New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 30.5 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\onlyinsubfile{\makeindex}
4
5\begin{document}
6
7% ================================================================
8% Chapter Appendix A : Curvilinear s-Coordinate Equations
9% ================================================================
10\chapter{Curvilinear $s-$Coordinate Equations}
11\label{apdx:SCOORD}
12
13\chaptertoc
14
15\vfill
16\begin{figure}[b]
17\subsubsection*{Changes record}
18\begin{tabular}{l||l|m{0.65\linewidth}}
19    Release   & Author        & Modifications \\
20    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
21    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
22\end{tabular}
23\end{figure}
24
25
26\newpage
27
28% ================================================================
29% Chain rule
30% ================================================================
31\section{Chain rule for $s-$coordinates}
32\label{sec:SCOORD_chain}
33
34In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
35(\ie\ an orthogonal curvilinear coordinate in the horizontal and
36an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
37we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
38the special case $k = z$ and thus $e_3 = 1$,
39and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
40Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
41the horizontal slope of $s-$surfaces by:
42\begin{equation}
43  \label{eq:SCOORD_s_slope}
44  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
45  \quad \text{and} \quad
46  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
47\end{equation}
48
49The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
50functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
51these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
52\begin{equation}
53  \label{eq:SCOORD_s_infin_changes}
54  \begin{aligned}
55    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
56                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
57                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
58                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
59    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
60                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
61                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
62                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
63  \end{aligned}
64\end{equation}
65Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
66\begin{equation}
67  \label{eq:SCOORD_s_chain_rule1}
68      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
69      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
70    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
71      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
72\end{equation}
73The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
74(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
75$s$ and $j, t$ held constant
76\begin{equation}
77\label{eq:SCOORD_delta_s}
78\delta s|_{j,t} =
79         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
80       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
81\end{equation}
82Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
83(\autoref{eq:SCOORD_s_slope}) we obtain
84\begin{equation}
85\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
86         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
87            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
88    = - \frac{e_1 }{e_3 }\sigma_1  .
89\label{eq:SCOORD_ds_di_z}
90\end{equation}
91Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
92by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
93changes in which $i , j$ and $s$ are constant. This shows that
94\begin{equation}
95\label{eq:SCOORD_w_in_s}
96w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
97- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
98  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
99  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
100\end{equation}
101
102In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
103usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
104the model equations in the curvilinear $s-$coordinate system are:
105\begin{equation}
106  \label{eq:SCOORD_s_chain_rule2}
107  \begin{aligned}
108    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
109    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
110    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
111    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
112    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
113    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
114    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
115    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
116    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
117    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
118    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
119    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
120    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
121    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
122  \end{aligned}
123\end{equation}
124
125
126% ================================================================
127% continuity equation
128% ================================================================
129\section{Continuity equation in $s-$coordinates}
130\label{sec:SCOORD_continuity}
131
132Using (\autoref{eq:SCOORD_s_chain_rule1}) and
133the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
134the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
135obtain its expression in the curvilinear $s-$coordinate system:
136
137\begin{subequations}
138  \begin{align*}
139    {
140    \begin{array}{*{20}l}
141      \nabla \cdot {\mathrm {\mathbf U}}
142      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
143        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
144        + \frac{\partial w}{\partial z} \\ \\
145      &     = \frac{1}{e_1 \,e_2 }  \left[
146        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
147        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
148        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
149        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
150        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
151      &     = \frac{1}{e_1 \,e_2 }   \left[
152        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
153        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
154        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
155        -  \sigma_1 \frac{\partial u}{\partial s}
156        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
157      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
158        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
159        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
160        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
161        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
162      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
163        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
164        -  \sigma_1 \frac{\partial u}{\partial s}
165        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
166      %
167      \intertext{Noting that $
168      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
169      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
170      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
171      =\frac{\partial \sigma_1}{\partial s}
172      $ and $
173      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
174      =\frac{\partial \sigma_2}{\partial s}
175      $, it becomes:}
176    %
177      \nabla \cdot {\mathrm {\mathbf U}}
178      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
179        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
180        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
181      & \qquad \qquad \qquad \qquad \quad
182        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
183      \\
184      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
185        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
186        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
187        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
188    \end{array}
189        }
190  \end{align*}
191\end{subequations}
192
193Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
194Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
195and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
196one can show that the vertical velocity, $w_p$ of a point
197moving with the horizontal velocity of the fluid along an $s$ surface is given by
198\begin{equation}
199\label{eq:SCOORD_w_p}
200\begin{split}
201w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
202     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
203     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
204     = & w_s + u \sigma_1 + v \sigma_2 .
