source: branches/ORCHIDEE_2_2/ORCHIDEE/src_parameters/constantes_var.f90 @ 6019

Last change on this file since 6019 was 6019, checked in by josefine.ghattas, 5 years ago

As done on the trunk [6018]

  • Property svn:keywords set to Date Revision
File size: 57.2 KB
Line 
1! =================================================================================================================================
2! MODULE       : constantes_var
3!
4! CONTACT      : orchidee-help _at_ listes.ipsl.fr
5!
6! LICENCE      : IPSL (2006)
7! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC
8!
9!>\BRIEF        constantes_var module contains most constantes like pi, Earth radius, etc...
10!!              and all externalized parameters except pft-dependent constants.
11!!
12!!\n DESCRIPTION: This module contains most constantes and the externalized parameters of ORCHIDEE which
13!!                are not pft-dependent.\n
14!!                In this module, you can set the flag diag_qsat in order to detect the pixel where the
15!!                temperature is out of range (look qsatcalc and dev_qsatcalc in qsat_moisture.f90).\n
16!!                The Earth radius is approximated by the Equatorial radius.The Earth's equatorial radius a,
17!!                or semi-major axis, is the distance from its center to the equator and equals 6,378.1370 km.
18!!                The equatorial radius is often used to compare Earth with other planets.\n
19!!                The meridional mean is well approximated by the semicubic mean of the two axe yielding
20!!                6367.4491 km or less accurately by the quadratic mean of the two axes about 6,367.454 km
21!!                or even just the mean of the two axes about 6,367.445 km.\n
22!!                This module is already USE in module constantes. Therefor no need to USE it seperatly except
23!!                if the subroutines in module constantes are not needed.\n
24!!               
25!! RECENT CHANGE(S):
26!!
27!! REFERENCE(S) :
28!! - Louis, Jean-Francois (1979), A parametric model of vertical eddy fluxes in the atmosphere.
29!! Boundary Layer Meteorology, 187-202.\n
30!!
31!! SVN          :
32!! $HeadURL: $
33!! $Date$
34!! $Revision$
35!! \n
36!_ ================================================================================================================================
37
38MODULE constantes_var
39
40  USE defprec
41
42  IMPLICIT NONE
43!-
44
45                         !-----------------------!
46                         !  ORCHIDEE CONSTANTS   !
47                         !-----------------------!
48
49  !
50  ! FLAGS
51  !
52  LOGICAL :: river_routing      !! activate river routing
53!$OMP THREADPRIVATE(river_routing)
54  LOGICAL, SAVE :: ok_nudge_mc  !! Activate nudging of soil moisture
55!$OMP THREADPRIVATE(ok_nudge_mc)
56  LOGICAL, SAVE :: ok_nudge_snow!! Activate nudging of snow variables
57!$OMP THREADPRIVATE(ok_nudge_snow)
58  LOGICAL, SAVE :: nudge_interpol_with_xios  !! Activate reading and interpolation with XIOS for nudging fields
59!$OMP THREADPRIVATE(nudge_interpol_with_xios)
60  LOGICAL :: do_floodplains     !! activate flood plains
61!$OMP THREADPRIVATE(do_floodplains)
62  LOGICAL :: do_irrigation      !! activate computation of irrigation flux
63!$OMP THREADPRIVATE(do_irrigation)
64  LOGICAL :: ok_sechiba         !! activate physic of the model
65!$OMP THREADPRIVATE(ok_sechiba)
66  LOGICAL :: ok_stomate         !! activate carbon cycle
67!$OMP THREADPRIVATE(ok_stomate)
68  LOGICAL :: ok_dgvm            !! activate dynamic vegetation
69!$OMP THREADPRIVATE(ok_dgvm)
70  LOGICAL :: do_wood_harvest    !! activate wood harvest
71!$OMP THREADPRIVATE(do_wood_harvest)
72  LOGICAL :: ok_pheno           !! activate the calculation of lai using stomate rather than a prescription
73!$OMP THREADPRIVATE(ok_pheno)
74  LOGICAL :: ok_bvoc            !! activate biogenic volatile organic coumpounds
75!$OMP THREADPRIVATE(ok_bvoc)
76  LOGICAL :: ok_leafage         !! activate leafage
77!$OMP THREADPRIVATE(ok_leafage)
78  LOGICAL :: ok_radcanopy       !! use canopy radiative transfer model
79!$OMP THREADPRIVATE(ok_radcanopy)
80  LOGICAL :: ok_multilayer      !! use canopy radiative transfer model with multi-layers
81!$OMP THREADPRIVATE(ok_multilayer)
82  LOGICAL :: ok_pulse_NOx       !! calculate NOx emissions with pulse
83!$OMP THREADPRIVATE(ok_pulse_NOx)
84  LOGICAL :: ok_bbgfertil_NOx   !! calculate NOx emissions with bbg fertilizing effect
85!$OMP THREADPRIVATE(ok_bbgfertil_NOx)
86  LOGICAL :: ok_cropsfertil_NOx !! calculate NOx emissions with fertilizers use
87!$OMP THREADPRIVATE(ok_cropsfertil_NOx)
88
89  LOGICAL :: ok_co2bvoc_poss    !! CO2 inhibition on isoprene activated following Possell et al. (2005) model
90!$OMP THREADPRIVATE(ok_co2bvoc_poss)
91  LOGICAL :: ok_co2bvoc_wilk    !! CO2 inhibition on isoprene activated following Wilkinson et al. (2006) model
92!$OMP THREADPRIVATE(ok_co2bvoc_wilk)
93 
94  LOGICAL, SAVE :: OFF_LINE_MODE = .FALSE.  !! ORCHIDEE detects if it is coupled with a GCM or
95                                            !! just use with one driver in OFF-LINE. (true/false)
96!$OMP THREADPRIVATE(OFF_LINE_MODE) 
97  LOGICAL, SAVE :: impose_param = .TRUE.    !! Flag impos_param : read all the parameters in the run.def file
98!$OMP THREADPRIVATE(impose_param)
99  CHARACTER(LEN=80), SAVE     :: restname_in       = 'NONE'                 !! Input Restart files name for Sechiba component 
100!$OMP THREADPRIVATE(restname_in)
101  CHARACTER(LEN=80), SAVE     :: restname_out      = 'sechiba_rest_out.nc'  !! Output Restart files name for Sechiba component
102!$OMP THREADPRIVATE(restname_out)
103  CHARACTER(LEN=80), SAVE     :: stom_restname_in  = 'NONE'                 !! Input Restart files name for Stomate component
104!$OMP THREADPRIVATE(stom_restname_in)
105  CHARACTER(LEN=80), SAVE     :: stom_restname_out = 'stomate_rest_out.nc'  !! Output Restart files name for Stomate component
106!$OMP THREADPRIVATE(stom_restname_out)
107  INTEGER, SAVE :: printlev=2       !! Standard level for text output [0, 1, 2, 3]
108!$OMP THREADPRIVATE(printlev)
109
110  !
111  ! TIME
112  !
113  INTEGER(i_std), PARAMETER  :: spring_days_max = 40  !! Maximum number of days during which we watch for possible spring frost damage
114  !
115  ! SPECIAL VALUES
116  !
117  INTEGER(i_std), PARAMETER :: undef_int = 999999999     !! undef integer for integer arrays (unitless)
118  !-
119  REAL(r_std), SAVE :: val_exp = 999999.                 !! Specific value if no restart value  (unitless)
120!$OMP THREADPRIVATE(val_exp)
121  REAL(r_std), PARAMETER :: undef = -9999.               !! Special value for stomate (unitless)
122 
123  REAL(r_std), PARAMETER :: min_sechiba = 1.E-8_r_std    !! Epsilon to detect a near zero floating point (unitless)
124  REAL(r_std), PARAMETER :: undef_sechiba = 1.E+20_r_std !! The undef value used in SECHIBA (unitless)
125 
126  REAL(r_std), PARAMETER :: min_stomate = 1.E-8_r_std    !! Epsilon to detect a near zero floating point (unitless)
127  REAL(r_std), PARAMETER :: large_value = 1.E33_r_std    !! some large value (for stomate) (unitless)
128
129  REAL(r_std), SAVE :: alpha_nudge_mc                    !! Nudging constant for soil moisture
130!$OMP THREADPRIVATE(alpha_nudge_mc)
131  REAL(r_std), SAVE :: alpha_nudge_snow                  !! Nudging constant for snow variables
132!$OMP THREADPRIVATE(alpha_nudge_snow)
133
134  !
135  !  DIMENSIONING AND INDICES PARAMETERS 
136  !
