New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_LDF.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex @ 11598

Last change on this file since 11598 was 11598, checked in by nicolasmartin, 5 years ago

Add template of versioning record at the beginning of chapters

File size: 33.0 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Lateral Ocean Physics (LDF)}
6\label{chap:LDF}
7
8\thispagestyle{plain}
9
10\chaptertoc
11
12\paragraph{Changes record} ~\\
13
14{\footnotesize
15  \begin{tabularx}{\textwidth}{l||X|X}
16    Release & Author(s) & Modifications \\
17    \hline
18    {\em   4.0} & {\em ...} & {\em ...} \\
19    {\em   3.6} & {\em ...} & {\em ...} \\
20    {\em   3.4} & {\em ...} & {\em ...} \\
21    {\em <=3.4} & {\em ...} & {\em ...}
22  \end{tabularx}
23}
24
25\clearpage
26
27The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:MB_zdf} and
28their discrete formulation in \autoref{sec:TRA_ldf} and \autoref{sec:DYN_ldf}).
29In this section we further discuss each lateral physics option.
30Choosing one lateral physics scheme means for the user defining,
31(1) the type of operator used (laplacian or bilaplacian operators, or no lateral mixing term);
32(2) the direction along which the lateral diffusive fluxes are evaluated
33(model level, geopotential or isopycnal surfaces); and
34(3) the space and time variations of the eddy coefficients.
35These three aspects of the lateral diffusion are set through namelist parameters
36(see the \nam{tra_ldf}{tra\_ldf} and \nam{dyn_ldf}{dyn\_ldf} below).
37Note that this chapter describes the standard implementation of iso-neutral tracer mixing.
38Griffies's implementation, which is used if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad},
39is described in \autoref{apdx:TRIADS}
40
41%% =================================================================================================
42\section[Lateral mixing operators]{Lateral mixing operators}
43\label{sec:LDF_op}
44We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}.
45
46%% =================================================================================================
47\subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF} \& \protect\np{ln_dynldf_OFF}{ln\_dynldf\_OFF})}
48
49It is possible to run without explicit lateral diffusion on tracers (\protect\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}) and/or
50momentum (\protect\np[=.true.]{ln_dynldf_OFF}{ln\_dynldf\_OFF}). The latter option is even recommended if using the
51UBS advection scheme on momentum (\np[=.true.]{ln_dynadv_ubs}{ln\_dynadv\_ubs},
52see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes.
53
54%% =================================================================================================
55\subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln_traldf_lap}{ln\_traldf\_lap} \& \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})}
56Setting \protect\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap} and/or \protect\np[=.true.]{ln_dynldf_lap}{ln\_dynldf\_lap} enables
57a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine
58Laplacian and Bilaplacian operators for the same variable.
59
60%% =================================================================================================
61\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln_traldf_blp}{ln\_traldf\_blp} \& \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp})}
62Setting \protect\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp} and/or \protect\np[=.true.]{ln_dynldf_blp}{ln\_dynldf\_blp} enables
63a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice.
64We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed.
65
66%% =================================================================================================
67\section[Direction of lateral mixing (\textit{ldfslp.F90})]{Direction of lateral mixing (\protect\mdl{ldfslp})}
68\label{sec:LDF_slp}
69
70%%%
71\gmcomment{
72  we should emphasize here that the implementation is a rather old one.
73  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme.
74}
75
76A direction for lateral mixing has to be defined when the desired operator does not act along the model levels.
77This occurs when $(a)$ horizontal mixing is required on tracer or momentum
78(\np{ln_traldf_hor}{ln\_traldf\_hor} or \np{ln_dynldf_hor}{ln\_dynldf\_hor}) in $s$- or mixed $s$-$z$- coordinates,
79and $(b)$ isoneutral mixing is required whatever the vertical coordinate is.
80This direction of mixing is defined by its slopes in the \textbf{i}- and \textbf{j}-directions at the face of
81the cell of the quantity to be diffused.
82For a tracer, this leads to the following four slopes:
83$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}),
84while for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and
85$r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.
86
87%gm% add here afigure of the slope in i-direction
88
89%% =================================================================================================
90\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate}
91
92In $s$-coordinates, geopotential mixing (\ie\ horizontal mixing) $r_1$ and $r_2$ are the slopes between
93the geopotential and computational surfaces.
94Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when
95the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform,
96\ie\ a linear function of $z_T$, the depth of a $T$-point.
