:
Timestamp:
2016-02-18T08:38:04+01:00 (8 years ago)
Author:
gm
Message:

#1629: DOC of v3.6_stable : update the introduction and Qsr, add new tidal mixing param.

Location:
branches/2015/nemo_v3_6_STABLE/DOC/TexFiles
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Biblio/Biblio.bib

    r6317 r6322  
    472472} 
    473473 
     474@article{bouffard_Boegman_DAO2013, 
     475   author = {D. Bouffard and L. Boegman}, 
     476   title = {A diapycnal diffusivity model for stratified environmental flows}, 
     477   volume = {61-62}, 
     478   issn = {03770265}, 
     479   url = {http://dx.doi.org/10.1016/j.dynatmoce.2013.02.002}, 
     480   doi = {10.1016/j.dynatmoce.2013.02.002}, 
     481   journal = DAO, 
     482   year = {2013}, 
     483   pages = {14--34}, 
     484} 
     485 
    474486@ARTICLE{Bougeault1989, 
    475487  author = {P. Bougeault and P. Lacarrere}, 
     
    787799  volume = {34}, 
    788800  pages = {8--13} 
     801} 
     802 
     803@article{de_lavergne_JPO2016_efficiency, 
     804   title = {The impact of a variable mixing efficiency on the abyssal overturning}, 
     805   issn = {0022-3670}, 
     806   url = {http://dx.doi.org//10.1175/JPO-D-14-0259.1}, 
     807   doi = {10.1175/JPO-D-14-0259.1}, 
     808   abstract = {In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15-20 \% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency Rf, significantly varies depending on flow properties challenges this assumption, however. Here, we examine the implications of a varying mixing efficiency for ocean energetics and deep water mass transformation. Combining current parameterizations of internal wave-driven mixing with a recent model expressing Rf as a function of a turbulence intensity parameter Reb = εν/νN2, we show that accounting for reduced mixing efficiencies in regions of weak stratification or energetic turbulence (high Reb) strongly limits the ability of breaking internal waves to supply oceanic potential energy and drive abyssal upwelling. Moving from a fixed Rf = 1/6 to a variable efficiency Rf(Reb) causes Antarctic Bottom Water upwelling induced by locally-dissipating internal tides and lee waves to fall from 9 to 4 Sv, and the corresponding potential energy source to plunge from 97 to 44 GW. When adding the contribution of remotely-dissipating internal tides under idealized distributions of energy dissipation, the total rate of Antarctic Bottom Water upwelling is reduced by about a factor of 2, reaching 5-15 Sv compared to 10-33 Sv for a fixed efficiency. Our results suggest that distributed mixing, overflow-related boundary processes and geothermal heating are more effective in consuming abyssal waters than topographically-enhanced mixing by breaking internal waves. Our calculations also point to the importance of accurately constraining Rf(Reb) and including the effect in ocean models.}, 
     809   journal = {Journal of Physical Oceanography}, 
     810   author = {C. de Lavergne and G. Madec and J. Le Sommer and A. J. G. Nurser and A. C. Naveira Garabato }, 
     811   year = {2016}, 
     812   volume = {46},  pages = {663-–681} 
    789813} 
    790814 
     
    11601184} 
    11611185 
     1186@article{goff_JGR2010, 
     1187   author = {J. A. Goff}, 
     1188   title = {Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability}, 
     1189   issn = {2156-2202}, 
     1190   url = {http://dx.doi.org/10.1029/2010JB007867}, 
     1191   doi = {10.1029/2010JB007867}, 
     1192   abstract = {Abyssal hills, which are pervasive landforms on the seafloor of the Earth's oceans, represent a potential tectonic record of the history of mid-ocean ridge spreading. However, the most detailed global maps of the seafloor, derived from the satellite altimetry-based gravity field, cannot be used to deterministically characterize such small-scale ({\textless}10 km) morphology. Nevertheless, the small-scale variability of the gravity field can be related to the statistical properties of abyssal hill morphology using the upward continuation formulation. In this paper, I construct a global prediction of abyssal hill root-mean-square (rms) heights from the small-scale variability of the altimetric gravity field. The abyssal hill-related component of the gravity field is derived by first masking distinct features, such as seamounts, mid-ocean ridges, and continental margins, and then applying a newly designed adaptive directional filter algorithm to remove fracture zone/discontinuity fabric. A noise field is derived empirically by correlating the rms variability of the small-scale gravity field to the altimetric noise field in regions of very low relief, and the noise variance is subtracted from the small-scale gravity variance. Suites of synthetically derived, abyssal hill formed gravity fields are generated as a function of water depth, basement rms heights, and sediment thickness and used to predict abyssal hill seafloor rms heights from corrected small-scale gravity rms height. The resulting global prediction of abyssal hill rms heights is validated qualitatively by comparing against expected variations in abyssal hill morphology and quantitatively by comparing against actual measurements of rms heights. Although there is scatter, the prediction appears unbiased.}, 
     1193   volume = {115}, 
     1194   number = {B12}, 
     1195   journal = {Journal of Geophysical Research: Solid Earth}, 
     1196   year = {2010}, 
     1197   pages = {B12104}, 
     1198} 
     1199 
    11621200@ARTICLE{Goosse_al_JGR99, 
    11631201  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England}, 
     