137  INTEGER(i_std), PARAMETER :: ibare_sechiba = 1 !! Index for bare soil in Sechiba (unitless)
138  INTEGER(i_std), PARAMETER :: ivis = 1          !! index for albedo in visible range (unitless)
139  INTEGER(i_std), PARAMETER :: inir = 2          !! index for albeod i near-infrared range (unitless)
140  INTEGER(i_std), PARAMETER :: nnobio = 1        !! Number of other surface types: land ice (lakes,cities, ...) (unitless)
141  INTEGER(i_std), PARAMETER :: iice = 1          !! Index for land ice (see nnobio) (unitless)
142  !-
143  !! Soil
144  INTEGER(i_std), PARAMETER :: classnb = 9       !! Levels of soil colour classification (unitless)
145  !-
146  INTEGER(i_std), PARAMETER :: nleafages = 4     !! leaf age discretisation ( 1 = no discretisation )(unitless)
147  !-
148  !! litter fractions: indices (unitless)
149  INTEGER(i_std), PARAMETER :: ileaf = 1         !! Index for leaf compartment (unitless)
150  INTEGER(i_std), PARAMETER :: isapabove = 2     !! Index for sapwood above compartment (unitless)
151  INTEGER(i_std), PARAMETER :: isapbelow = 3     !! Index for sapwood below compartment (unitless)
152  INTEGER(i_std), PARAMETER :: iheartabove = 4   !! Index for heartwood above compartment (unitless)
153  INTEGER(i_std), PARAMETER :: iheartbelow = 5   !! Index for heartwood below compartment (unitless)
154  INTEGER(i_std), PARAMETER :: iroot = 6         !! Index for roots compartment (unitless)
155  INTEGER(i_std), PARAMETER :: ifruit = 7        !! Index for fruits compartment (unitless)
156  INTEGER(i_std), PARAMETER :: icarbres = 8      !! Index for reserve compartment (unitless)
157  INTEGER(i_std), PARAMETER :: nparts = 8        !! Number of biomass compartments (unitless)
158  !-
159  !! indices for assimilation parameters
160  INTEGER(i_std), PARAMETER :: ivcmax = 1        !! Index for vcmax (assimilation parameters) (unitless)
161  INTEGER(i_std), PARAMETER :: npco2 = 1         !! Number of assimilation parameters (unitless)
162  !-
163  !! trees and litter: indices for the parts of heart-
164  !! and sapwood above and below the ground
165  INTEGER(i_std), PARAMETER :: iabove = 1       !! Index for above part (unitless)
166  INTEGER(i_std), PARAMETER :: ibelow = 2       !! Index for below part (unitless)
167  INTEGER(i_std), PARAMETER :: nlevs = 2        !! Number of levels for trees and litter (unitless)
168  !-
169  !! litter: indices for metabolic and structural part
170  INTEGER(i_std), PARAMETER :: imetabolic = 1   !! Index for metabolic litter (unitless)
171  INTEGER(i_std), PARAMETER :: istructural = 2  !! Index for structural litter (unitless)
172  INTEGER(i_std), PARAMETER :: nlitt = 2        !! Number of levels for litter compartments (unitless)
173  !-
174  !! carbon pools: indices
175  INTEGER(i_std), PARAMETER :: iactive = 1      !! Index for active carbon pool (unitless)
176  INTEGER(i_std), PARAMETER :: islow = 2        !! Index for slow carbon pool (unitless)
177  INTEGER(i_std), PARAMETER :: ipassive = 3     !! Index for passive carbon pool (unitless)
178  INTEGER(i_std), PARAMETER :: ncarb = 3        !! Number of soil carbon pools (unitless)
179  !-
180  !! For isotopes and nitrogen
181  INTEGER(i_std), PARAMETER :: nelements = 1    !! Number of isotopes considered
182  INTEGER(i_std), PARAMETER :: icarbon = 1      !! Index for carbon
183  !
184  !! Indices used for analytical spin-up
185  INTEGER(i_std), PARAMETER :: nbpools = 7              !! Total number of carbon pools (unitless)
186  INTEGER(i_std), PARAMETER :: istructural_above = 1    !! Index for structural litter above (unitless)
187  INTEGER(i_std), PARAMETER :: istructural_below = 2    !! Index for structural litter below (unitless)
188  INTEGER(i_std), PARAMETER :: imetabolic_above = 3     !! Index for metabolic litter above (unitless)
189  INTEGER(i_std), PARAMETER :: imetabolic_below = 4     !! Index for metabolic litter below (unitless)
190  INTEGER(i_std), PARAMETER :: iactive_pool = 5         !! Index for active carbon pool (unitless)
191  INTEGER(i_std), PARAMETER :: islow_pool   = 6         !! Index for slow carbon pool (unitless)
192  INTEGER(i_std), PARAMETER :: ipassive_pool = 7        !! Index for passive carbon pool (unitless)
193  !
194  !! Indicies used for output variables on Landuse tiles defined according to LUMIP project
195  !! Note that ORCHIDEE do not represent pasture and urban land. Therefor the variables will have
196  !! val_exp as missing value for these tiles.
197  INTEGER(i_std), PARAMETER :: nlut=4                   !! Total number of landuse tiles according to LUMIP
198  INTEGER(i_std), PARAMETER :: id_psl=1                 !! Index for primary and secondary land
199  INTEGER(i_std), PARAMETER :: id_crp=2                 !! Index for crop land
200  INTEGER(i_std), PARAMETER :: id_pst=3                 !! Index for pasture land
201  INTEGER(i_std), PARAMETER :: id_urb=4                 !! Index for urban land
202
203
204  !
205  ! NUMERICAL AND PHYSICS CONSTANTS
206  !
207  !
208
209  !-
210  ! 1. Mathematical and numerical constants
211  !-
212  REAL(r_std), PARAMETER :: pi = 3.141592653589793238   !! pi souce : http://mathworld.wolfram.com/Pi.html (unitless)
213  REAL(r_std), PARAMETER :: euler = 2.71828182845904523 !! e source : http://mathworld.wolfram.com/e.html (unitless)
214  REAL(r_std), PARAMETER :: zero = 0._r_std             !! Numerical constant set to 0 (unitless)
215  REAL(r_std), PARAMETER :: undemi = 0.5_r_std          !! Numerical constant set to 1/2 (unitless)
216  REAL(r_std), PARAMETER :: un = 1._r_std               !! Numerical constant set to 1 (unitless)
217  REAL(r_std), PARAMETER :: moins_un = -1._r_std        !! Numerical constant set to -1 (unitless)
218  REAL(r_std), PARAMETER :: deux = 2._r_std             !! Numerical constant set to 2 (unitless)
219  REAL(r_std), PARAMETER :: trois = 3._r_std            !! Numerical constant set to 3 (unitless)
220  REAL(r_std), PARAMETER :: quatre = 4._r_std           !! Numerical constant set to 4 (unitless)
221  REAL(r_std), PARAMETER :: cinq = 5._r_std             !![DISPENSABLE] Numerical constant set to 5 (unitless)
222  REAL(r_std), PARAMETER :: six = 6._r_std              !![DISPENSABLE] Numerical constant set to 6 (unitless)
223  REAL(r_std), PARAMETER :: huit = 8._r_std             !! Numerical constant set to 8 (unitless)
224  REAL(r_std), PARAMETER :: mille = 1000._r_std         !! Numerical constant set to 1000 (unitless)
225
226  !-
227  ! 2 . Physics
228  !-
229  REAL(r_std), PARAMETER :: R_Earth = 6378000.              !! radius of the Earth : Earth radius ~= Equatorial radius (m)
230  REAL(r_std), PARAMETER :: mincos  = 0.0001                !! Minimum cosine value used for interpolation (unitless)
231  REAL(r_std), PARAMETER :: pb_std = 1013.                  !! standard pressure (hPa)
232  REAL(r_std), PARAMETER :: ZeroCelsius = 273.15            !! 0 degre Celsius in degre Kelvin (K)
233  REAL(r_std), PARAMETER :: tp_00 = 273.15                  !! 0 degre Celsius in degre Kelvin (K)
234  REAL(r_std), PARAMETER :: chalsu0 = 2.8345E06             !! Latent heat of sublimation (J.kg^{-1})
235  REAL(r_std), PARAMETER :: chalev0 = 2.5008E06             !! Latent heat of evaporation (J.kg^{-1})
236  REAL(r_std), PARAMETER :: chalfu0 = chalsu0-chalev0       !! Latent heat of fusion (J.kg^{-1})
237  REAL(r_std), PARAMETER :: c_stefan = 5.6697E-8            !! Stefan-Boltzman constant (W.m^{-2}.K^{-4})
238  REAL(r_std), PARAMETER :: cp_air = 1004.675               !! Specific heat of dry air (J.kg^{-1}.K^{-1})
239  REAL(r_std), PARAMETER :: cte_molr = 287.05               !! Specific constant of dry air (kg.mol^{-1})
240  REAL(r_std), PARAMETER :: kappa = cte_molr/cp_air         !! Kappa : ratio between specific constant and specific heat
241                                                            !! of dry air (unitless)
242  REAL(r_std), PARAMETER :: msmlr_air = 28.964E-03          !! Molecular weight of dry air (kg.mol^{-1})
243  REAL(r_std), PARAMETER :: msmlr_h2o = 18.02E-03           !! Molecular weight of water vapor (kg.mol^{-1})
244  REAL(r_std), PARAMETER :: cp_h2o = &                      !! Specific heat of water vapor (J.kg^{-1}.K^{-1})
245       & cp_air*(quatre*msmlr_air)/( 3.5_r_std*msmlr_h2o) 
246  REAL(r_std), PARAMETER :: cte_molr_h2o = cte_molr/quatre  !! Specific constant of water vapor (J.kg^{-1}.K^{-1})
247  REAL(r_std), PARAMETER :: retv = msmlr_air/msmlr_h2o-un   !! Ratio between molecular weight of dry air and water
248                                                            !! vapor minus 1(unitless) 
249  REAL(r_std), PARAMETER :: rvtmp2 = cp_h2o/cp_air-un       !! Ratio between specific heat of water vapor and dry air
250                                                            !! minus 1 (unitless)
251  REAL(r_std), PARAMETER :: cepdu2 = (0.1_r_std)**2         !! Squared wind shear (m^2.s^{-2})
252  REAL(r_std), PARAMETER :: ct_karman = 0.41_r_std          !! Van Karmann Constant (unitless)
253  REAL(r_std), PARAMETER :: cte_grav = 9.80665_r_std        !! Acceleration of the gravity (m.s^{-2})
254  REAL(r_std), PARAMETER :: pa_par_hpa = 100._r_std         !! Transform pascal into hectopascal (unitless)
255  REAL(r_std), PARAMETER :: RR = 8.314                      !! Ideal gas constant (J.mol^{-1}.K^{-1})
256  REAL(r_std), PARAMETER :: Sct = 1370.                     !! Solar constant (W.m^{-2})
257
258
259  INTEGER(i_std), SAVE :: testpft = 6
260!$OMP THREADPRIVATE(testpft)
261  !-
262  ! 3. Climatic constants
263  !-
264  !! Constantes of the Louis scheme
265  REAL(r_std), SAVE :: cb = 5._r_std              !! Constant of the Louis scheme (unitless);
266                                                  !! reference to Louis (1979)
267!$OMP THREADPRIVATE(cb)
268  REAL(r_std), SAVE :: cc = 5._r_std              !! Constant of the Louis scheme (unitless);
269                                                  !! reference to Louis (1979)
270!$OMP THREADPRIVATE(cc)
271  REAL(r_std), SAVE :: cd = 5._r_std              !! Constant of the Louis scheme (unitless);
272                                                  !! reference to Louis (1979)
273!$OMP THREADPRIVATE(cd)
274  REAL(r_std), SAVE :: rayt_cste = 125.           !! Constant in the computation of surface resistance (W.m^{-2})
275!$OMP THREADPRIVATE(rayt_cste)
276  REAL(r_std), SAVE :: defc_plus = 23.E-3         !! Constant in the computation of surface resistance (K.W^{-1})
277!$OMP THREADPRIVATE(defc_plus)
278  REAL(r_std), SAVE :: defc_mult = 1.5            !! Constant in the computation of surface resistance (K.W^{-1})
279!$OMP THREADPRIVATE(defc_mult)
280
281  !-
282  ! 4. Soil thermodynamics constants
283  !-
284  ! Look at constantes_soil.f90
285
286
287  !
