New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
user/lovato/cfgrst (diff) – NEMO

Changes between Initial Version and Version 1 of user/lovato/cfgrst


Ignore:
Timestamp:
2018-12-03T18:15:03+01:00 (5 years ago)
Author:
lovato
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • user/lovato/cfgrst

    v1 v1  
     1{{{ 
     2#!rst 
     3 
     4 
     5***************************** 
     6Run a reference configuration 
     7***************************** 
     8 
     9.. contents:: 
     10        :local: 
     11        :depth: 1 
     12       
     13Official configurations 
     14======================= 
     15 
     16| NEMO is distributed with some reference configurations allowing both the user to set up a first application and 
     17  the developer to validate their developments. 
     18| :underline:`The NEMO System Team is in charge of these configurations`. 
     19 
     20+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     21|                      | OPA | SI3 | TOP | PISCES | AGRIF | Inputs                        | 
     22+======================+=====+=====+=====+========+=======+===============================+ 
     23| `AGRIF_DEMO`_        |  X  |  X  |     |        |   X   | - `AGRIF_DEMO_v4.0.tar`_      | 
     24|                      |     |     |     |        |       | - `ORCA2_ICE_v4.0.tar`_       | 
     25+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     26| `AMM12`_             |  X  |     |     |        |       | `AMM12_v4.0.tar`_             | 
     27+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     28| `C1D_PAPA`_          |  X  |     |     |        |       | `INPUTS_C1D_PAPA_v4.0.tar`_   | 
     29+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     30| `GYRE_BFM`_          |  X  |     |  X  |        |       | ``-``                         | 
     31+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     32| `GYRE_PISCES`_       |  X  |     |  X  |   X    |       | ``-``                         | 
     33+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     34| `ORCA2_ICE_PISCES`_  |  X  |  X  |  X  |   X    |       | - `ORCA2_ICE_v4.0.tar`_       | 
     35|                      |     |     |     |        |       | - `INPUTS_PISCES_v4.0.tar`_   | 
     36+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     37| `ORCA2_OFF_PISCES`_  |     |     |  X  |   X    |       | - `INPUTS_PISCES_v4.0.tar`_   | 
     38|                      |     |     |     |        |       | - `ORCA2_OFF_v4.0.tar`_       | 
     39+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     40| `ORCA2_OFF_TRC`_     |     |     |  X  |        |       | `ORCA2_OFF_v4.0.tar`_         | 
     41+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     42| `ORCA2_SAS_ICE`_     |     |  X  |     |        |       | - `ORCA2_ICE_v4.0.tar`_       | 
     43|                      |     |     |     |        |       | - `INPUTS_SAS_v4.0.tar`_      | 
     44+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     45| `SPITZ12`_           |  X  |  X  |     |        |       | `SPITZ12_v4.0.tar`_           | 
     46+----------------------+-----+-----+-----+--------+-------+-------------------------------+ 
     47 
     48AGRIF_DEMO 
     49---------- 
     50 
     51.. image:: _static/AGRIF_DEMO.jpg 
     52 
     53``AGRIF_DEMO`` is based on the ``ORCA2_LIM3_PISCES`` global 2° configuration but 
     54it includes 3 online nested grids that demonstrate the overall capabilities of AGRIF in a realistic context, 
     55including nesting sea ice models. 
     56 
     57The configuration includes a 1:1 grid in the Pacific and two successively nested grids with odd and 
     58even refinement ratios over the Arctic ocean. 
     59The finest grid spanning the whole Svalbard archipelago is of particular interest to check that 
     60sea ice coupling is done properly. 
     61The 1:1 grid, used alone, is used as a benchmark to check that the solution is not corrupted by grid exchanges. 
     62 
     63Note that since grids interact only at the baroclinic time level, 
     64numerically exact results can not be achieved in the 1:1 case. 
     65One has to switch to a fully explicit in place of a split explicit free surface scheme in order to 
     66retrieve perfect reproducibility. 
     67 
     68Corresponding ``AGRIF_FixedGrids.in`` file is given by:: 
     69 
     70        2 
     71        42 82 49 91 1 1 1 
     72        122 153 110 143 4 4 4 
     73        0 
     74        1 
     75        38 80 71 111 3 3 3 
     76        0 
     77 
     78AMM12 
     79----- 
     80 
     81``AMM12`` for *Atlantic Margin Model 12kms* is a `regional model`_ covering the Northwest European Shelf domain on 
     82a regular lat-lon grid at approximately 12km horizontal resolution. 