97%gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient}
98
99\begin{equation}
100  \label{eq:LDF_slp_geo}
101  \begin{aligned}
102    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)}
103    \;\delta_{i+1/2}[z_t]
104    &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t] \ \ \ \\
105    r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)}
106    \;\delta_{j+1/2} [z_t]
107    &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t] \ \ \ \\
108    r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2}
109    &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}\\
110    r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2}
111    &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}]
112  \end{aligned}
113\end{equation}
114
115%gm%  caution I'm not sure the simplification was a good idea!
116
117These slopes are computed once in \rou{ldf\_slp\_init} when \np[=.true.]{ln_sco}{ln\_sco},
118and either \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} or \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}.
119
120%% =================================================================================================
121\subsection{Slopes for tracer iso-neutral mixing}
122\label{subsec:LDF_slp_iso}
123
124In iso-neutral mixing  $r_1$ and $r_2$ are the slopes between the iso-neutral and computational surfaces.
125Their formulation does not depend on the vertical coordinate used.
126Their discrete formulation is found using the fact that the diffusive fluxes of
127locally referenced potential density (\ie\ $in situ$ density) vanish.
128So, substituting $T$ by $\rho$ in \autoref{eq:TRA_ldf_iso} and setting the diffusive fluxes in
129the three directions to zero leads to the following definition for the neutral slopes:
130
131\begin{equation}
132  \label{eq:LDF_slp_iso}
133  \begin{split}
134    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]}
135    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,i+1/2,\,k}} \\
136    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac{\delta_{j+1/2}\left[\rho \right]}
137    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,j+1/2,\,k}} \\
138    r_{1w} &= \frac{e_{3w}}{e_{1w}}\;
139    \frac{\overline{\overline{\delta_{i+1/2}[\rho]}}^{\,i,\,k+1/2}}
140    {\delta_{k+1/2}[\rho]} \\
141    r_{2w} &= \frac{e_{3w}}{e_{2w}}\;
142    \frac{\overline{\overline{\delta_{j+1/2}[\rho]}}^{\,j,\,k+1/2}}
143    {\delta_{k+1/2}[\rho]}
144  \end{split}
145\end{equation}
146
147%gm% rewrite this as the explanation is not very clear !!!
148%In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.
149
150%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters).
151
152%In the $z$-coordinate, the derivative of the  \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.
153
154As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to
155be evaluated at the same local pressure
156(which, in decibars, is approximated by the depth in meters in the model).
157Therefore \autoref{eq:LDF_slp_iso} cannot be used as such,
158but further transformation is needed depending on the vertical coordinate used:
159
160\begin{description}
161\item [$z$-coordinate with full step:] in \autoref{eq:LDF_slp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth,
162  thus the $in situ$ density can be used.
163  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$,
164  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87}
165  (see \autoref{subsec:TRA_bn2}).
166\item [$z$-coordinate with partial step:] this case is identical to the full step case except that at partial step level,
167  the \emph{horizontal} density gradient is evaluated as described in \autoref{sec:TRA_zpshde}.
168\item [$s$- or hybrid $s$-$z$- coordinate:] in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if
169  the Griffies scheme is used (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad};
170  see \autoref{apdx:TRIADS}).
171  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state
172  (\np[=.true.]{ln_seos}{ln\_seos}).
173  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso}
174  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes.
175
176%gm%
177  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for
178  the constraint on iso-neutral fluxes.
179  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of
180  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between
181  the neutral direction diffusive fluxes of potential temperature and salinity:
182  \[
183    \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S)
184  \]
185  % gm{  where vector F is ....}
186
187This constraint leads to the following definition for the slopes:
188
189\[
190  % \label{eq:LDF_slp_iso2}
191  \begin{split}
192    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac
193    {\alpha_u \;\delta_{i+1/2}[T] - \beta_u \;\delta_{i+1/2}[S]}
194    {\alpha_u \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,i+1/2,\,k}
195      -\beta_u  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,i+1/2,\,k} } \\
196    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac
197    {\alpha_v \;\delta_{j+1/2}[T] - \beta_v \;\delta_{j+1/2}[S]}
198    {\alpha_v \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,j+1/2,\,k}
199      -\beta_v  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,j+1/2,\,k} }    \\
200    r_{1w} &= \frac{e_{3w}}{e_{1w}}\; \frac
201    {\alpha_w \;\overline{\overline{\delta_{i+1/2}[T]}}^{\,i,\,k+1/2}
202      -\beta_w  \;\overline{\overline{\delta_{i+1/2}[S]}}^{\,i,\,k+1/2} }
203    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
204    r_{2w} &= \frac{e_{3w}}{e_{2w}}\; \frac
205    {\alpha_w \;\overline{\overline{\delta_{j+1/2}[T]}}^{\,j,\,k+1/2}
206      -\beta_w  \;\overline{\overline{\delta_{j+1/2}[S]}}^{\,j,\,k+1/2} }
207    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
208  \end{split}
209\]
210where $\alpha$ and $\beta$, the thermal expansion and saline contraction coefficients introduced in
211\autoref{subsec:TRA_bn2}, have to be evaluated at the three velocity points.