288  ! OPTIONAL PARTS OF THE MODEL
289  !
290  LOGICAL,PARAMETER :: diag_qsat = .TRUE.         !! One of the most frequent problems is a temperature out of range
291                                                  !! we provide here a way to catch that in the calling procedure.
292                                                  !! (from Jan Polcher)(true/false)
293  LOGICAL, SAVE     :: almaoutput =.FALSE.        !! Selects the type of output for the model.(true/false)
294                                                  !! Value is read from run.def in intersurf_history
295!$OMP THREADPRIVATE(almaoutput)
296
297  !
298  ! DIVERSE
299  !
300  CHARACTER(LEN=100), SAVE :: stomate_forcing_name='NONE'  !! NV080800 Name of STOMATE forcing file (unitless)
301                                                           ! Compatibility with Nicolas Viovy driver.
302!$OMP THREADPRIVATE(stomate_forcing_name)
303  CHARACTER(LEN=100), SAVE :: stomate_Cforcing_name='NONE' !! NV080800 Name of soil forcing file (unitless)
304                                                           ! Compatibility with Nicolas Viovy driver.
305!$OMP THREADPRIVATE(stomate_Cforcing_name)
306  INTEGER(i_std), SAVE :: forcing_id                 !! Index of the forcing file (unitless)
307!$OMP THREADPRIVATE(forcing_id)
308  LOGICAL, SAVE :: allow_forcing_write=.TRUE.        !! Allow writing of stomate_forcing file.
309                                                     !! This variable will be set to false for teststomate.
310!$OMP THREADPRIVATE(allow_forcing_write)
311
312
313
314                         !------------------------!
315                         !  SECHIBA PARAMETERS    !
316                         !------------------------!
317 
318
319  !
320  ! GLOBAL PARAMETERS   
321  !
322  REAL(r_std), SAVE :: min_wind = 0.1      !! The minimum wind (m.s^{-1})
323!$OMP THREADPRIVATE(min_wind)
324  REAL(r_std), PARAMETER :: min_qc = 1.e-4 !! The minimum value for qc (qc=drag*wind) used in coupled(enerbil) and forced mode (enerbil and diffuco)
325  REAL(r_std), SAVE :: snowcri = 1.5       !! Sets the amount above which only sublimation occures (kg.m^{-2})
326!$OMP THREADPRIVATE(snowcri)
327
328
329  !
330  ! FLAGS ACTIVATING SUB-MODELS
331  !
332  LOGICAL, SAVE :: treat_expansion = .FALSE.   !! Do we treat PFT expansion across a grid point after introduction? (true/false)
333!$OMP THREADPRIVATE(treat_expansion)
334  LOGICAL, SAVE :: ok_herbivores = .FALSE.     !! flag to activate herbivores (true/false)
335!$OMP THREADPRIVATE(ok_herbivores)
336  LOGICAL, SAVE :: harvest_agri = .TRUE.       !! flag to harvest aboveground biomass from agricultural PFTs)(true/false)
337!$OMP THREADPRIVATE(harvest_agri)
338  LOGICAL, SAVE :: lpj_gap_const_mort          !! constant moratlity (true/false). Default value depend on OK_DGVM.
339!$OMP THREADPRIVATE(lpj_gap_const_mort)
340  LOGICAL, SAVE :: disable_fire = .TRUE.       !! flag that disable fire (true/false)
341!$OMP THREADPRIVATE(disable_fire)
342  LOGICAL, SAVE :: spinup_analytic = .FALSE.   !! Flag to activate analytical resolution for spinup (true/false)
343!$OMP THREADPRIVATE(spinup_analytic)
344
345  !
346  ! CONFIGURATION VEGETATION
347  !
348  LOGICAL, SAVE :: agriculture = .TRUE.    !! allow agricultural PFTs (true/false)
349!$OMP THREADPRIVATE(agriculture)
350  LOGICAL, SAVE :: impveg = .FALSE.        !! Impose vegetation ? (true/false)
351!$OMP THREADPRIVATE(impveg)
352  LOGICAL, SAVE :: impsoilt = .FALSE.      !! Impose soil ? (true/false)
353!$OMP THREADPRIVATE(impsoilt)
354  LOGICAL, SAVE :: do_now_stomate_lcchange = .FALSE.  !! Time to call lcchange in stomate_lpj
355!$OMP THREADPRIVATE(do_now_stomate_lcchange)
356  LOGICAL, SAVE :: do_now_stomate_woodharvest = .FALSE.  !! Time to call woodharvest in stomate_lpj
357!$OMP THREADPRIVATE(do_now_stomate_woodharvest)
358  LOGICAL, SAVE :: done_stomate_lcchange = .FALSE.    !! If true, call lcchange in stomate_lpj has just been done.
359!$OMP THREADPRIVATE(done_stomate_lcchange)
360  LOGICAL, SAVE :: read_lai = .FALSE.      !! Flag to read a map of LAI if STOMATE is not activated (true/false)
361!$OMP THREADPRIVATE(read_lai)
362  LOGICAL, SAVE :: veget_reinit = .TRUE.   !! To change LAND USE file in a run. (true/false)
363!$OMP THREADPRIVATE(veget_reinit)
364  LOGICAL, SAVE :: vegetmap_reset = .FALSE.!! Reset the vegetation map and reset carbon related variables
365!$OMP THREADPRIVATE(vegetmap_reset)
366  INTEGER(i_std) , SAVE :: veget_update    !! Update frequency in years for landuse (nb of years)
367!$OMP THREADPRIVATE(veget_update)
368  !
369  ! PARAMETERS USED BY BOTH HYDROLOGY MODELS
370  !
371  REAL(r_std), SAVE :: max_snow_age = 50._r_std !! Maximum period of snow aging (days)
372!$OMP THREADPRIVATE(max_snow_age)
373  REAL(r_std), SAVE :: snow_trans = 0.2_r_std   !! Transformation time constant for snow (m), reduced from the value 0.3 (04/07/2016)
374!$OMP THREADPRIVATE(snow_trans)
375  REAL(r_std), SAVE :: sneige                   !! Lower limit of snow amount (kg.m^{-2})
376!$OMP THREADPRIVATE(sneige)
377  REAL(r_std), SAVE :: maxmass_snow = 3000.     !! The maximum mass of snow (kg.m^{-2})
378!$OMP THREADPRIVATE(maxmass_snow)
379
380  !! Heat capacity
381  REAL(r_std), PARAMETER :: capa_ice = 2.228*1.E3       !! Heat capacity of ice (J/kg/K)
382  REAL(r_std), SAVE      :: so_capa_ice                 !! Heat capacity of saturated frozen soil (J/K/m3)
383!$OMP THREADPRIVATE(so_capa_ice)
384  REAL(r_std), PARAMETER :: rho_water = 1000.           !! Density of water (kg/m3)
385  REAL(r_std), PARAMETER :: rho_ice = 920.              !! Density of ice (kg/m3)
386  REAL(r_std), PARAMETER :: rho_soil = 2700.            !! Density of soil particles (kg/m3), value from Peters-Lidard et al. 1998
387
388  !! Thermal conductivities
389  REAL(r_std), PARAMETER :: cond_water = 0.6            !! Thermal conductivity of liquid water (W/m/K)
390  REAL(r_std), PARAMETER :: cond_ice = 2.2              !! Thermal conductivity of ice (W/m/K)
391  REAL(r_std), PARAMETER :: cond_solid = 2.32           !! Thermal conductivity of mineral soil particles (W/m/K)
392
393  !! Time constant of long-term soil humidity (s)