     83The key ``key_amm_12km`` is used to create the correct dimensions of the AMM domain. 
     84 
     85| This configuration tests several features of NEMO functionality specific to the shelf seas. 
     86| In particular, the AMM uses s-coordinates in the vertical rather than z-coordinates and is forced with 
     87  tidal lateral boundary conditions using a flather boundary condition from the BDY module (``key_bdy``). 
     88 
     89The AMM configuration uses the GLS (``key_zdfgls``) turbulence scheme, 
     90the VVL non-linear free surface (``key_vvl``) and time-splitting (``key_dynspg_ts``). 
     91 
     92In addition to the tidal boundary condition, the model may also take open boundary conditions from 
     93a North Atlantic model. 
     94Boundaries may be completely ommited by removing the BDY key (key_bdy) in ``./cfgs/AMM12/cpp_AMM12_fcm``. 
     95 
     96Sample surface fluxes, river forcing and a sample initial restart file are included to test a realistic model run. 
     97The Baltic boundary is included within the river input file and is specified as a river source. 
     98Unlike ordinary river points the Baltic inputs also include salinity and temperature data. 
     99 
     100C1D_PAPA 
     101-------- 
     102 
     103``C1D_PAPA`` is a 1D configuration (one water column called NEMO1D, activated with CPP key ``key_c1d``), 
     104located at the `PAPA station 145W-50N <http://www.pmel.noaa.gov/OCS/Papa/index-Papa.shtml>`_. 
     105 
     106| NEMO1D is useful to test vertical physics in NEMO 
     107  (turbulent closure scheme, solar penetration, interaction ocean/atmosphere.,...) 
     108| Size of the horizontal domain is 3x3 grid points. 
     109 
     110This reference configuration uses a 75 vertical levels grid (1m at the surface), 
     111the GLS (key_zdfgls) turbulence scheme with K-epsilon closure and the CORE BULK formulae. 
     112The atmospheric forcing comes from ECMWF operational analysis with a modification of the long and short waves flux. 
     113This set has been rescaled at a frequency of 1h. 1 year is simulated in outputs, 
     114see below (June,15 2010 to June,14 2011) 
     115 
     116`Reffray 2015`_ describes some tests on vertical physic using this configuration. 
     117 
     118The inputs tar file includes: 
     119 
     120- forcing files covering the years 2010 and 2011 (``forcing_PAPASTATION_1h_y201*.nc``) 
     121- initialization file for June,15 2010 deduced from observed data and Levitus 2009 climatology 
     122  (``init_PAPASTATION_m06d15.nc``) 
     123- surface chlorophyll file (``chlorophyll_PAPASTATION.nc``) deduced from Seawifs data. 
     124 
     125GYRE_BFM 
     126-------- 
     127 
     128``GYRE_BFM`` is the same configuration as `GYRE_PISCES`_, except that PISCES is replaced by 
     129BFM biogeochemichal model in coupled mode. 
     130 
     131GYRE_PISCES 
     132----------- 
     133 
     134| Idealized configuration representing double gyres in the North hemisphere, Beta-plane with 
     135  a regular grid spacing at 1° horizontal resolution (and possible use as a benchmark by 
     136  easily inscreasing grid size), 101 vertical levels, forced with analytical heat, freshwater and 
     137  wind-stress fields. 
     138| This configuration is coupled to `PISCES biogeochemical model`_. 