212In order to save computation time, they should be approximated by the mean of their values at $T$-points
213(for example in the case of $\alpha$:
214$\alpha_u=\overline{\alpha_T}^{i+1/2}$$\alpha_v=\overline{\alpha_T}^{j+1/2}$ and
215$\alpha_w=\overline{\alpha_T}^{k+1/2}$).
216
217Note that such a formulation could be also used in the $z$-coordinate and $z$-coordinate with partial steps cases.
218\end{description}
219
220This implementation is a rather old one.
221It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion.
222Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires
223a minimum background horizontal diffusion for numerical stability reasons.
224To overcome this problem, several techniques have been proposed in which the numerical schemes of
225the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}.
226Griffies's scheme is now available in \NEMO\ if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; see \autoref{apdx:TRIADS}.
227Here, another strategy is presented \citep{lazar_phd97}:
228a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of
229grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}).
230This allows an iso-neutral diffusion scheme without additional background horizontal mixing.
231This technique can be viewed as a diffusion operator that acts along large-scale
232(2~$\Delta$x) \gmcomment{2deltax doesnt seem very large scale} iso-neutral surfaces.
233The diapycnal diffusion required for numerical stability is thus minimized and its net effect on the flow is quite small when compared to the effect of an horizontal background mixing.
234
235Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,
236contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property.
237
238\begin{figure}[!ht]
239  \centering
240  \includegraphics[width=0.66\textwidth]{Fig_LDF_ZDF1}
241  \caption{Averaging procedure for isopycnal slope computation}
242  \label{fig:LDF_ZDF1}
243\end{figure}
244
245%There are three additional questions about the slope calculation.
246%First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes.
247%Second, numerical stability issues also require a bound on slopes.
248%Third, the question of boundary condition specified on slopes...
249
250%from griffies: chapter 13.1....
251
252% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04},
253% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly
254% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the
255% surface motivates this flattening of isopycnals near the surface).
256
257For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by
258the namelist scalar \np{rn_slpmax}{rn\_slpmax} (usually $1/100$) everywhere.
259This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to
260$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean
261(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface).
262\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.}
263
264\begin{figure}[!ht]
265  \centering
266  \includegraphics[width=0.66\textwidth]{Fig_eiv_slp}
267  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{
268    Vertical profile of the slope used for lateral mixing in the mixed layer:
269    \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior,
270    which has to be adjusted at the surface boundary
271    \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface:
272    wall boundary condition).
273    Nevertheless,
274    the profile between the surface zero value and the interior iso-neutral one is unknown,
275    and especially the value at the base of the mixed layer;
276    \textit{(b)} profile of slope using a linear tapering of the slope near the surface and
277    imposing a maximum slope of 1/100;
278    \textit{(c)} profile of slope actually used in \NEMO:
279    a linear decrease of the slope from zero at the surface to
280    its ocean interior value computed just below the mixed layer.
281    Note the huge change in the slope at the base of the mixed layer between
282    \textit{(b)} and \textit{(c)}.}
283  \label{fig:LDF_eiv_slp}
284\end{figure}
285
286\colorbox{yellow}{add here a discussion about the flattening of the slopes, vs tapering the coefficient.}
287
288%% =================================================================================================
289\subsection{Slopes for momentum iso-neutral mixing}
290
291The iso-neutral diffusion operator on momentum is the same as the one used on tracers but
292applied to each component of the velocity separately
293(see \autoref{eq:DYN_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}).
294The slopes between the surface along which the diffusion operator acts and the surface of computation
295($z$- or $s$-surfaces) are defined at $T$-, $f$-, and \textit{uw}- points for the $u$-component, and $T$-, $f$- and
296\textit{vw}- points for the $v$-component.