394  REAL(r_std), PARAMETER :: lhf = 0.3336*1.E6           !! Latent heat of fusion (J/kg)
395
396  INTEGER(i_std), PARAMETER :: nsnow=3                  !! Number of levels in the snow for explicit snow scheme   
397  REAL(r_std), PARAMETER    :: XMD    = 28.9644E-3 
398  REAL(r_std), PARAMETER    :: XBOLTZ      = 1.380658E-23 
399  REAL(r_std), PARAMETER    :: XAVOGADRO   = 6.0221367E+23 
400  REAL(r_std), PARAMETER    :: XRD    = XAVOGADRO * XBOLTZ / XMD 
401  REAL(r_std), PARAMETER    :: XCPD   = 7.* XRD /2. 
402  REAL(r_std), PARAMETER    :: phigeoth = 0.057 ! 0. DKtest
403  REAL(r_std), PARAMETER    :: thick_min_snow = .01 
404
405  !! The maximum snow density and water holding characterisicts
406  REAL(r_std), SAVE         :: xrhosmax = 750.  ! (kg m-3)
407!$OMP THREADPRIVATE(xrhosmax)
408  REAL(r_std), SAVE         :: xwsnowholdmax1   = 0.03  ! (-)
409!$OMP THREADPRIVATE(xwsnowholdmax1)
410  REAL(r_std), SAVE         :: xwsnowholdmax2   = 0.10  ! (-)
411!$OMP THREADPRIVATE(xwsnowholdmax2)
412  REAL(r_std), SAVE         :: xsnowrhohold     = 200.0 ! (kg/m3)
413!$OMP THREADPRIVATE(xsnowrhohold)
414  REAL(r_std), SAVE         :: xrhosmin = 50. 
415!$OMP THREADPRIVATE(xrhosmin)
416  REAL(r_std), PARAMETER    :: xci = 2.106e+3 
417  REAL(r_std), PARAMETER    :: xrv = 6.0221367e+23 * 1.380658e-23 /18.0153e-3 
418
419  !! ISBA-ES Critical snow depth at which snow grid thicknesses constant
420  REAL(r_std), PARAMETER    :: xsnowcritd = 0.03  ! (m)
421
422  !! The threshold of snow depth used for preventing numerical problem in thermal calculations
423  REAL(r_std), PARAMETER    :: snowcritd_thermal = 0.01  ! (m) 
424 
425  !! ISBA-ES CROCUS (Pahaut 1976): snowfall density coefficients:
426  REAL(r_std), PARAMETER       :: snowfall_a_sn = 109.0  !! (kg/m3)
427  REAL(r_std), PARAMETER       :: snowfall_b_sn =   6.0  !! (kg/m3/K)
428  REAL(r_std), PARAMETER       :: snowfall_c_sn =  26.0  !! [kg/(m7/2 s1/2)]
429
430  REAL(r_std), PARAMETER       :: dgrain_new_max=  2.0e-4!! (m) : Maximum grain size of new snowfall
431 
432  !! Used in explicitsnow to prevent numerical problems as snow becomes vanishingly thin.
433  REAL(r_std), PARAMETER                :: psnowdzmin = .0001   ! m
434  REAL(r_std), PARAMETER                :: xsnowdmin = .000001  ! m
435
436  REAL(r_std), PARAMETER                :: ph2o = 1000.         !! Water density [kg/m3]
437 
438  ! ISBA-ES Thermal conductivity coefficients from Anderson (1976):
439  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
440  REAL(r_std), SAVE                     :: ZSNOWTHRMCOND1 = 0.02    ! [W/m/K]
441!$OMP THREADPRIVATE(ZSNOWTHRMCOND1)
442  REAL(r_std), SAVE                     :: ZSNOWTHRMCOND2 = 2.5E-6  ! [W m5/(kg2 K)]
443!$OMP THREADPRIVATE(ZSNOWTHRMCOND2)
444 
445  ! ISBA-ES Thermal conductivity: Implicit vapor diffn effects
446  ! (sig only for new snow OR high altitudes)
447  ! from Sun et al. (1999): based on data from Jordan (1991)
448  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
449  !
450  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_AVAP  = -0.06023 ! (W/m/K)
451!$OMP THREADPRIVATE(ZSNOWTHRMCOND_AVAP)
452  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_BVAP  = -2.5425  ! (W/m)
453!$OMP THREADPRIVATE(ZSNOWTHRMCOND_BVAP)
454  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_CVAP  = -289.99  ! (K)
455!$OMP THREADPRIVATE(ZSNOWTHRMCOND_CVAP)
456 
457  REAL(r_std),SAVE :: xansmax = 0.85      !! Maxmimum snow albedo
458!$OMP THREADPRIVATE(xansmax)
459  REAL(r_std),SAVE :: xansmin = 0.50      !! Miniumum snow albedo
460!$OMP THREADPRIVATE(xansmin)
461  REAL(r_std),SAVE :: xans_todry = 0.008  !! Albedo decay rate for dry snow
462!$OMP THREADPRIVATE(xans_todry)
463  REAL(r_std),SAVE :: xans_t = 0.240      !! Albedo decay rate for wet snow
464!$OMP THREADPRIVATE(xans_t)
465
466  ! ISBA-ES Thermal conductivity coefficients from Anderson (1976):
467  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
468  REAL(r_std), PARAMETER                  :: XP00 = 1.E5
469
470  ! ISBA-ES Thermal conductivity: Implicit vapor diffn effects
471  ! (sig only for new snow OR high altitudes)
472  ! from Sun et al. (1999): based on data from Jordan (1991)
473  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
474  !
475  REAL(r_std), SAVE          :: ZSNOWCMPCT_RHOD  = 150.0        !! (kg/m3)
476!$OMP THREADPRIVATE(ZSNOWCMPCT_RHOD)
477  REAL(r_std), SAVE          :: ZSNOWCMPCT_ACM   = 2.8e-6       !! (1/s
478!$OMP THREADPRIVATE(ZSNOWCMPCT_ACM)
479  REAL(r_std), SAVE          :: ZSNOWCMPCT_BCM   = 0.04         !! (1/K)
480!$OMP THREADPRIVATE(ZSNOWCMPCT_BCM)
481  REAL(r_std), SAVE          :: ZSNOWCMPCT_CCM   = 460.         !! (m3/kg)
482!$OMP THREADPRIVATE(ZSNOWCMPCT_CCM)
483  REAL(r_std), SAVE          :: ZSNOWCMPCT_V0    = 3.7e7        !! (Pa/s)
484!$OMP THREADPRIVATE(ZSNOWCMPCT_V0)
485  REAL(r_std), SAVE          :: ZSNOWCMPCT_VT    = 0.081        !! (1/K)
486!$OMP THREADPRIVATE(ZSNOWCMPCT_VT)
487  REAL(r_std), SAVE          :: ZSNOWCMPCT_VR    = 0.018        !! (m3/kg)
488!$OMP THREADPRIVATE(ZSNOWCMPCT_VR)
489
490  !
491  ! BVOC : Biogenic activity  for each age class
492  !
493  REAL(r_std), SAVE, DIMENSION(nleafages) :: iso_activity = (/0.5, 1.5, 1.5, 0.5/)     !! Biogenic activity for each
494                                                                                       !! age class : isoprene (unitless)
495!$OMP THREADPRIVATE(iso_activity)
496  REAL(r_std), SAVE, DIMENSION(nleafages) :: methanol_activity = (/1., 1., 0.5, 0.5/)  !! Biogenic activity for each
497                                                                                       !! age class : methanol (unnitless)
498!$OMP THREADPRIVATE(methanol_activity)
499
500  !
501  ! condveg.f90
502  !
503
504  ! 1. Scalar
505
506  ! 1.1 Flags used inside the module
507
508  LOGICAL, SAVE :: alb_bare_model = .FALSE. !! Switch for choosing values of bare soil
509                                            !! albedo (see header of subroutine)
510                                            !! (true/false)
511!$OMP THREADPRIVATE(alb_bare_model)
512  LOGICAL, SAVE :: alb_bg_modis = .TRUE.    !! Switch for choosing values of bare soil
513                                            !! albedo read from file
514                                            !! (true/false)
515!$OMP THREADPRIVATE(alb_bg_modis)
516  LOGICAL, SAVE :: impaze = .FALSE.         !! Switch for choosing surface parameters
517                                            !! (see header of subroutine). 