     139 
     140Running GYRE as a benchmark 
     141^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
     142 
     143This simple configuration can be used as a benchmark since it is easy to increase resolution 
     144(and in this case no physical meaning of outputs): 
     145 
     1461. Choose the grid size 
     147 
     148   In ``./cfgs/GYRE/EXP00``, edit your ``namelist_cfg`` file to change the ``jp_cfg``, ``jpi``, ``jpj``, 
     149   ``jpk`` variables in &namcfg: 
     150 
     151        +------------+---------+---------+---------+------------------+---------------+ 
     152        | ``jp_cfg`` | ``jpi`` | ``jpj`` | ``jpk`` | Number of points | Equivalent to | 
     153        +============+=========+=========+=========+==================+===============+ 
     154        | 1          | 30      | 20      | 101     | 60600            | GYRE 1°       | 
     155        +------------+---------+---------+---------+------------------+---------------+ 
     156        | 25         | 750     | 500     | 101     | 37875000         | ORCA 1/2°     | 
     157        +------------+---------+---------+---------+------------------+---------------+ 
     158        | 50         | 1500    | 1000    | 101     | 151500000        | ORCA 1/4°     | 
     159        +------------+---------+---------+---------+------------------+---------------+ 
     160        | 150        | 4500    | 3000    | 101     | 1363500000       | ORCA 1/12°    | 
     161        +------------+---------+---------+---------+------------------+---------------+ 
     162        | 200        | 6000    | 4000    | 101     | 2424000000       | ORCA 1/16°    | 
     163        +------------+---------+---------+---------+------------------+---------------+ 
     164 
     1652. In `namelist_cfg` again, avoid problems in the physics (and results will not be meaningful in terms of physics) by setting `nn_bench = 1` in &namctl 
     166 
     167.. code-block:: fortran 
     168    
     169   nn_bench    =    1     !  Bench mode (1/0): CAUTION use zero except for bench 
     170 
     1713. If you increase domain size, you may need to decrease time-step (for stability) by changing `rn_rdt` value in &namdom (i.e. for `jp_cfg = 150`, ORCA12 equivalent, use `rn_rdt = 1200`) 
     172 
     173.. code-block:: fortran 
     174    
     175   rn_rdt      = 1200.     !  time step for the dynamics 
     176 
     1774. Optional, in order to increase the number of MPI communication for benchmark purposes: 
     178   you can change the number of sub-timesteps computed in the time-splitting scheme each iteration. 
     179   First change the list of active CPP keys for your experiment, 
     180   in `cfgs/"your configuration name"/cpp_"your configuration name".fcm`: 
     181   replace ``key_dynspg_flt by key_dynspg_ts`` and recompile/create your executable again 
     182    
     183   .. code-block:: fortran 
     184    
     185   makenemo [...] add_key 'key_dynspg_ts' del_key 'key_dynspg_flt' 
     186 
     187In your ``namelist_cfg`` file, edit the &namsplit namelist by adding the following line:  
     188 
     189.. code-block:: fortran 
     190    
     191   nn_baro       =    30               !  Number of iterations of barotropic mode/ 
     192 
     193``nn_baro = 30`` is a kind of minimum (we usually use 30 to 60). 
     194So than increasing the ``nn_baro`` value will increase the number of MPI communications. 
     195 
     196The GYRE CPP keys, namelists and scripts can be explored in the ``GYRE`` configuration directory 
     197(``./cfgs/GYRE`` and ``./cfgs/GYRE/EXP00``). 
     198 
     199Find monthly mean outputs of 1 year run here: 
     200http://prodn.idris.fr/thredds/catalog/ipsl_public/reee451/NEMO_OUT/GYRE/catalog.html 
     201 
     202ORCA2_ICE_PISCES 
     203---------------- 
     204 
     205ORCA is the generic name given to global ocean configurations. 
     206Its specificity lies on the horizontal curvilinear mesh used to overcome the North Pole singularity found for 
     207geographical meshes. 
     208SI3 (Sea Ice Integrated Initiative) is a thermodynamic-dynamic sea ice model specifically designed for 
     209climate studies. 
     210A brief description of the model is given here. 
     211 
     212:underline:`Space-time domain` 
     213 
     214The horizontal resolution available through the standard configuration is ORCA2. 
     215It is based on a 2 degrees Mercator mesh, (i.e. variation of meridian scale factor as cosinus of the latitude). 
     216In the northern hemisphere the mesh has two poles so that the ratio of anisotropy is nearly one everywhere. 
     217The mean grid spacing is about 2/3 of the nominal value: for example it is 1.3 degrees for ORCA2. 
     218Other resolutions (ORCA4, ORCA05 and ORCA025) are running or under development within specific projects. 
     219In the coarse resolution version (i.e. ORCA2 and ORCA4) the meridional grid spacing is increased near 
     220the equator to improve the equatorial dynamics. 
     221Figures in pdf format of mesh and bathymetry can be found and downloaded here. 
