New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_diff_opers.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_diff_opers.tex @ 11597

Last change on this file since 11597 was 11597, checked in by nicolasmartin, 5 years ago

Continuation of coding rules application
Recovery of some sections deleted by the previous commit

File size: 23.9 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4\chapter{Diffusive Operators}
5\label{apdx:DIFFOPERS}
6
7\chaptertoc
8
9%% =================================================================================================
10\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
11\label{sec:DIFFOPERS_1}
12
13%% =================================================================================================
14\subsubsection*{In z-coordinates}
15
16In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:
17\begin{align}
18  \label{eq:DIFFOPERS_1}
19  &D^T = \frac{1}{e_1 \, e_2}      \left[
20    \left. \frac{\partial}{\partial i} \left(   \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
21    \left.
22    + \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
23    + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
24\end{align}
25
26%% =================================================================================================
27\subsubsection*{In generalized vertical coordinates}
28
29In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{eq:SCOORD_s_slope} and
30the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$.
31The diffusion operator is given by:
32
33\begin{equation}
34  \label{eq:DIFFOPERS_2}
35  D^T = \left. \nabla \right|_s \cdot
36  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
37  \;\;\text{where} \;\Re =\left( {{
38        \begin{array}{*{20}c}
39          1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\
40          0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\
41          {-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1
42                                                      ^2+\sigma_2 ^2} \hfill \\
43        \end{array}
44      }} \right)
45\end{equation}
46or in expanded form:
47\begin{align*}
48  {
49  \begin{array}{*{20}l}
50    D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i}  \left. \left[  e_2\,e_3 \, A^{lT}
51                               \left( \  \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s
52                                       -\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right\right|_\right. \\
53        &  \quad \  +   \            \left.   \frac{\partial }{\partial j}  \left. \left[  e_1\,e_3 \, A^{lT}
54                               \left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s
55                                       -\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right\right|_\right. \\
56        &  \quad \  +   \           \left.  e_1\,e_2\, \frac{\partial }{\partial s}  \left[ A^{lT} \; \left(
57                     -\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s
58                     -\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s
59                          +\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \;  \right\} .
60  \end{array}
61          }
62\end{align*}
63
64\autoref{eq:DIFFOPERS_2} is obtained from \autoref{eq:DIFFOPERS_1} without any additional assumption.
65Indeed, for the special case $k=z$ and thus $e_3 =1$,
66we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:SCOORD} and
67use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule1}.
68Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{eq:DIFFOPERS_1},
69the ($i$,$z$) and ($j$,$z$) planes are independent.
70The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without
71any loss of generality:
72
73\begin{align*}
74  {
75  \begin{array}{*{20}l}
76    D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
77         +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\
78         %
79       &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
80         -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
81       & \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
82         \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\ \\
83         %
84       &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
85       &  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
86       &  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
87  \end{array}
88  }      \\
89  %
90  {
91  \begin{array}{*{20}l}
92    \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:}
93    %
94    D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
95    & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
96    & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\
97    \\
98    &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
99    & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
100    & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
101    & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} .
102  \end{array}
103      } \\
104  {
105  \begin{array}{*{20}l}
106    %
107    \intertext{Using the same remark as just above, $D^T$ becomes:}
108    %
109   D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
110    & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
111    & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
112    & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . }
113  \end{array}
114      } \\
115  {
116  \begin{array}{*{20}l}
117    %
118    \intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
119    the two terms on the second line cancel, while
120    the third line reduces to a single vertical derivative, so it becomes:}
121  %
122    D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
123    & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\
124    %
125    \intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
126  \end{array}
127  } \\
128  %
129  {\frac{1}{e_1\,e_2\,e_3}}
130  \left( {{
131  \begin{array}{*{30}c}
132    {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
133    {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
134  \end{array}}}
135  \right)
136  \cdot \left[ {A^{lT}
137  \left( {{
138  \begin{array}{*{30}c}
139    {1} \hfill & {-\sigma_1 } \hfill \\
140    {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
141  \end{array}
142  }} \right)
143  \cdot
144  \left( {{
145  \begin{array}{*{30}c}
146    {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
147    {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
148  \end{array}
149  }}       \right) \left( T \right)} \right]
150\end{align*}
151%\addtocounter{equation}{-2}
152
153%% =================================================================================================
154\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
155\label{sec:DIFFOPERS_2}
156
157%% =================================================================================================
158\subsubsection*{In z-coordinates}
159
160The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in
161the ($i$,$j$,$k$) curvilinear coordinate system in which
162the equations of the ocean circulation model are formulated,
163takes the following form \citep{redi_JPO82}:
164
165\begin{equation}
166  \label{eq:DIFFOPERS_3}
167  \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
168  \left[ {{
169        \begin{array}{*{20}c}
170          {1+a_2 ^2 +\varepsilon a_1 ^2} \hfill & {-a_1 a_2 (1-\varepsilon)} \hfill & {-a_1 (1-\varepsilon) } \hfill \\
171          {-a_1 a_2 (1-\varepsilon) } \hfill & {1+a_1 ^2 +\varepsilon a_2 ^2} \hfill & {-a_2 (1-\varepsilon)} \hfill \\
172          {-a_1 (1-\varepsilon)} \hfill & {-a_2 (1-\varepsilon)} \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
173        \end{array}
174      }} \right]
175\end{equation}
176where ($a_1$, $a_2$) are $(-1) \times$ the isopycnal slopes in
177($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials (or
178equivalently the slopes of the geopotential surfaces in the isopycnal
179coordinate framework):
180\[
181  a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
182  \qquad , \qquad
183  a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
184  \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
185\]
186and, as before, $\epsilon = A^{vT} / A^{lT}$.