518                                            !! (true/false)
519!$OMP THREADPRIVATE(impaze)
520  LOGICAL, SAVE :: rough_dyn = .TRUE.       !! Chooses between two methods to calculate the
521                                            !! the roughness height : static or dynamic (varying with LAI)
522                                            !! (true/false)
523!$OMP THREADPRIVATE(rough_dyn)
524
525  LOGICAL, SAVE :: new_watstress = .FALSE.
526!$OMP THREADPRIVATE(new_watstress)
527
528  REAL(r_std), SAVE :: alpha_watstress = 1.
529!$OMP THREADPRIVATE(alpha_watstress)
530
531  ! 1.2 Others
532
533
534  REAL(r_std), SAVE :: height_displacement = 0.66        !! Factor to calculate the zero-plane displacement
535                                                         !! height from vegetation height (m)
536!$OMP THREADPRIVATE(height_displacement)
537  REAL(r_std), SAVE :: z0_bare = 0.01                    !! bare soil roughness length (m)
538!$OMP THREADPRIVATE(z0_bare)
539  REAL(r_std), SAVE :: z0_ice = 0.001                    !! ice roughness length (m)
540!$OMP THREADPRIVATE(z0_ice)
541  REAL(r_std), SAVE :: tcst_snowa = 10.0                 !! Time constant of the albedo decay of snow (days), increased from the value 5.0 (04/07/2016)
542!$OMP THREADPRIVATE(tcst_snowa)
543  REAL(r_std), SAVE :: snowcri_alb = 10.                 !! Critical value for computation of snow albedo (cm)
544!$OMP THREADPRIVATE(snowcri_alb)
545  REAL(r_std), SAVE :: fixed_snow_albedo = undef_sechiba !! To choose a fixed snow albedo value (unitless)
546!$OMP THREADPRIVATE(fixed_snow_albedo)
547  REAL(r_std), SAVE :: z0_scal = 0.15                    !! Surface roughness height imposed (m)
548!$OMP THREADPRIVATE(z0_scal)
549  REAL(r_std), SAVE :: roughheight_scal = zero           !! Effective roughness Height depending on zero-plane
550                                                         !! displacement height (m) (imposed)
551!$OMP THREADPRIVATE(roughheight_scal)
552  REAL(r_std), SAVE :: emis_scal = 1.0                   !! Surface emissivity imposed (unitless)
553!$OMP THREADPRIVATE(emis_scal)
554
555  REAL(r_std), SAVE :: c1 = 0.32                         !! Constant used in the formulation of the ratio of
556!$OMP THREADPRIVATE(c1)                                  !! friction velocity to the wind speed at the canopy top
557                                                         !! see Ershadi et al. (2015) for more info
558  REAL(r_std), SAVE :: c2 = 0.264                        !! Constant used in the formulation of the ratio of
559!$OMP THREADPRIVATE(c2)                                  !! friction velocity to the wind speed at the canopy top
560                                                         !! see Ershadi et al. (2015) for more info
561  REAL(r_std), SAVE :: c3 = 15.1                         !! Constant used in the formulation of the ratio of
562!$OMP THREADPRIVATE(c3)                                  !! friction velocity to the wind speed at the canopy top
563                                                         !! see Ershadi et al. (2015) for more info
564  REAL(r_std), SAVE :: Cdrag_foliage = 0.2               !! Drag coefficient of the foliage
565!$OMP THREADPRIVATE(Cdrag_foliage)                       !! See Ershadi et al. (2015) and Su et. al (2001) for more info
566  REAL(r_std), SAVE :: Ct = 0.01                         !! Heat transfer coefficient of the leaf
567!$OMP THREADPRIVATE(Ct)                                  !! See Ershadi et al. (2015) and Su et. al (2001) for more info
568  REAL(r_std), SAVE :: Prandtl = 0.71                    !! Prandtl number used in the calculation of Ct_star
569!$OMP THREADPRIVATE(Prandtl)                             !! See Su et. al (2001) for more info
570
571
572
573  ! 2. Arrays
574
575  REAL(r_std), SAVE, DIMENSION(2) :: alb_deadleaf = (/ .12, .35/)    !! albedo of dead leaves, VIS+NIR (unitless)
576!$OMP THREADPRIVATE(alb_deadleaf)
577  REAL(r_std), SAVE, DIMENSION(2) :: alb_ice = (/ .60, .20/)         !! albedo of ice, VIS+NIR (unitless)
578!$OMP THREADPRIVATE(alb_ice)
579  REAL(r_std), SAVE, DIMENSION(2) :: albedo_scal = (/ 0.25, 0.25 /)  !! Albedo values for visible and near-infrared
580                                                                     !! used imposed (unitless)
581!$OMP THREADPRIVATE(albedo_scal)
582  REAL(r_std) , SAVE, DIMENSION(classnb) :: vis_dry = (/0.24,&
583       &0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.27/)  !! Soil albedo values to soil colour classification:
584                                                          !! dry soil albedo values in visible range
585!$OMP THREADPRIVATE(vis_dry)
586  REAL(r_std), SAVE, DIMENSION(classnb) :: nir_dry = (/0.48,&
587       &0.44, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.55/)  !! Soil albedo values to soil colour classification:
588                                                          !! dry soil albedo values in near-infrared range
589!$OMP THREADPRIVATE(nir_dry)
590  REAL(r_std), SAVE, DIMENSION(classnb) :: vis_wet = (/0.12,&
591       &0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.15/)  !! Soil albedo values to soil colour classification:
592                                                          !! wet soil albedo values in visible range
593!$OMP THREADPRIVATE(vis_wet)
594  REAL(r_std), SAVE, DIMENSION(classnb) :: nir_wet = (/0.24,&
595       &0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.31/)  !! Soil albedo values to soil colour classification:
596                                                          !! wet soil albedo values in near-infrared range
597!$OMP THREADPRIVATE(nir_wet)
598  REAL(r_std), SAVE, DIMENSION(classnb) :: albsoil_vis = (/ &
599       &0.18, 0.16, 0.16, 0.15, 0.12, 0.105, 0.09, 0.075, 0.25/)   !! Soil albedo values to soil colour classification:
600                                                                   !! Averaged of wet and dry soil albedo values
601                                                                   !! in visible and near-infrared range
602!$OMP THREADPRIVATE(albsoil_vis)
603  REAL(r_std), SAVE, DIMENSION(classnb) :: albsoil_nir = (/ &
604       &0.36, 0.34, 0.34, 0.33, 0.30, 0.25, 0.20, 0.15, 0.45/)  !! Soil albedo values to soil colour classification:
605                                                                !! Averaged of wet and dry soil albedo values
606                                                                !! in visible and near-infrared range
607!$OMP THREADPRIVATE(albsoil_nir)
608
609  !
610  ! diffuco.f90
611  !
612
613  ! 0. Constants
614
615  REAL(r_std), PARAMETER :: Tetens_1 = 0.622         !! Ratio between molecular weight of water vapor and molecular weight 
616                                                     !! of dry air (unitless)
617  REAL(r_std), PARAMETER :: Tetens_2 = 0.378         !!
618  REAL(r_std), PARAMETER :: ratio_H2O_to_CO2 = 1.6   !! Ratio of water vapor diffusivity to the CO2 diffusivity (unitless)
619  REAL(r_std), PARAMETER :: mol_to_m_1 = 0.0244      !!
620  REAL(r_std), PARAMETER :: RG_to_PAR = 0.5          !!
621  REAL(r_std), PARAMETER :: W_to_mol = 4.6          !! W_to_mmol * RG_to_PAR = 2.3
622
623  ! 1. Scalar
624
625  INTEGER(i_std), SAVE :: nlai = 20             !! Number of LAI levels (unitless)
626!$OMP THREADPRIVATE(nlai)
627  LOGICAL, SAVE :: ldq_cdrag_from_gcm = .FALSE. !! Set to .TRUE. if you want q_cdrag coming from GCM
628!$OMP THREADPRIVATE(ldq_cdrag_from_gcm)
629  REAL(r_std), SAVE :: laimax = 12.             !! Maximal LAI used for splitting LAI into N layers (m^2.m^{-2})
630!$OMP THREADPRIVATE(laimax)
631  LOGICAL, SAVE :: downregulation_co2 = .TRUE.             !! Set to .TRUE. if you want CO2 downregulation.
632!$OMP THREADPRIVATE(downregulation_co2)
633  REAL(r_std), SAVE :: downregulation_co2_baselevel = 380. !! CO2 base level (ppm)
634!$OMP THREADPRIVATE(downregulation_co2_baselevel)
635
636  REAL(r_std), SAVE :: gb_ref = 1./25.                     !! Leaf bulk boundary layer resistance (s m-1)
637!$OMP THREADPRIVATE(gb_ref)
638
639  ! 3. Coefficients of equations
640
641  REAL(r_std), SAVE :: lai_level_depth = 0.15  !!
642!$OMP THREADPRIVATE(lai_level_depth)
643!
644  REAL(r_std), SAVE, DIMENSION(6) :: dew_veg_poly_coeff = &            !! coefficients of the 5 degree polynomomial used
645  & (/ 0.887773, 0.205673, 0.110112, 0.014843,  0.000824,  0.000017 /) !! in the equation of coeff_dew_veg
646!$OMP THREADPRIVATE(dew_veg_poly_coeff)
647!
648  REAL(r_std), SAVE               :: Oi=210000.    !! Intercellular oxygen partial pressure (ubar)
649!$OMP THREADPRIVATE(Oi)
650  !
651  ! slowproc.f90
652  !
653
654  ! 1. Scalar
655
656  INTEGER(i_std), SAVE :: veget_year_orig = 0        !!  first year for landuse (number)
657!$OMP THREADPRIVATE(veget_year_orig)
658! The default value for clay fraction is an heritage, with no documentation nor justification.   
659  REAL(r_std), SAVE :: clayfraction_default = 0.2    !! Default value for clay fraction (0-1, unitless)
660!$OMP THREADPRIVATE(clayfraction_default)
661! We need to output sand and silt fractiosn for SP-MIP, and the following default values, corresponding to a Loamy soil, are selected.