    12641302 
    12651303@ARTICLE{Griffies_Hallberg_MWR00, 
    1266   author = {S.M. Griffies and R. Hallberg}, 
     1304  author = {S.M. Griffies and R.H. Hallberg}, 
    12671305  title = {Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models}, 
    12681306  journal = MWR, 
    12691307  year = {2000}, 
    1270   volume = {128(8)}, 
    1271   pages = {2935--2946} 
     1308  volume = {128},   
     1309  pages = {2935–-2946}, 
     1310 url = {http://dx.doi.org/10.1175/1520-0493(2000)128} 
    12721311} 
    12731312 
     
    15851624  volume = {12}, 
    15861625  pages = {381--389} 
     1626} 
     1627 
     1628@article{Jackson_Rehmann_JPO2014, 
     1629   author = {P. R. Jackson and C. R. Rehmann}, 
     1630   title = {Experiments on differential scalar mixing in turbulence in a sheared, stratified flow}, 
     1631   journal = JPO, 
     1632   volume = {44}, 
     1633   issn = {0022-3670}, 
     1634   url = {http://dx.doi.org/10.1175/JPO-D-14-0027.1}, 
     1635   doi = {10.1175/JPO-D-14-0027.1}, 
     1636   number = {10}, 
     1637   year = {2014}, 
     1638   pages = {2661--2680}, 
    15871639} 
    15881640 
     
    19351987  year = {2009}, 
    19361988  volume = {30},  number = {2-3}, 
    1937   pages = {88-94}, 
     1989  pages = {88--94}, 
    19381990  doi = {10.1016/j.ocemod.2009.06.006}, 
    1939   url = {http://dx.doi.org/} 
    1940 } 
    1941  
    1942 @ARTICLE{Leclair_Madec_OM10s, 
     1991  url = {http://dx.doi.org/10.1016/j.ocemod.2009.06.006} 
     1992} 
     1993 
     1994@ARTICLE{Leclair_Madec_OM11, 
    19431995  author = {M. Leclair and G. Madec}, 
    19441996  title = {$\tilde{z}$-coordinate, an Arbitrary Lagrangian-Eulerian coordinate separating high and low frequency}, 
    19451997  journal = OM, 
    1946   year = {2010}, 
    1947   pages = {submitted}, 
     1998  year = {2011}, 
     1999  volume = {37},  pages = {139--152},  
     2000  doi = {10.1016/j.ocemod.2011.02.001}, 
     2001  url = {http://dx.doi.org/10.1016/j.ocemod.2011.02.001} 
    19482002} 
    19492003 
     
    24272481} 
    24282482 
     2483 
     2484@ARTICLE{Morel_Berthon_LO89, 
     2485  author = {A. Morel and J.-F. Berthon}, 
     2486  title = {Surface pigments, algal biomass profiles, and potential production of the euphotic layer:  
     2487           Relationships reinvestigated in view of remote-sensing applications}, 
     2488  journal = {Limnol. Oceanogr.}, 
     2489  year = {1989}, 
     2490  volume = {34(8)}, 
     2491  pages = {1545--1562} 
     2492} 
     2493 
    24292494@ARTICLE{Morel_Maritorena_JGR01, 
    24302495  author = {A. Morel and S. Maritorena}, 
     
