Changes between Version 26 and Version 27 of Documentation/TrunkFunctionality4


Ignore:
Timestamp:
2020-03-09T20:05:27+01:00 (4 years ago)
Author:
luyssaert
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Documentation/TrunkFunctionality4

    v26 v27  
    231231ORCHIDEE trunk 4 distinguished 3 types of natural mortality. The first two options are similar to those in previous version of ORCHIDEE and are set by the flag '''constant_mortality'''. If '''constant_mortality''' = y, the background mortality of a forests is calculated as a constant, prescribed fraction. In ORCHIDEE trunk 4, this fraction is given by '''residence_time''' (see also forest management).  If '''constant_mortality''' = n, the background mortality of a forest is a function of its net primary production (npp). If npp decreases, mortality will increase.  
    232232 
    233 Both options have been developed but only '''constant_mortality''' = y has been tested in ORCHIDEE trunk 4. However, because of the introduction of self-thinning (the third type of natural mortality) in ORCHIDEE trunk 4, '''constant_mortality''' = y became the default setting. In ORCHIDEE-CN-CAN, the total mortality is the maximum of the background mortality and the mortality from self-thinning. Only if self-thinning is absent or too low, background mortality will play a role. This approach implies that when '''constant_mortality''' = y is used in combination with self-thinning, background mortality will only play a role in the first years to decade before self-thinning starts (the latest calculations of RDI - see Prescribe - the role of the background mortality has further decreased). Despite its limited use, it represents an essential process: owing to background mortality, the number of individuals decreases, the remaining individuals grow faster and thus manage to reach self-thinning in a reasonable amount of time. It needs to be tested how the interplay between background mortality and self-thinning will work out when '''constant_mortality''' = n is used. 
     233Both options have been developed but only '''constant_mortality''' = y has been tested in ORCHIDEE trunk 4. However, because of the introduction of self-thinning (the third type of natural mortality) in ORCHIDEE trunk 4, '''constant_mortality''' = y became the default setting. In ORCHIDEE trunk 4, the total mortality is the maximum of the background mortality and the mortality from self-thinning. Only if self-thinning is absent or too low, background mortality will play a role. This approach implies that when '''constant_mortality''' = y is used in combination with self-thinning, background mortality will only play a role in the first years to decade before self-thinning starts (the latest calculations of RDI - see Prescribe - the role of the background mortality has further decreased). Despite its limited use, it represents an essential process: owing to background mortality, the number of individuals decreases, the remaining individuals grow faster and thus manage to reach self-thinning in a reasonable amount of time. It needs to be tested how the interplay between background mortality and self-thinning will work out when '''constant_mortality''' = n is used. 
    234234 
    235235ORCHIDEE trunk 4 calculates the number of individuals and uses this as a criterion to initiate a stand replacing disturbance. This approach, guided by the self-thinning relationship, avoids the need for a stand-level turnover time. ORCHIDEE-CN, and ORCHIDEE-CNP still make use of stand-level turnover. Note that the meaning of residence_time is very different between the CAN branch and the trunk.  In the trunk biomass has no age and thus the residence time accounts for all forest dynamics including self-thinning, pests, diseases and windthrow. In the CAN branch, biomass does have an age and self-thinning is explicitly accounted for, hence, the residence time should be much higher as it only accounts for pest, diseases and windthrow. Even the latter is not exact because as long as those disturbances are small scale they are probably accounted for in the parametrization of self-thinning.