662  REAL(r_std), SAVE :: sandfraction_default = 0.4    !! Default value for sand fraction (0-1, unitless)
663!$OMP THREADPRIVATE(sandfraction_default)
664  REAL(r_std), SAVE :: siltfraction_default = 0.4    !! Default value for silt fraction (0-1, unitless)
665!$OMP THREADPRIVATE(siltfraction_default)
666  REAL(r_std), SAVE :: min_vegfrac = 0.001           !! Minimal fraction of mesh a vegetation type can occupy (0-1, unitless)
667!$OMP THREADPRIVATE(min_vegfrac)
668  REAL(r_std), SAVE :: frac_nobio_fixed_test_1 = 0.0 !! Value for frac_nobio for tests in 0-dim simulations (0-1, unitless)
669!$OMP THREADPRIVATE(frac_nobio_fixed_test_1)
670 
671  REAL(r_std), SAVE :: stempdiag_bid = 280.          !! only needed for an initial LAI if there is no restart file
672!$OMP THREADPRIVATE(stempdiag_bid)
673
674
675                           !-----------------------------!
676                           !  STOMATE AND LPJ PARAMETERS !
677                           !-----------------------------!
678
679
680  !
681  ! lpj_constraints.f90
682  !
683 
684  ! 1. Scalar
685
686  REAL(r_std), SAVE  :: too_long = 5.      !! longest sustainable time without
687                                           !! regeneration (vernalization) (years)
688!$OMP THREADPRIVATE(too_long)
689
690
691  !
692  ! lpj_establish.f90
693  !
694
695  ! 1. Scalar
696
697  REAL(r_std), SAVE :: estab_max_tree = 0.12   !! Maximum tree establishment rate (ind/m2/dt_stomate)
698!$OMP THREADPRIVATE(estab_max_tree)
699  REAL(r_std), SAVE :: estab_max_grass = 0.12  !! Maximum grass establishment rate (ind/m2/dt_stomate)
700!$OMP THREADPRIVATE(estab_max_grass)
701 
702  ! 3. Coefficients of equations
703
704  REAL(r_std), SAVE :: establish_scal_fact = 5.  !!
705!$OMP THREADPRIVATE(establish_scal_fact)
706  REAL(r_std), SAVE :: max_tree_coverage = 0.98  !! (0-1, unitless)
707!$OMP THREADPRIVATE(max_tree_coverage)
708  REAL(r_std), SAVE :: ind_0_estab = 0.2         !! = ind_0 * 10.
709!$OMP THREADPRIVATE(ind_0_estab)
710
711
712  !
713  ! lpj_fire.f90
714  !
715
716  ! 1. Scalar
717
718  REAL(r_std), SAVE :: tau_fire = 30.           !! Time scale for memory of the fire index (days).
719!$OMP THREADPRIVATE(tau_fire)
720  REAL(r_std), SAVE :: litter_crit = 200.       !! Critical litter quantity for fire
721                                                !! below which iginitions extinguish
722                                                !! @tex $(gC m^{-2})$ @endtex
723!$OMP THREADPRIVATE(litter_crit)
724  REAL(r_std), SAVE :: fire_resist_struct = 0.5 !!
725!$OMP THREADPRIVATE(fire_resist_struct)
726  ! 2. Arrays
727
728  REAL(r_std), SAVE, DIMENSION(nparts) :: co2frac = &    !! The fraction of the different biomass
729       & (/ .95, .95, 0., 0.3, 0., 0., .95, .95 /)       !! compartments emitted to the atmosphere
730!$OMP THREADPRIVATE(co2frac)                                                         !! when burned (unitless, 0-1) 
731
732  ! 3. Coefficients of equations
733
734  REAL(r_std), SAVE, DIMENSION(3) :: bcfrac_coeff = (/ .3,  1.3,  88.2 /)         !! (unitless)
735!$OMP THREADPRIVATE(bcfrac_coeff)
736  REAL(r_std), SAVE, DIMENSION(4) :: firefrac_coeff = (/ 0.45, 0.8, 0.6, 0.13 /)  !! (unitless)
737!$OMP THREADPRIVATE(firefrac_coeff)
738
739  !
740  ! lpj_gap.f90
741  !
742
743  ! 1. Scalar
744
745  REAL(r_std), SAVE :: ref_greff = 0.035         !! Asymptotic maximum mortality rate
746                                                 !! @tex $(year^{-1})$ @endtex
747!$OMP THREADPRIVATE(ref_greff)
748
749  !               
750  ! lpj_light.f90
751  !             
752
753  ! 1. Scalar
754 
755  LOGICAL, SAVE :: annual_increase = .TRUE. !! for diagnosis of fpc increase, compare today's fpc to last year's maximum (T) or
756                                            !! to fpc of last time step (F)? (true/false)
757!$OMP THREADPRIVATE(annual_increase)
758  REAL(r_std), SAVE :: min_cover = 0.05     !! For trees, minimum fraction of crown area occupied
759                                            !! (due to its branches etc.) (0-1, unitless)
760                                            !! This means that only a small fraction of its crown area
761                                            !! can be invaded by other trees.
762!$OMP THREADPRIVATE(min_cover)
763  !
764  ! lpj_pftinout.f90
765  !
766
767  ! 1. Scalar
768
769  REAL(r_std), SAVE :: min_avail = 0.01         !! minimum availability
770!$OMP THREADPRIVATE(min_avail)
771  REAL(r_std), SAVE :: ind_0 = 0.02             !! initial density of individuals
772!$OMP THREADPRIVATE(ind_0)
773  ! 3. Coefficients of equations
774 
775  REAL(r_std), SAVE :: RIP_time_min = 1.25      !! test whether the PFT has been eliminated lately (years)
776!$OMP THREADPRIVATE(RIP_time_min)
777  REAL(r_std), SAVE :: npp_longterm_init = 10.  !! Initialisation value for npp_longterm (gC.m^{-2}.year^{-1})
778!$OMP THREADPRIVATE(npp_longterm_init)
779  REAL(r_std), SAVE :: everywhere_init = 0.05   !!
780!$OMP THREADPRIVATE(everywhere_init)
781
782
783  !
784  ! stomate_alloc.f90
785  !
786
787  ! 0. Constants
788
789  REAL(r_std), PARAMETER :: max_possible_lai = 10. !! (m^2.m^{-2})
790  REAL(r_std), PARAMETER :: Nlim_Q10 = 10.         !!
791
792  ! 1. Scalar
793
794  LOGICAL, SAVE :: ok_minres = .TRUE.              !! [DISPENSABLE] Do we try to reach a minimum reservoir even if
795                                                   !! we are severely stressed? (true/false)
796!$OMP THREADPRIVATE(ok_minres)
797  REAL(r_std), SAVE :: reserve_time_tree = 30.     !! Maximum number of days during which
798                                                   !! carbohydrate reserve may be used for
799                                                   !! trees (days)
800!$OMP THREADPRIVATE(reserve_time_tree)
801  REAL(r_std), SAVE :: reserve_time_grass = 20.    !! Maximum number of days during which
802                                                   !! carbohydrate reserve may be used for
803                                                   !! grasses (days)
804!$OMP THREADPRIVATE(reserve_time_grass)
805
806  REAL(r_std), SAVE :: f_fruit = 0.1               !! Default fruit allocation (0-1, unitless)
807!$OMP THREADPRIVATE(f_fruit)
808  REAL(r_std), SAVE :: alloc_sap_above_grass = 1.0 !! fraction of sapwood allocation above ground
809                                                   !! for grass (0-1, unitless)
810!$OMP THREADPRIVATE(alloc_sap_above_grass)
811  REAL(r_std), SAVE :: min_LtoLSR = 0.2            !! Prescribed lower bounds for leaf
812                                                   !! allocation (0-1, unitless)
813!$OMP THREADPRIVATE(min_LtoLSR)
814  REAL(r_std), SAVE :: max_LtoLSR = 0.5            !! Prescribed upper bounds for leaf
815                                                   !! allocation (0-1, unitless)
816!$OMP THREADPRIVATE(max_LtoLSR)
817  REAL(r_std), SAVE :: z_nitrogen = 0.2            !! Curvature of the root profile (m)
818!$OMP THREADPRIVATE(z_nitrogen)
819
820  ! 3. Coefficients of equations
821
822  REAL(r_std), SAVE :: Nlim_tref = 25.             !! (C)
823!$OMP THREADPRIVATE(Nlim_tref)
824
825
826  !
827  ! stomate_data.f90
828  !