    24752540  title = {Estimates of the local rate of vertical diffusion from dissipation measurements}, 
    24762541  journal = JPO, 
     2542  year = {1980}, 
    24772543  volume = {10}, 
    24782544  pages = {83--89} 
     
    27092775  volume = {105}, 
    27102776  pages = {23,927--23,942} 
     2777} 
     2778 
     2779@ARTICLE{Rousset_GMD2015, 
     2780  author = {C. Rousset and M. Vancoppenolle and G. Madec and T. Fichefet and S. Flavoni  
     2781            and A. Barth\'{e}lemy and R. Benshila and J. Chanut and C. L\'{e}vy and S. Masson and F. Vivier }, 
     2782  title  = {The Louvain-La-Neuve sea-ice model LIM3.6: Global and regional capabilities}, 
     2783  journal= {Geoscientific Model Development}, 
     2784  year = {2015}, 
     2785  volume = {8}, pages={2991--3005}, 
     2786  doi = {10.5194/gmd-8-2991-2015}, 
     2787  url = {http://dx.doi.org/10.5194/gmd-8-2991-2015} 
    27112788} 
    27122789 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_Model_Basics.tex

    r6275 r6322  
    992992\label{PE_zco_tilde} 
    993993 
    994 The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM10s}. 
     994The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM11}. 
    995995It is available in \NEMO since the version 3.4. Nevertheless, it is currently not robust enough  
    996996to be used in all possible configurations. Its use is therefore not recommended. 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_TRA.tex