187
188In practice, $\epsilon$ is small and isopycnal slopes are generally less than $10^{-2}$ in the ocean,
189so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}. Keeping leading order terms\footnote{Apart from the (1,0)
190and (0,1) elements which are set to zero. See \citet{griffies_bk04}, section 14.1.4.1 for a discussion of this point.}:
191\begin{subequations}
192  \label{eq:DIFFOPERS_4}
193  \begin{equation}
194    \label{eq:DIFFOPERS_4a}
195    {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
196    \left[ {{
197          \begin{array}{*{20}c}
198            1 \hfill & 0 \hfill & {-a_1 } \hfill \\
199            0 \hfill & 1 \hfill & {-a_2 } \hfill \\
200            {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
201          \end{array}
202        }} \right],
203  \end{equation}
204  and the iso/dianeutral diffusive operator in $z$-coordinates is then
205  \begin{equation}
206    \label{eq:DIFFOPERS_4b}
207    D^T = \left. \nabla \right|_z \cdot
208    \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
209  \end{equation}
210\end{subequations}
211
212Physically, the full tensor \autoref{eq:DIFFOPERS_3} represents strong isoneutral diffusion on a plane parallel to
213the isoneutral surface and weak dianeutral diffusion perpendicular to this plane.
214However,
215the approximate `weak-slope' tensor \autoref{eq:DIFFOPERS_4a} represents strong diffusion along the isoneutral surface,
216with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal.
217This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor.
218The weak-slope operator therefore takes the same form, \autoref{eq:DIFFOPERS_4}, as \autoref{eq:DIFFOPERS_2},
219the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates.
220Written out explicitly,
221
222\begin{multline}
223  \label{eq:DIFFOPERS_ldfiso}
224  D^T=\frac{1}{e_1 e_2 }\left\{
225    {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
226    {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
227  \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
228\end{multline}
229
230The isopycnal diffusion operator \autoref{eq:DIFFOPERS_4},
231\autoref{eq:DIFFOPERS_ldfiso} conserves tracer quantity and dissipates its square.
232As \autoref{eq:DIFFOPERS_4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero
233(as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one:
234\[
235  \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
236  = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
237\]
238and since
239\begin{align*}
240  {
241  \begin{array}{*{20}l}
242    \nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T}
243    \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
244             \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
245             {\frac{\partial T}{\partial j}} \right)^2} \right. \\
246           &\qquad \qquad \qquad
247             { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
248           &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
249             T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
250             j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
251             +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
252           & \geq 0 .
253  \end{array}
254             }
255\end{align*}
256%\addtocounter{equation}{-1}
257the property becomes obvious.
258
259%% =================================================================================================
260\subsubsection*{In generalized vertical coordinates}
261
262Because the weak-slope operator \autoref{eq:DIFFOPERS_4},
263\autoref{eq:DIFFOPERS_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes,
264it may be transformed into generalized $s$-coordinates in the same way as
265\autoref{sec:DIFFOPERS_1} was transformed into \autoref{sec:DIFFOPERS_2}.