829
830  ! 1. Scalar
831
832  ! 1.1 Parameters for the pipe model
833
834  REAL(r_std), SAVE :: pipe_tune1 = 100.0        !! crown area = pipe_tune1. stem diameter**(1.6) (Reinicke's theory) (unitless)
835!$OMP THREADPRIVATE(pipe_tune1)
836  REAL(r_std), SAVE :: pipe_tune2 = 40.0         !! height=pipe_tune2 * diameter**pipe_tune3 (unitless)
837!$OMP THREADPRIVATE(pipe_tune2)
838  REAL(r_std), SAVE :: pipe_tune3 = 0.5          !! height=pipe_tune2 * diameter**pipe_tune3 (unitless)
839!$OMP THREADPRIVATE(pipe_tune3)
840  REAL(r_std), SAVE :: pipe_tune4 = 0.3          !! needed for stem diameter (unitless)
841!$OMP THREADPRIVATE(pipe_tune4)
842  REAL(r_std), SAVE :: pipe_density = 2.e5       !! Density
843!$OMP THREADPRIVATE(pipe_density)
844  REAL(r_std), SAVE :: pipe_k1 = 8.e3            !! one more SAVE
845!$OMP THREADPRIVATE(pipe_k1)
846  REAL(r_std), SAVE :: pipe_tune_exp_coeff = 1.6 !! pipe tune exponential coeff (unitless)
847!$OMP THREADPRIVATE(pipe_tune_exp_coeff)
848
849  ! 1.2 climatic parameters
850
851  REAL(r_std), SAVE :: precip_crit = 100.        !! minimum precip, in (mm/year)
852!$OMP THREADPRIVATE(precip_crit)
853  REAL(r_std), SAVE :: gdd_crit_estab = 150.     !! minimum gdd for establishment of saplings
854!$OMP THREADPRIVATE(gdd_crit_estab)
855  REAL(r_std), SAVE :: fpc_crit = 0.95           !! critical fpc, needed for light competition and establishment (0-1, unitless)
856!$OMP THREADPRIVATE(fpc_crit)
857
858  ! 1.3 sapling characteristics
859
860  REAL(r_std), SAVE :: alpha_grass = 0.5         !! alpha coefficient for grasses (unitless)
861!$OMP THREADPRIVATE(alpha_grass)
862  REAL(r_std), SAVE :: alpha_tree = 1.           !! alpha coefficient for trees (unitless)
863!$OMP THREADPRIVATE(alpha_tree)
864  REAL(r_std), SAVE :: mass_ratio_heart_sap = 3. !! mass ratio (heartwood+sapwood)/sapwood (unitless)
865!$OMP THREADPRIVATE(mass_ratio_heart_sap)
866
867  ! 1.4  time scales for phenology and other processes (in days)
868
869  REAL(r_std), SAVE :: tau_hum_month = 20.        !! (days)       
870!$OMP THREADPRIVATE(tau_hum_month)
871  REAL(r_std), SAVE :: tau_hum_week = 7.          !! (days) 
872!$OMP THREADPRIVATE(tau_hum_week)
873  REAL(r_std), SAVE :: tau_t2m_month = 20.        !! (days)     
874!$OMP THREADPRIVATE(tau_t2m_month)
875  REAL(r_std), SAVE :: tau_t2m_week = 7.          !! (days) 
876!$OMP THREADPRIVATE(tau_t2m_week)
877  REAL(r_std), SAVE :: tau_tsoil_month = 20.      !! (days)     
878!$OMP THREADPRIVATE(tau_tsoil_month)
879  REAL(r_std), SAVE :: tau_soilhum_month = 20.    !! (days)     
880!$OMP THREADPRIVATE(tau_soilhum_month)
881  REAL(r_std), SAVE :: tau_gpp_week = 7.          !! (days) 
882!$OMP THREADPRIVATE(tau_gpp_week)
883  REAL(r_std), SAVE :: tau_gdd = 40.              !! (days) 
884!$OMP THREADPRIVATE(tau_gdd)
885  REAL(r_std), SAVE :: tau_ngd = 50.              !! (days) 
886!$OMP THREADPRIVATE(tau_ngd)
887  REAL(r_std), SAVE :: coeff_tau_longterm = 3.    !! (unitless)
888!$OMP THREADPRIVATE(coeff_tau_longterm)
889  REAL(r_std), SAVE :: tau_longterm_max           !! (days) 
890!$OMP THREADPRIVATE(tau_longterm_max)
891
892  ! 3. Coefficients of equations
893
894  REAL(r_std), SAVE :: bm_sapl_carbres = 5.             !!
895!$OMP THREADPRIVATE(bm_sapl_carbres)
896  REAL(r_std), SAVE :: bm_sapl_sapabove = 0.5           !!
897!$OMP THREADPRIVATE(bm_sapl_sapabove)
898  REAL(r_std), SAVE :: bm_sapl_heartabove = 2.          !!
899!$OMP THREADPRIVATE(bm_sapl_heartabove)
900  REAL(r_std), SAVE :: bm_sapl_heartbelow = 2.          !!
901!$OMP THREADPRIVATE(bm_sapl_heartbelow)
902  REAL(r_std), SAVE :: init_sapl_mass_leaf_nat = 0.1    !!
903!$OMP THREADPRIVATE(init_sapl_mass_leaf_nat)
904  REAL(r_std), SAVE :: init_sapl_mass_leaf_agri = 1.    !!
905!$OMP THREADPRIVATE(init_sapl_mass_leaf_agri)
906  REAL(r_std), SAVE :: init_sapl_mass_carbres = 5.      !!
907!$OMP THREADPRIVATE(init_sapl_mass_carbres)
908  REAL(r_std), SAVE :: init_sapl_mass_root = 0.1        !!
909!$OMP THREADPRIVATE(init_sapl_mass_root)
910  REAL(r_std), SAVE :: init_sapl_mass_fruit = 0.3       !! 
911!$OMP THREADPRIVATE(init_sapl_mass_fruit)
912  REAL(r_std), SAVE :: cn_sapl_init = 0.5               !!
913!$OMP THREADPRIVATE(cn_sapl_init)
914  REAL(r_std), SAVE :: migrate_tree = 10.*1.E3          !!
915!$OMP THREADPRIVATE(migrate_tree)
916  REAL(r_std), SAVE :: migrate_grass = 10.*1.E3         !!
917!$OMP THREADPRIVATE(migrate_grass)
918  REAL(r_std), SAVE :: lai_initmin_tree = 0.3           !!
919!$OMP THREADPRIVATE(lai_initmin_tree)
920  REAL(r_std), SAVE :: lai_initmin_grass = 0.1          !!
921!$OMP THREADPRIVATE(lai_initmin_grass)
922  REAL(r_std), SAVE, DIMENSION(2) :: dia_coeff = (/ 4., 0.5 /)            !!
923!$OMP THREADPRIVATE(dia_coeff)
924  REAL(r_std), SAVE, DIMENSION(2) :: maxdia_coeff =(/ 100., 0.01/)        !!
925!$OMP THREADPRIVATE(maxdia_coeff)
926  REAL(r_std), SAVE, DIMENSION(4) :: bm_sapl_leaf = (/ 4., 4., 0.8, 5./)  !!
927!$OMP THREADPRIVATE(bm_sapl_leaf)
928
929
930
931  !
932  ! stomate_litter.f90
933  !
934
935  ! 0. Constants
936
937  REAL(r_std), PARAMETER :: Q10 = 10.               !!
938
939  ! 1. Scalar
940
941  REAL(r_std), SAVE :: z_decomp = 0.2               !!  Maximum depth for soil decomposer's activity (m)
942!$OMP THREADPRIVATE(z_decomp)
943
944  ! 2. Arrays
945
946  REAL(r_std), SAVE :: frac_soil_struct_aa = 0.55   !! corresponding to frac_soil(istructural,iactive,iabove)
947!$OMP THREADPRIVATE(frac_soil_struct_aa)
948  REAL(r_std), SAVE :: frac_soil_struct_ab = 0.45   !! corresponding to frac_soil(istructural,iactive,ibelow)
949!$OMP THREADPRIVATE(frac_soil_struct_ab)
950  REAL(r_std), SAVE :: frac_soil_struct_sa = 0.7    !! corresponding to frac_soil(istructural,islow,iabove)
951!$OMP THREADPRIVATE(frac_soil_struct_sa)
952  REAL(r_std), SAVE :: frac_soil_struct_sb = 0.7    !! corresponding to frac_soil(istructural,islow,ibelow)
953!$OMP THREADPRIVATE(frac_soil_struct_sb)
954  REAL(r_std), SAVE :: frac_soil_metab_aa = 0.45    !! corresponding to frac_soil(imetabolic,iactive,iabove)
955!$OMP THREADPRIVATE(frac_soil_metab_aa)
956  REAL(r_std), SAVE :: frac_soil_metab_ab = 0.45    !! corresponding to frac_soil(imetabolic,iactive,ibelow)
957!$OMP THREADPRIVATE(frac_soil_metab_ab)
958  REAL(r_std), SAVE, DIMENSION(nparts) :: CN = &    !! C/N ratio of each plant pool (0-100, unitless)
959       & (/ 40., 40., 40., 40., 40., 40., 40., 40. /) 
960!$OMP THREADPRIVATE(CN)
961  REAL(r_std), SAVE, DIMENSION(nparts) :: LC = &    !! Lignin/C ratio of different plant parts (0,22-0,35, unitless)
962       & (/ 0.22, 0.35, 0.35, 0.35, 0.35, 0.22, 0.22, 0.22 /)
963!$OMP THREADPRIVATE(LC)
964
965  ! 3. Coefficients of equations
966
967  REAL(r_std), SAVE :: metabolic_ref_frac = 0.85    !! used by litter and soilcarbon (0-1, unitless)
968!$OMP THREADPRIVATE(metabolic_ref_frac)
969  REAL(r_std), SAVE :: metabolic_LN_ratio = 0.018   !! (0-1, unitless)   
970!$OMP THREADPRIVATE(metabolic_LN_ratio)
971  REAL(r_std), SAVE :: tau_metabolic = 0.066        !!
972!$OMP THREADPRIVATE(tau_metabolic)
973  REAL(r_std), SAVE :: tau_struct = 0.245           !!
974!$OMP THREADPRIVATE(tau_struct)
975  REAL(r_std), SAVE :: soil_Q10 = 0.69              !!= ln 2
976!$OMP THREADPRIVATE(soil_Q10)
977  REAL(r_std), SAVE :: tsoil_ref = 30.              !!
978!$OMP THREADPRIVATE(tsoil_ref)
979  REAL(r_std), SAVE :: litter_struct_coef = 3.      !!
980!$OMP THREADPRIVATE(litter_struct_coef)
981  REAL(r_std), SAVE, DIMENSION(3) :: moist_coeff = (/ 1.1,  2.4,  0.29 /) !!
982!$OMP THREADPRIVATE(moist_coeff)
983  REAL(r_std), SAVE :: moistcont_min = 0.25  !! minimum soil wetness to limit the heterotrophic respiration
984!$OMP THREADPRIVATE(moistcont_min)
985
986
987  !