297They are computed from the slopes used for tracer diffusion,
298\ie\ \autoref{eq:LDF_slp_geo} and \autoref{eq:LDF_slp_iso}:
299
300\[
301  % \label{eq:LDF_slp_dyn}
302  \begin{aligned}
303    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\
304    &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&  r_{2t}\ &= \overline{r_{2v}}^{\,j} \\
305    &r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\
306    &r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\
307  \end{aligned}
308\]
309
310The major issue remaining is in the specification of the boundary conditions.
311The same boundary conditions are chosen as those used for lateral diffusion along model level surfaces,
312\ie\ using the shear computed along the model levels and with no additional friction at the ocean bottom
313(see \autoref{sec:LBC_coast}).
314
315%% =================================================================================================
316\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t} \& \forcode{nn_ahm_ijk_t})]{Lateral mixing coefficient (\protect\np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
317\label{sec:LDF_coef}
318
319The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}.
320The way the mixing coefficients are set in the reference version can be described as follows:
321
322%% =================================================================================================
323\subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np[=-20, -30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=-20, -30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
324
325Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model,
326the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and
327decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}.
328Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05.
329The provided fields can either be 2d (\np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}) or 3d (\np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}\np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}).
330
331\begin{table}[htb]
332  \centering
333  \begin{tabular}{|l|l|l|l|}
334    \hline
335    Namelist parameter                       & Input filename                               & dimensions & variable names                      \\  \hline
336    \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}     & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline
337    \np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$           & \forcode{ahtu_2d, ahtv_2d}    \\   \hline
338    \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}        & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline
339    \np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}     & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline
340  \end{tabular}
341  \caption{Description of expected input files if mixing coefficients are read from NetCDF files}
342  \label{tab:LDF_files}
343\end{table}
344
345%% =================================================================================================
346\subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np[=0]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=0]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
347
348If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that:
349
350\begin{equation}
351  \label{eq:LDF_constantah}
352  A_o^l = \left\{
353    \begin{aligned}
354      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\
355      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator }
356    \end{aligned}
357  \right.
358\end{equation}
359
360 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}, \np{rn_Ld}{rn\_Ld} and \np{rn_Lv}{rn\_Lv}.
361
362%% =================================================================================================
363\subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np[=10]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=10]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
364
365In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which
366the surface value is given by \autoref{eq:LDF_constantah}, the bottom value is 1/4 of the surface value,
367and the transition takes place around z=500~m with a width of 200~m.
368This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users.
369
370%% =================================================================================================
371\subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np[=20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
372
373In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and
374the type of operator used:
375\begin{equation}
376  \label{eq:LDF_title}
377  A_l = \left\{
378    \begin{aligned}
379      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\
380      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator }
381    \end{aligned}
382  \right.
383\end{equation}
384where $U_{scl}$ is a user defined velocity scale (\np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}).
385This variation is intended to reflect the lesser need for subgrid scale eddy mixing where
386the grid size is smaller in the domain.
387It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}.
388Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of
389model configurations presenting large changes in grid spacing such as global ocean models.
390Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to
391large coefficient compare to the smallest grid size (see \autoref{sec:TD_forward_imp}),
392especially when using a bilaplacian operator.
393
394\colorbox{yellow}{CASE \np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} = 21 to be added}
395
396%% =================================================================================================
397\subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np[=30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
398
399The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above,
400\ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of
401the magnitude of the coefficient.
402
403%% =================================================================================================
404\subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np[=31]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=31]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
405In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$):
406\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?}
407
408\begin{equation}
409  \label{eq:LDF_flowah}
410  A_l = \left\{
411    \begin{aligned}
412      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\
413      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator }
414    \end{aligned}
415  \right.
416\end{equation}
417
418%% =================================================================================================
419\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
420
421This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a
422characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.:
423
424\begin{equation}
425  \label{eq:LDF_smag1}
426  \begin{split}
427    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^} \\
428    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2}
429  \end{split}
430\end{equation}
431
432Introducing a user defined constant $C$ (given in the namelist as \np{rn_csmc}{rn\_csmc}), one can deduce the mixing coefficients as follows:
433
434\begin{equation}
435  \label{eq:LDF_smag2}
436  A_{smag} = \left\{
437    \begin{aligned}
438      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\
439      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator }
440    \end{aligned}
441  \right.