    r6317 r6322  
    749749($i.e.$ the inverses of the extinction length scales) are tabulated over 61 nonuniform  
    750750chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine \rou{trc\_oce\_rgb}  
    751 in \mdl{trc\_oce} module). Three types of chlorophyll can be chosen in the RGB formulation: 
    752 (1) a constant 0.05 g.Chl/L value everywhere (\np{nn\_chdta}=0) ; (2) an observed  
    753 time varying chlorophyll (\np{nn\_chdta}=1) ; (3) simulated time varying chlorophyll 
    754 by TOP biogeochemical model (\np{ln\_qsr\_bio}=true). In the latter case, the RGB  
    755 formulation is used to calculate both the phytoplankton light limitation in PISCES  
    756 or LOBSTER and the oceanic heating rate.  
    757  
     751in \mdl{trc\_oce} module). Four types of chlorophyll can be chosen in the RGB formulation: 
     752\begin{description}  
     753\item[\np{nn\_chdta}=0]  
     754a constant 0.05 g.Chl/L value everywhere ;  
     755\item[\np{nn\_chdta}=1]   
     756an observed time varying chlorophyll deduced from satellite surface ocean color measurement  
     757spread uniformly in the vertical direction ;  
     758\item[\np{nn\_chdta}=2]   
     759same as previous case except that a vertical profile of chlorophyl is used.  
     760Following \cite{Morel_Berthon_LO89}, the profile is computed from the local surface chlorophyll value ; 
     761\item[\np{ln\_qsr\_bio}=true]   
     762simulated time varying chlorophyll by TOP biogeochemical model.  
     763In this case, the RGB formulation is used to calculate both the phytoplankton  
     764light limitation in PISCES or LOBSTER and the oceanic heating rate.  
     765\end{description}  
    758766The trend in \eqref{Eq_tra_qsr} associated with the penetration of the solar radiation  
    759767is added to the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.  
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r6317 r6322  
    13131313 
    13141314% ================================================================ 
     1315% Internal wave-driven mixing 
     1316% ================================================================ 
     1317\section{Internal wave-driven mixing (\key{zdftmx\_new})} 
     1318\label{ZDF_tmx_new} 
     1319 
     1320%--------------------------------------------namzdf_tmx_new------------------------------------------ 
     1321\namdisplay{namzdf_tmx_new} 
     1322%-------------------------------------------------------------------------------------------------------------- 
     1323 
     1324The parameterization of mixing induced by breaking internal waves is a generalization  
     1325of the approach originally proposed by \citet{St_Laurent_al_GRL02}.  
     1326A three-dimensional field of internal wave energy dissipation $\epsilon(x,y,z)$ is first constructed,  
     1327and the resulting diffusivity is obtained as  
     1328\begin{equation} \label{Eq_Kwave} 
     1329A^{vT}_{wave} =  R_f \,\frac{ \epsilon }{ \rho \, N^2 } 
     1330\end{equation} 
     1331where $R_f$ is the mixing efficiency and $\epsilon$ is a specified three dimensional distribution  
     1332of the energy available for mixing. If the \np{ln\_mevar} namelist parameter is set to false,  
     1333the mixing efficiency is taken as constant and equal to 1/6 \citep{Osborn_JPO80}.  
     1334In the opposite (recommended) case, $R_f$ is instead a function of the turbulence intensity parameter  
     1335$Re_b = \frac{ \epsilon}{\nu \, N^2}$, with $\nu$ the molecular viscosity of seawater,  
     1336following the model of \cite{Bouffard_Boegman_DAO2013}  
     1337and the implementation of \cite{de_lavergne_JPO2016_efficiency}. 
     1338Note that $A^{vT}_{wave}$ is bounded by $10^{-2}\,m^2/s$, a limit that is often reached when the mixing efficiency is constant. 
     1339 
     1340In addition to the mixing efficiency, the ratio of salt to heat diffusivities can chosen to vary  
     1341as a function of $Re_b$ by setting the \np{ln\_tsdiff} parameter to true, a recommended choice).  
     1342This parameterization of differential mixing, due to \cite{Jackson_Rehmann_JPO2014},  
     1343is implemented as in \cite{de_lavergne_JPO2016_efficiency}. 
     1344 
     1345The three-dimensional distribution of the energy available for mixing, $\epsilon(i,j,k)$, is constructed  
     1346from three static maps of column-integrated internal wave energy dissipation, $E_{cri}(i,j)$,  
     1347$E_{pyc}(i,j)$, and $E_{bot}(i,j)$, combined to three corresponding vertical structures  
     1348(de Lavergne et al., in prep): 
     1349\begin{align*} 
     1350F_{cri}(i,j,k) &\propto e^{-h_{ab} / h_{cri} }\\ 
     1351F_{pyc}(i,j,k) &\propto N^{n\_p}\\ 
     1352F_{bot}(i,j,k) &\propto N^2 \, e^{- h_{wkb} / h_{bot} } 
     1353\end{align*}  
     1354In the above formula, $h_{ab}$ denotes the height above bottom,  
     1355$h_{wkb}$ denotes the WKB-stretched height above bottom, defined by 
     1356\begin{equation*} 
     1357h_{wkb} = H \, \frac{ \int_{-H}^{z} N \, dz' } { \int_{-H}^{\eta} N \, dz'  } \; , 
     1358\end{equation*} 
     1359The $n_p$ parameter (given by \np{nn\_zpyc} in \ngn{namzdf\_tmx\_new} namelist)  controls the stratification-dependence of the pycnocline-intensified dissipation.  
     1360It can take values of 1 (recommended) or 2. 
     1361Finally, the vertical structures $F_{cri}$ and $F_{bot}$ require the specification of  
     1362the decay scales $h_{cri}(i,j)$ and $h_{bot}(i,j)$, which are defined by two additional input maps.  
     1363$h_{cri}$ is related to the large-scale topography of the ocean (etopo2)  
     1364and $h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of  
     1365the abyssal hill topography \citep{Goff_JGR2010} and the latitude. 
     1366 
     1367% ================================================================ 
     1368 
     1369 
     1370 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Introduction.tex

    r6275 r6322  
    228228\item a deep re-writting and simplification of the off-line tracer component (OFF\_SRC) ;  
    229229\item the merge of passive and active advection and diffusion modules ; 
    230 \item  Use of the Flexible Configuration Manager (FCM) to build configurations, generate the Makefile and produce the executable ; 
     230\item Use of the Flexible Configuration Manager (FCM) to build configurations, generate the Makefile and produce the executable ; 
    231231\item Linear-tangent and Adjoint component (TAM) added, phased with v3.0 
    232232\end{enumerate} 
     