266The resulting operator then takes the simple form
267
268\begin{equation}
269  \label{eq:DIFFOPERS_ldfiso_s}
270  D^T = \left. \nabla \right|_s \cdot
271  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
272  \;\;\text{where} \;\Re =\left( {{
273        \begin{array}{*{20}c}
274          1 \hfill & 0 \hfill & {-r _1 } \hfill \\
275          0 \hfill & 1 \hfill & {-r _2 } \hfill \\
276          {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
277                                              ^2+r _2 ^2} \hfill \\
278        \end{array}
279      }} \right),
280\end{equation}
281
282where ($r_1$, $r_2$) are $(-1)\times$ the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions,
283relative to $s$-coordinate surfaces (or equivalently the slopes of the
284$s$-coordinate surfaces in the isopycnal coordinate framework):
285\[
286  r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
287  \qquad , \qquad
288  r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
289  \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
290\]
291
292To prove \autoref{eq:DIFFOPERS_ldfiso_s} by direct re-expression of \autoref{eq:DIFFOPERS_ldfiso} is straightforward, but laborious.
293An easier way is first to note (by reversing the derivation of \autoref{sec:DIFFOPERS_2} from \autoref{sec:DIFFOPERS_1} ) that
294the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as
295
296\begin{equation}
297  \label{eq:DIFFOPERS_5}
298  D^T = \left. \nabla \right|_\rho \cdot
299  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
300  \;\;\text{where} \;\Re =\left( {{
301        \begin{array}{*{20}c}
302          1 \hfill & 0 \hfill &0 \hfill \\
303          0 \hfill & 1 \hfill & 0 \hfill \\
304          0 \hfill & 0 \hfill & \varepsilon \hfill \\
305        \end{array}
306      }} \right).
307\end{equation}
308Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives
309\autoref{eq:DIFFOPERS_ldfiso_s} immediately.
310
311Note that the weak-slope approximation is only made in transforming from
312the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates.
313The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces,
314in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates in
315\autoref{sec:DIFFOPERS_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
316
317%% =================================================================================================
318\section{Lateral/Vertical momentum diffusive operators}
319\label{sec:DIFFOPERS_3}
320
321The second order momentum diffusion operator (Laplacian) in $z$-coordinates is found by
322applying \autoref{eq:MB_lap_vector}, the expression for the Laplacian of a vector,
323to the horizontal velocity vector:
324\begin{align*}
325  \Delta {\textbf{U}}_h
326  &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
327    \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\
328  &=\left( {{
329    \begin{array}{*{20}c}
330      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
331      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
332      {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
333    \end{array}
334  }} \right)
335  -\left( {{
336  \begin{array}{*{20}c}
337    {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
338    }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
339    u}{\partial k}} \right)} \hfill \\
340    {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
341    }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
342    }{\partial i}} \hfill \\
343    {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
344    }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
345    j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
346    \hfill \\
347  \end{array}
348  }} \right) \\ \\
349  &=\left( {{
350    \begin{array}{*{20}c}
351      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
352      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
353      0 \\
354    \end{array}
355  }} \right)
356  +\frac{1}{e_3 }
357  \left( {{
358  \begin{array}{*{20}c}
359    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
360    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
361    {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
362  \end{array}
363  }} \right)
364\end{align*}
365Using \autoref{eq:MB_div}, the definition of the horizontal divergence,
366the third component of the second vector is obviously zero and thus :
367\[
368  \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) .
369\]
370
371Note that this operator ensures a full separation between
372the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}).
373It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere.
374
375The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in
376the $z$-coordinate therefore takes the following form:
377\begin{equation}
378  \label{eq:DIFFOPERS_Lap_U}
379  {
380    \textbf{D}}^{\textbf{U}} =
381  \nabla _h \left( {A^{lm}\;\chi } \right)
382  - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
383  + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
384      \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\
385\end{equation}
386that is, in expanded form:
387\begin{align*}
388  D^{\textbf{U}}_u
389  & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
390    -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
391    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right)   ,   \\
392  D^{\textbf{U}}_v
393  & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
394    +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
395    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) .
396\end{align*}
397
398Note Bene: introducing a rotation in \autoref{eq:DIFFOPERS_Lap_U} does not lead to
399a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
400Similarly, we did not found an expression of practical use for
401the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate.
402Generally, \autoref{eq:DIFFOPERS_Lap_U} is used in both $z$- and $s$-coordinate systems,
403that is a Laplacian diffusion is applied on momentum along the coordinate directions.
404
405\onlyinsubfile{\input{../../global/epilogue}}
406
407\end{document}
Note: See TracBrowser for help on using the repository browser.