442\end{equation}
443
444For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:TD_forward_imp}) so that:
445\begin{equation}
446  \label{eq:LDF_smag3}
447    \begin{aligned}
448      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\
449      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator }
450    \end{aligned}
451\end{equation}
452
453where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn_minfac}{rn\_minfac} and \np{rn_maxfac}{rn\_maxfac} respectively.
454
455%% =================================================================================================
456\subsection{About space and time varying mixing coefficients}
457
458The following points are relevant when the eddy coefficient varies spatially:
459
460(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and
461divergent components of the horizontal current (see \autoref{subsec:MB_ldf}).
462Although the eddy coefficient could be set to different values in these two terms,
463this option is not currently available.
464
465(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of
466the horizontal divergence for operators acting along model-surfaces are no longer satisfied
467(\autoref{sec:INVARIANTS_dynldf_properties}).
468
469%% =================================================================================================
470\section[Eddy induced velocity (\forcode{ln_ldfeiv})]{Eddy induced velocity (\protect\np{ln_ldfeiv}{ln\_ldfeiv})}
471
472\label{sec:LDF_eiv}
473
474\begin{listing}
475  \nlst{namtra_eiv}
476  \caption{\forcode{&namtra_eiv}}
477  \label{lst:namtra_eiv}
478\end{listing}
479
480%%gm  from Triad appendix  : to be incorporated....
481\gmcomment{
482  Values of iso-neutral diffusivity and GM coefficient are set as described in \autoref{sec:LDF_coef}.
483  If none of the keys \key{traldf\_cNd}, N=1,2,3 is set (the default), spatially constant iso-neutral $A_l$ and
484  GM diffusivity $A_e$ are directly set by \np{rn_aeih_0}{rn\_aeih\_0} and \np{rn_aeiv_0}{rn\_aeiv\_0}.
485  If 2D-varying coefficients are set with \key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal
486  scale factor according to \autoref{eq:title}
487  \footnote{
488    Except in global ORCA  $0.5^{\circ}$ runs with \key{traldf\_eiv},
489    where $A_l$ is set like $A_e$ but with a minimum vale of $100\;\mathrm{m}^2\;\mathrm{s}^{-1}$
490  }.
491  In idealised setups with \key{traldf\_c2d}, $A_e$ is reduced similarly, but if \key{traldf\_eiv} is set in
492  the global configurations with \key{traldf\_c2d}, a horizontally varying $A_e$ is instead set from
493  the Held-Larichev parameterisation
494  \footnote{
495    In this case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further reduced by a factor $|f/f_{20}|$,
496    where $f_{20}$ is the value of $f$ at $20^{\circ}$~N
497  } (\mdl{ldfeiv}) and \np{rn_aeiv_0}{rn\_aeiv\_0} is ignored unless it is zero.
498}
499
500When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np[=.true.]{ln_ldfeiv}{ln\_ldfeiv}),
501an eddy induced tracer advection term is added,
502the formulation of which depends on the slopes of iso-neutral surfaces.
503Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces,
504\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinates,
505and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates.
506
507If isopycnal mixing is used in the standard way, \ie\ \np[=.false.]{ln_traldf_triad}{ln\_traldf\_triad}, the eddy induced velocity is given by:
508\begin{equation}
509  \label{eq:LDF_eiv}
510  \begin{split}
511    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\
512    v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\
513    w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + \delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\
514  \end{split}
515\end{equation}
516where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} \nam{tra_eiv}{tra\_eiv} namelist parameter.
517The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and
518added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed.
519This has been preferred to a separate computation of the advective trends associated with the eiv velocity,
520since it allows us to take advantage of all the advection schemes offered for the tracers
521(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in
522previous releases of OPA \citep{madec.delecluse.ea_NPM98}.
523This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of
524paramount importance.
525
526At the surface, lateral and bottom boundaries, the eddy induced velocity,
527and thus the advective eddy fluxes of heat and salt, are set to zero.
528The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist parameters).
529\colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added}
530
531In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}.
532
533%% =================================================================================================
534\section[Mixed layer eddies (\forcode{ln_mle})]{Mixed layer eddies (\protect\np{ln_mle}{ln\_mle})}
535\label{sec:LDF_mle}
536
537\begin{listing}
538  \nlst{namtra_mle}
539  \caption{\forcode{&namtra_mle}}
540  \label{lst:namtra_mle}
541\end{listing}
542
543If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection.
544
545\colorbox{yellow}{TBC}
546
547\onlyinsubfile{\input{../../global/epilogue}}
548
549\end{document}
Note: See TracBrowser for help on using the repository browser.