     222The sea-ice model runs on the same grid. 
     223 
     224The vertical domain spreads from the surface to a depth of 5000m. 
     225There are 31 levels, with 10 levels in the top 100m. 
     226The vertical mesh is deduced from a mathematical function of z ([[AttachmentNum(1)]]). 
     227The ocean surface corresponds to the w-level k=1, and the ocean bottom to the w-level k=31. 
     228The last T-level (k=31) is thus always in the ground.The depths of the vertical levels and 
     229the associated scale factors can be viewed. 
     230Higher vertical resolution is used in ORCA025 and ORCA12 (see `DRAKKAR project <http://www.drakkar-ocean.eu>`_). 
     231 
     232The time step depends on the resolution. It is 1h36' for ORCA2 so that there is 15 time steps in one day. 
     233 
     234:underline:`Ocean Physics (for ORCA2)` 
     235 
     236- horizontal diffusion on momentum: the eddy viscosity coefficient depends on the geographical position. 
     237  It is taken as 40000 $m^2/s$, reduced in the equator regions (2000 $m^2/s$) excepted near the western boundaries. 
     238- isopycnal diffusion on tracers: the diffusion acts along the isopycnal surfaces (neutral surface) with 
     239  a eddy diffusivity coefficient of 2000 $m^2/s$. 
     240- Eddy induced velocity parametrization with a coefficient that depends on the growth rate of 
     241  baroclinic instabilities (it usually varies from 15 $m^2/s$ to 3000 $m^2/s$). 
     242- lateral boundary conditions : zero fluxes of heat and salt and no-slip conditions are applied through 
     243  lateral solid boundaries. 
     244- bottom boundary condition : zero fluxes of heat and salt are applied through the ocean bottom. 
     245  The Beckmann [19XX] simple bottom boundary layer parameterization is applied along continental slopes. 
     246  A linear friction is applied on momentum. 
     247- convection: the vertical eddy viscosity and diffusivity coefficients are increased to 1 $m^2/s$ in case of 
     248  static instability. 
     249- forcings: the ocean receives heat, freshwater, and momentum fluxes from the atmosphere and/or the sea-ice. 
     250  The solar radiation penetrates the top meters of the ocean. 
     251  The downward irradiance I(z) is formulated with two extinction coefficients [Paulson and Simpson, 1977], 
     252  whose values correspond to a Type I water in Jerlov's classification (i.e the most transparent water) 
     253 
     254ORCA2_ICE_PISCES is a reference configuration with the following characteristics: 
     255 
     256- global ocean configuration 
     257- based on a tri-polar ORCA grid, with a 2° horizontal resolution 
     258- 31 vertical levels 
     259- forced with climatological surface fields 
     260- coupled to the sea-ice model SI3. 
     261- coupled to TOP passive tracer transport module and `PISCES biogeochemical model`_. 
     262 
     263:underline:`AGRIF demonstrator` 
     264 
     265| From the ``ORCA2_ICE_PISCES`` configuration, a demonstrator using AGRIF nesting can be activated. 
     266  It includes the global ``ORCA2_ICE_PISCES`` configuration and a nested grid in the Agulhas region. 
     267| To set up this configuration, after extracting NEMO: 
     268 
     269- Build your AGRIF configuration directory from ORCA2_ICE_PISCES, with the key_agrif CPP key activated: 
     270 
     271.. code-block:: console 
     272                 
     273        $ ./makenemo -r 'ORCA2_ICE_PISCES' -n 'AGRIF' add_key 'key_agrif' 
     274 
     275- Using the ``ORCA2_ICE_PISCES`` input files and namelist, AGRIF test configuration is ready to run 
     276 
     277:underline:`On-The-Fly Interpolation` 
     278 
     279| NEMO allows to use the interpolation on the fly option allowing to interpolate input data during the run. 
     280  If you want to use this option you need files giving informations on weights, which have been created. 
     281| You can find at http://prodn.idris.fr/thredds/catalog/ipsl_public/reee512/ORCA2_ONTHEFLY/WEIGHTS/catalog.html 
     282  2 weights files `bil_weights` for scalar field (bilinear interpolation) and `bic_weights` for 
     283  vector field (bicubic interpolation). 