205\end{split}
206\end{equation}
207 The vertical velocity across this surface is denoted by
208\begin{equation}
209  \label{eq:SCOORD_w_s}
210  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
211\end{equation}
212Hence
213\begin{equation}
214\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
215\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
216   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
217 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
218   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
219\end{equation}
220
221Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
222our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
223\begin{equation}
224      \nabla \cdot {\mathrm {\mathbf U}} =
225         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
226        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
227        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
228        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
229        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
230\end{equation}
231
232As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
233\begin{equation}
234  \label{eq:SCOORD_sco_Continuity}
235  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
236  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
237    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
238      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
239  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
240\end{equation}
241An additional term has appeared that takes into account
242the contribution of the time variation of the vertical coordinate to the volume budget.
243
244
245% ================================================================
246% momentum equation
247% ================================================================
248\section{Momentum equation in $s-$coordinate}
249\label{sec:SCOORD_momentum}
250
251Here we only consider the first component of the momentum equation,
252the generalization to the second one being straightforward.
253
254$\bullet$ \textbf{Total derivative in vector invariant form}
255
256Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
257Its total $z-$coordinate time derivative,
258$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
259its expression in the curvilinear $s-$coordinate system:
260
261\begin{subequations}
262  \begin{align*}
263    {
264    \begin{array}{*{20}l}
265      \left. \frac{D u}{D t} \right|_z
266      &= \left. {\frac{\partial u }{\partial t}} \right|_z
267        - \left. \zeta \right|_z v
268        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
269        + w \;\frac{\partial u}{\partial z} \\ \\
270      &= \left. {\frac{\partial u }{\partial t}} \right|_z
271        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
272        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
273        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
274        +  w \;\frac{\partial u}{\partial z}      \\
275        %
276      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
277      %
278      &= \left. {\frac{\partial u }{\partial t}} \right|_z
279        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
280        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
281        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
282        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
283      & \qquad \qquad \qquad \qquad
284        {
285        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
286        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
287        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
288        } \\ \\
289      &= \left. {\frac{\partial u }{\partial t}} \right|_z
290        - \left. \zeta \right|_s \;v
291        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
292      &\qquad \qquad \qquad \quad
293        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
294        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
295        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
296        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
297      &= \left. {\frac{\partial u }{\partial t}} \right|_z
298        - \left. \zeta \right|_s \;v
299        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
300      &\qquad \qquad \qquad \quad
301        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
302        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
303        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
304      &= \left. {\frac{\partial u }{\partial t}} \right|_z
305        - \left. \zeta \right|_s \;v
306        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
307        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
308        \; \frac{\partial u}{\partial s} .  \\
309        %
310      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
311      %
312      &= \left. {\frac{\partial u }{\partial t}} \right|_z
313        - \left. \zeta \right|_s \;v
314        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
315        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
316    \end{array}
317    }
318  \end{align*}
319\end{subequations}
320%
321Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
322using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
323\[
324  {
325    \begin{array}{*{20}l}
326      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
327      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
328      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
329    \end{array}
330  }
331\]
332This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
333\ie\ the total $s-$coordinate time derivative :
334\begin{align}
335  \label{eq:SCOORD_sco_Dt_vect}
336  \left. \frac{D u}{D t} \right|_s
337  = \left. {\frac{\partial u }{\partial t}} \right|_s
338  - \left. \zeta \right|_s \;v
339  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
340  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
341\end{align}
342Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
343$z-$ and $s-$coordinates.
344This is not the case for the flux form as shown in next paragraph.
345
346$\bullet$ \textbf{Total derivative in flux form}
347
348Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
349Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
350% \begin{subequations}
351\begin{align*}
352  {
353  \begin{array}{*{20}l}
354    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
355    & -  \zeta \;v
356      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
357      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
358                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
359    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
360      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
361      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
362                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
363                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
364                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
365                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
366                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
367  \end{array}
368  }
369\end{align*}
370%
371Introducing the vertical scale factor inside the horizontal derivative of the first two terms
372(\ie\ the horizontal divergence), it becomes :
373\begin{align*}
374  {
375  \begin{array}{*{20}l}
376    % \begin{align*} {\begin{array}{*{20}l}
377    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
378    &= \left. {\frac{\partial u }{\partial t}} \right|_s
379    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
380      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
381      -  e_2 u u \frac{\partial e_3}{\partial i}
382      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
383      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
384    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
385       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
386       -  e_2 u \;\frac{\partial e_3 }{\partial i}
387       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
388       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
389    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
390       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
391    &= \left. {\frac{\partial u }{\partial t}} \right|_s
392    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
393      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
394      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
395    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
396       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
397       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
398       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
399       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
400     %
401    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
402    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
403    it becomes : }
404  %
405    &= \left. {\frac{\partial u }{\partial t}} \right|_s
406    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
407      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
408      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
409      -u  \;\frac{\partial e_1 }{\partial j}    \right)
410    \\
411  \end{array}
412  }
413\end{align*}
414which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
415\ie\ the total $s-$coordinate time derivative in flux form:
416\begin{flalign}
417  \label{eq:SCOORD_sco_Dt_flux}
418  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
419  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
420  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
421    -u  \;\frac{\partial e_1 }{\partial j}            \right).