    253253$\bullet$ The main modifications from NEMO/OPA v3.4 and  v3.6 are :\\ 
    254254\begin{enumerate} 
    255 \item ... ;  
    256 \end{enumerate} 
    257  
    258  
     255\item I/O management: NEMO in now interfaced with XIOS, a Input/Output server having a versatile xml user interface, and  
     256allowing I/O to be performed on dedicated processors thus improving scalability and performance on massively parallel platforms.  
     257\item ICB module \citep{Marsh_GMD2015}: icebergs as lagrangian floats ;  
     258\item SAS: Stand Alone Surface module allowing testing of forcing set with bulk formulae, to run sea-ice models without ocean, to run ICB icebergs module alone, and to test AGRIF with sea-ice 
     259\item ISF : Under ice-selves cavities (parametrisation and/or explicit representation) 
     260\item Coupled interface for next IPCC requirements (multi category sea-ice, calving and iceberg module) 
     261\item Ocean and ice allowed to be explicitly coupled through OASIS, using StandAlone Surface module) 
     262\item On line coarsening of ocean I/O 
     263\item Major evolution of LIM3 sea-ice model \citep{Rousset_GMD2015} 
     264\item Open boundaries: completion of BDY/OBC merge : BDY is now the only Open boundary module available 
     265\item re-visit of the specification of heat/salt(tracers)/mass fluxes ; 
     266\item levitating or fully embedded sea-ice (for LIM and CICE) ; 
     267\item a new parameterization of mixing induced by breaking internal waves (de Lavergne et al. in prep.) 
     268And also: 
     269\item update of AGRIF package and AGRIF compatibility with LIM2 sea-ice model ; 
     270\item A new vertical sigma coordinate stretching function \citep{Siddorn_Furner_OM12} ; 
     271\item Smagorinsky eddy coefficients: the \cite{Griffies_Hallberg_MWR00} Smagorinsky type diffusivity/viscosity for lateral mixing has been introduced ; 
     272\item Standard Fox Kemper parametrisation 
     273\item Analytical tropical cyclones taken in account using track and magnitude observations (Vincent et al. JGR 2012a,b) ; 
     274\item OBS: observation operators improved and now available in Standalone mode ; 
     275\item Log layer option for bottom friction 
     276\item Faster split-explicit time stepping ;  
     277\item Z-tilde ALE coordinates \citep{Leclair_Madec_OM11} ;  
     278\item implicit bottom friction ; 
     279\item Runoff improved and SBC with BGC 
     280\item MPP assessment and optimisation 
     281\item First steps of wave coupling 
     282 
     283Features becoming obsolete: LIM2 (replaced by LIM3 monocategory) ; IOIPSL (replaced by XIOS) ;  
     284 
     285Features that has been removed : LOBSTER (now included in PISCES) ; OBC, replaced by BDY ;    
     286 
     287 
     288 
     289\end{enumerate} 
     290 
     291 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Namelist/namsbc_alb

    r4147 r6322  
    22&namsbc_alb    !   albedo parameters 
    33!----------------------------------------------------------------------- 
    4    rn_cloud    =    0.06   !  cloud correction to snow and ice albedo 
    5    rn_albice   =    0.53   !  albedo of melting ice in the arctic and antarctic 
    6    rn_alphd    =    0.80   !  coefficients for linear interpolation used to 
    7    rn_alphc    =    0.65   !  compute albedo between two extremes values 
    8    rn_alphdi   =    0.72   !  (Pyane, 1972) 
     4   nn_ice_alb  =    0   !  parameterization of ice/snow albedo 
     5                        !     0: Shine & Henderson-Sellers (JGR 1985) 
     6                        !     1: "home made" based on Brandt et al. (J. Climate 2005) 
     7                        !                         and Grenfell & Perovich (JGR 2004) 
     8   rn_albice   =  0.53  !  albedo of bare puddled ice (values from 0.49 to 0.58) 
     9                        !     0.53 (default) => if nn_ice_alb=0 
     10                        !     0.50 (default) => if nn_ice_alb=1 
    911/ 
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Namelist/namtra_qsr

    r5890 r6322  
    1111   ln_qsr_2bd  = .false.   !  2 bands              light penetration 
    1212   ln_qsr_bio  = .false.   !  bio-model light penetration 
    13    nn_chldta   =      1    !  RGB : Chl data (=1) or cst value (=0) 
     13   nn_chldta   =      1    !  RGB : 2D Chl data (=1), 3D Chl data (=2) or cst value (=0) 
    1414   rn_abs      =   0.58    !  RGB & 2 bands: fraction of light (rn_si1) 
    1515   rn_si0      =   0.35    !  RGB & 2 bands: shortess depth of extinction 
Note: See TracChangeset for help on using the changeset viewer.