     284| The data files used are `COREII forcing <http://data1.gdfl.noaa.gov/nomads/forms/mom4/COREv2>`_ extrapolated on 
     285  continents, ready to be used for on the fly option: 
     286  `COREII`_ forcing files extrapolated on continents 
     287 
     288ORCA2_OFF_PISCES 
     289---------------- 
     290 
     291``ORCA2_OFF_PISCES`` uses the ORCA2 configuration in which the `PISCES biogeochemical model`_ has been activated in 
     292standalone using the dynamical fields that are pre calculated. 
     293 
     294See `ORCA2_ICE_PISCES`_ for general description of ORCA2. 
     295 
     296The input files for PISCES are needed, in addition the dynamical fields are used as input. 
     297They are coming from a 2000 years of an ORCA2_LIM climatological run using ERA40 atmospheric forcing. 
     298 
     299ORCA2_OFF_TRC 
     300------------- 
     301 
     302``ORCA2_OFF_TRC`` uses the ORCA2_LIM configuration in which the tracer passive transport module TOP has been 
     303activated in standalone using the dynamical fields that are pre calculated. 
     304 
     305See `ORCA2_ICE_PISCES`_ for general description of ORCA2. 
     306 
     307In ``namelist_top_cfg``, different passive tracers can be activated ( cfc11, cfc12, sf6, c14, age ) or my-trc, 
     308a user-defined tracer. 
     309 
     310The dynamical fields are used as input, they are coming from a 2000 years of an ORCA2_LIM climatological run using 
     311ERA40 atmospheric forcing. 
     312 
     313ORCA2_SAS_ICE 
     314------------- 
     315 
     316``ORCA2_SAS_ICE`` is a demonstrator of the SAS ( Stand-alone Surface module ) based on ORCA2_LIM configuration. 
     317 
     318The standalone surface module allows surface elements such as sea-ice, iceberg drift and surface fluxes to 
     319be run using prescribed model state fields. 
     320For example, it can be used to inter-compare different bulk formulae or adjust the parameters of 
     321a given bulk formula 
     322 
     323See `ORCA2_ICE_PISCES`_ for general description of ORCA2. 
     324 
     325Same input files as `ORCA2_ICE_PISCES`_ are needed plus fields from a previous ORCA2_LIM run. 
     326 
     327More informations on input and configuration files in `NEMO manual`_. 
     328 
     329SPITZ12 
     330------- 
     331 
     332``SPITZ12`` 
     333 
     334Unsupported configurations 
     335========================== 
     336 
     337Other configurations are developed and used by some projects with "NEMO inside", 
     338these projects are welcome to publicize it here: http://www.nemo-ocean.eu/projects/add-project 
     339 
     340:underline:`Obviously these "projects configurations" are not under the NEMO System Team's responsibility`. 
     341 
     342.. _regional model:               http://www.tandfonline.com/doi/pdf/10.1080/1755876X.2012.11020128 
     343.. _AMM12_v4.0.tar:               http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/AMM12_v4.0.tar 
     344.. _PISCES biogeochemical model:  http://www.geosci-model-dev.net/8/2465/2015 
     345.. _INPUTS_PISCES_v4.0.tar:       http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/INPUTS_PISCES_v4.0.tar 
     346.. _ORCA2_OFF_v4.0.tar:           http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/ORCA2_OFF_v4.0.tar 
     347.. _ORCA2_ICE_v4.0.tar:           http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/ORCA2_ICE_v4.0.tar 
     348.. _INPUTS_SAS_v4.0.tar:          http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/INPUTS_SAS_v4.0.tar 
     349.. _INPUTS_C1D_PAPA_v4.0.tar:     http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/INPUTS_C1D_PAPA_v4.0.tar 
     350.. _Reffray 2015:                 http://www.geosci-model-dev.net/8/69/2015 
     351.. _COREII:                       http://prodn.idris.fr/thredds/catalog/ipsl_public/reee512/ORCA2_ONTHEFLY/FILLED_FILES/catalog.html 
     352.. _SPITZ12_v4.0.tar:             http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/SPITZ12_v4.0.tar 
     353.. _AGRIF_DEMO_v4.0.tar:          http://prodn.idris.fr/thredds/fileServer/ipsl_public/romr005/Online_forcing_archives/AGRIF_DEMO_v4.0.tar 
     354 
     355}}}