422\end{flalign}
423which is the total time derivative expressed in the curvilinear $s-$coordinate system.
424It has the same form as in the $z-$coordinate but for
425the vertical scale factor that has appeared inside the time derivative which
426comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
427the continuity equation.
428
429$\bullet$ \textbf{horizontal pressure gradient}
430
431The horizontal pressure gradient term can be transformed as follows:
432\[
433  \begin{split}
434    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
435    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
436    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
437    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
438  \end{split}
439\]
440Applying similar manipulation to the second component and
441replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
442\begin{equation}
443  \label{eq:SCOORD_grad_p_1}
444  \begin{split}
445    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
446    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
447      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
448             %
449    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
450    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
451      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
452  \end{split}
453\end{equation}
454
455An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
456the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
457
458As in $z$-coordinate,
459the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
460Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
461and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
462The pressure is then given by:
463\[
464  \begin{split}
465    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
466    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
467  \end{split}
468\]
469Therefore, $p$ and $p_h'$ are linked through:
470\begin{equation}
471  \label{eq:SCOORD_pressure}
472  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
473\end{equation}
474and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
475\[
476  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
477\]
478
479Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
480using the definition of the density anomaly it becomes an expression in two parts:
481\begin{equation}
482  \label{eq:SCOORD_grad_p_2}
483  \begin{split}
484    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
485    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
486      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
487             %
488    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
489    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
490      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
491  \end{split}
492\end{equation}
493This formulation of the pressure gradient is characterised by the appearance of
494a term depending on the sea surface height only
495(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
496This term will be loosely termed \textit{surface pressure gradient} whereas
497the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
498the $z$-coordinate formulation.
499In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
500and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
501
502$\bullet$ \textbf{The other terms of the momentum equation}
503
504The coriolis and forcing terms as well as the the vertical physics remain unchanged as
505they involve neither time nor space derivatives.
506The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
507
508$\bullet$ \textbf{Full momentum equation}
509
510To sum up, in a curvilinear $s$-coordinate system,
511the vector invariant momentum equation solved by the model has the same mathematical expression as
512the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
513\begin{subequations}
514  \label{eq:SCOORD_dyn_vect}
515  \begin{multline}
516    \label{eq:SCOORD_PE_dyn_vect_u}
517    \frac{\partial u}{\partial t}=
518    +   \left( {\zeta +f} \right)\,v
519    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
520    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
521    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
522    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
523    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
524  \end{multline}
525  \begin{multline}
526    \label{eq:SCOORD_dyn_vect_v}
527    \frac{\partial v}{\partial t}=
528    -   \left( {\zeta +f} \right)\,u
529    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
530    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
531    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
532    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
533    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
534  \end{multline}
535\end{subequations}
536whereas the flux form momentum equation differs from it by
537the formulation of both the time derivative and the pressure gradient term:
538\begin{subequations}
539  \label{eq:SCOORD_dyn_flux}
540  \begin{multline}
541    \label{eq:SCOORD_PE_dyn_flux_u}
542    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
543    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
544    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
545          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
546    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
547    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
548    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
549  \end{multline}
550  \begin{multline}
551    \label{eq:SCOORD_dyn_flux_v}
552    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
553    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
554    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
555          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
556    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
557    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
558    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
559  \end{multline}
560\end{subequations}
561Both formulation share the same hydrostatic pressure balance expressed in terms of
562hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
563\begin{equation}
564  \label{eq:SCOORD_dyn_zph}
565  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
566\end{equation}
567
568It is important to realize that the change in coordinate system has only concerned the position on the vertical.
569It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
570($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
571in particular the pressure gradient.
572By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
573\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
574
575
576% ================================================================
577% Tracer equation
578% ================================================================
579\section{Tracer equation}
580\label{sec:SCOORD_tracer}
581
582The tracer equation is obtained using the same calculation as for the continuity equation and then
583regrouping the time derivative terms in the left hand side :
584
585\begin{multline}
586  \label{eq:SCOORD_tracer}
587  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
588  = -\frac{1}{e_1 \,e_2 \,e_3}
589  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
590    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
591  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
592  +  D^{T} +F^{T}
593\end{multline}
594
595The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
596the expression of the 3D divergence in the $s-$coordinates established above.
597
598\onlyinsubfile{\bibliography{../main/bibliography}}
599
600\onlyinsubfile{\printindex}
601
602\end{document}
Note: See TracBrowser for help on using the repository browser.