New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
WorkingGroups/TAM/ReferenceManual/Introduction (diff) – NEMO

Changes between Version 9 and Version 10 of WorkingGroups/TAM/ReferenceManual/Introduction


Ignore:
Timestamp:
2010-06-01T17:56:36+02:00 (14 years ago)
Author:
cdlod
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • WorkingGroups/TAM/ReferenceManual/Introduction

    v9 v10  
    11 
    2  
    3 == ''' 1 - Introduction ''' == 
    4  
    5 === Abstract === 
     2== Abstract == 
    63 
    74The development of the tangent linear and adjoint models (TAM in the following) of the dynamical core of the NEMO ocean engine (NEMOTAM) is a key objective of the VODA ANR project. TAM are widely used for variational assimilation applications, but they are also powerful tools for the analysis of physical processes, since they can be used for sensitivity analysis, parameter identification and for the computation of characteristic vectors (singular vectors, Liapunov vectors, etc.).  
     
    118Ideally, this strategy should be defined to allow NEMOTAM to adapt to future NEMO developments as quickly and as efficiently as possible, so that new releases of NEMOTAM can be made soon after new releases of NEMO. This will require careful coordination between the main development teams of NEMO, NEMOTAM and possibly NEMOVAR (INRIA, NEMO Team, CERFACS, ECMWF).  
    129 
    13 === Introduction === 
     10== Introduction == 
    1411 
    1512The NEMO ocean engine [Madec 2008] was previously known as the OPA model [Madec et al. 1998]. It used to have a TAM (called OPATAM), fully hand-coded and maintained mainly by A. Weaver. OPATAM was initially developed for a Pacific ocean configuration, and targeted at variational data assimilation applications in the framework of OPAVAR [Weaver et al. 2003, 2005]. OPATAM/OPAVAR were extended to other regional basins (Mediterranean sea [Rémy 1999], North Atlantic 1/3° [Forget et al. 2008], South Atlantic 1° ), to the global ocean (ORCA 2° [Daget et al. 2009]), and were used for methodological studies such as control of the 3D model error [Vidard 2001], control of the surface forcing and open boundary conditions [Deltel 2002, Vossepoel et al. 2003]. OPATAM was also used for sensitivity studies [Sévellec et al. 2008], singular vectors [Moore et al. 2003, Sévellec et al. 2009], etc.