988  ! stomate_lpj.f90
989  !
990
991  ! 1. Scalar
992
993  REAL(r_std), SAVE :: frac_turnover_daily = 0.55  !! (0-1, unitless)
994!$OMP THREADPRIVATE(frac_turnover_daily)
995
996
997  !
998  ! stomate_npp.f90
999  !
1000
1001  ! 1. Scalar
1002
1003  REAL(r_std), SAVE :: tax_max = 0.8 !! Maximum fraction of allocatable biomass used
1004                                     !! for maintenance respiration (0-1, unitless)
1005!$OMP THREADPRIVATE(tax_max)
1006
1007
1008  !
1009  ! stomate_phenology.f90
1010  !
1011
1012  ! 1. Scalar
1013
1014  REAL(r_std), SAVE :: min_growthinit_time = 300.  !! minimum time since last beginning of a growing season (days)
1015!$OMP THREADPRIVATE(min_growthinit_time)
1016  REAL(r_std), SAVE :: moiavail_always_tree = 1.0  !! moisture monthly availability above which moisture tendency doesn't matter
1017                                                   !!  - for trees (0-1, unitless)
1018!$OMP THREADPRIVATE(moiavail_always_tree)
1019  REAL(r_std), SAVE :: moiavail_always_grass = 0.6 !! moisture monthly availability above which moisture tendency doesn't matter
1020                                                   !! - for grass (0-1, unitless)
1021!$OMP THREADPRIVATE(moiavail_always_grass)
1022  REAL(r_std), SAVE :: t_always                    !! monthly temp. above which temp. tendency doesn't matter
1023!$OMP THREADPRIVATE(t_always)
1024  REAL(r_std), SAVE :: t_always_add = 10.          !! monthly temp. above which temp. tendency doesn't matter (C)
1025!$OMP THREADPRIVATE(t_always_add)
1026
1027  ! 3. Coefficients of equations
1028 
1029  REAL(r_std), SAVE :: gddncd_ref = 603.           !!
1030!$OMP THREADPRIVATE(gddncd_ref)
1031  REAL(r_std), SAVE :: gddncd_curve = 0.0091       !!
1032!$OMP THREADPRIVATE(gddncd_curve)
1033  REAL(r_std), SAVE :: gddncd_offset = 64.         !!
1034!$OMP THREADPRIVATE(gddncd_offset)
1035
1036
1037  !
1038  ! stomate_prescribe.f90
1039  !
1040
1041  ! 3. Coefficients of equations
1042
1043  REAL(r_std), SAVE :: bm_sapl_rescale = 40.       !!
1044!$OMP THREADPRIVATE(bm_sapl_rescale)
1045
1046
1047  !
1048  ! stomate_resp.f90
1049  !
1050
1051  ! 3. Coefficients of equations
1052
1053  REAL(r_std), SAVE :: maint_resp_min_vmax = 0.3   !!
1054!$OMP THREADPRIVATE(maint_resp_min_vmax)
1055  REAL(r_std), SAVE :: maint_resp_coeff = 1.4      !!
1056!$OMP THREADPRIVATE(maint_resp_coeff)
1057
1058
1059  !
1060  ! stomate_soilcarbon.f90
1061  !
1062
1063  ! 2. Arrays
1064
1065  ! 2.1 frac_carb_coefficients
1066
1067  REAL(r_std), SAVE :: frac_carb_ap = 0.004  !! from active pool: depends on clay content  (0-1, unitless)
1068                                             !! corresponding to frac_carb(:,iactive,ipassive)
1069!$OMP THREADPRIVATE(frac_carb_ap)
1070  REAL(r_std), SAVE :: frac_carb_sa = 0.42   !! from slow pool (0-1, unitless)
1071                                             !! corresponding to frac_carb(:,islow,iactive)
1072!$OMP THREADPRIVATE(frac_carb_sa)
1073  REAL(r_std), SAVE :: frac_carb_sp = 0.03   !! from slow pool (0-1, unitless)
1074                                             !! corresponding to frac_carb(:,islow,ipassive)
1075!$OMP THREADPRIVATE(frac_carb_sp)
1076  REAL(r_std), SAVE :: frac_carb_pa = 0.45   !! from passive pool (0-1, unitless)
1077                                             !! corresponding to frac_carb(:,ipassive,iactive)
1078!$OMP THREADPRIVATE(frac_carb_pa)
1079  REAL(r_std), SAVE :: frac_carb_ps = 0.0    !! from passive pool (0-1, unitless)
1080                                             !! corresponding to frac_carb(:,ipassive,islow)
1081!$OMP THREADPRIVATE(frac_carb_ps)
1082
1083  ! 3. Coefficients of equations
1084
1085  REAL(r_std), SAVE :: active_to_pass_clay_frac = 0.68  !! (0-1, unitless)
1086!$OMP THREADPRIVATE(active_to_pass_clay_frac)
1087  !! residence times in carbon pools (days)
1088  REAL(r_std), SAVE :: carbon_tau_iactive = 0.149   !! residence times in active pool (days)
1089!$OMP THREADPRIVATE(carbon_tau_iactive)
1090  REAL(r_std), SAVE :: carbon_tau_islow = 7.0       !! residence times in slow pool (days)
1091!$OMP THREADPRIVATE(carbon_tau_islow)
1092  REAL(r_std), SAVE :: carbon_tau_ipassive = 300.   !! residence times in passive pool (days)
1093!$OMP THREADPRIVATE(carbon_tau_ipassive)
1094  REAL(r_std), SAVE, DIMENSION(3) :: flux_tot_coeff = (/ 1.2, 1.4, .75/)
1095!$OMP THREADPRIVATE(flux_tot_coeff)
1096
1097  !
1098  ! stomate_turnover.f90
1099  !
1100
1101  ! 3. Coefficients of equations
1102
1103  REAL(r_std), SAVE :: new_turnover_time_ref = 20. !!(days)
1104!$OMP THREADPRIVATE(new_turnover_time_ref)
1105  REAL(r_std), SAVE :: leaf_age_crit_tref = 20.    !! (C)
1106!$OMP THREADPRIVATE(leaf_age_crit_tref)
1107  REAL(r_std), SAVE, DIMENSION(3) :: leaf_age_crit_coeff = (/ 1.5, 0.75, 10./) !! (unitless)
1108!$OMP THREADPRIVATE(leaf_age_crit_coeff)
1109
1110
1111  !
1112  ! stomate_vmax.f90
1113  !
1114 
1115  ! 1. Scalar
1116
1117  REAL(r_std), SAVE :: vmax_offset = 0.3        !! minimum leaf efficiency (unitless)
1118!$OMP THREADPRIVATE(vmax_offset)
1119  REAL(r_std), SAVE :: leafage_firstmax = 0.03  !! relative leaf age at which efficiency
1120                                                !! reaches 1 (unitless)
1121!$OMP THREADPRIVATE(leafage_firstmax)
1122  REAL(r_std), SAVE :: leafage_lastmax = 0.5    !! relative leaf age at which efficiency
1123                                                !! falls below 1 (unitless)
1124!$OMP THREADPRIVATE(leafage_lastmax)
1125  REAL(r_std), SAVE :: leafage_old = 1.         !! relative leaf age at which efficiency
1126                                                !! reaches its minimum (vmax_offset)
1127                                                !! (unitless)
1128!$OMP THREADPRIVATE(leafage_old)
1129  !
1130  ! stomate_season.f90
1131  !
1132
1133  ! 1. Scalar
1134
1135  REAL(r_std), SAVE :: gppfrac_dormance = 0.2  !! report maximal GPP/GGP_max for dormance (0-1, unitless)
1136!$OMP THREADPRIVATE(gppfrac_dormance)
1137  REAL(r_std), SAVE :: tau_climatology = 20.   !! tau for "climatologic variables (years)
1138!$OMP THREADPRIVATE(tau_climatology)
1139  REAL(r_std), SAVE :: hvc1 = 0.019            !! parameters for herbivore activity (unitless)
1140!$OMP THREADPRIVATE(hvc1)
1141  REAL(r_std), SAVE :: hvc2 = 1.38             !! parameters for herbivore activity (unitless)
1142!$OMP THREADPRIVATE(hvc2)
1143  REAL(r_std), SAVE :: leaf_frac_hvc = 0.33    !! leaf fraction (0-1, unitless)
1144!$OMP THREADPRIVATE(leaf_frac_hvc)
1145  REAL(r_std), SAVE :: tlong_ref_max = 303.1   !! maximum reference long term temperature (K)
1146!$OMP THREADPRIVATE(tlong_ref_max)
1147  REAL(r_std), SAVE :: tlong_ref_min = 253.1   !! minimum reference long term temperature (K)
1148!$OMP THREADPRIVATE(tlong_ref_min)
1149
1150  ! 3. Coefficients of equations
1151
1152  REAL(r_std), SAVE :: ncd_max_year = 3.
1153!$OMP THREADPRIVATE(ncd_max_year)
1154  REAL(r_std), SAVE :: gdd_threshold = 5.
1155!$OMP THREADPRIVATE(gdd_threshold)
1156  REAL(r_std), SAVE :: green_age_ever = 2.
1157!$OMP THREADPRIVATE(green_age_ever)
1158  REAL(r_std), SAVE :: green_age_dec = 0.5
1159!$OMP THREADPRIVATE(green_age_dec)
1160
1161END MODULE constantes_var
Note: See TracBrowser for help on using the repository browser.