New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_LDF.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 32.7 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\onlyinsubfile{\makeindex}
4
5\begin{document}
6
7% ================================================================
8% Chapter Lateral Ocean Physics (LDF)
9% ================================================================
10\chapter{Lateral Ocean Physics (LDF)}
11\label{chap:LDF}
12
13\chaptertoc
14
15\newpage
16
17The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:MB_zdf} and
18their discrete formulation in \autoref{sec:TRA_ldf} and \autoref{sec:DYN_ldf}).
19In this section we further discuss each lateral physics option.
20Choosing one lateral physics scheme means for the user defining,
21(1) the type of operator used (laplacian or bilaplacian operators, or no lateral mixing term);
22(2) the direction along which the lateral diffusive fluxes are evaluated
23(model level, geopotential or isopycnal surfaces); and
24(3) the space and time variations of the eddy coefficients.
25These three aspects of the lateral diffusion are set through namelist parameters
26(see the \nam{tra_ldf}{tra\_ldf} and \nam{dyn_ldf}{dyn\_ldf} below).
27Note that this chapter describes the standard implementation of iso-neutral tracer mixing.
28Griffies's implementation, which is used if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad},
29is described in \autoref{apdx:TRIADS}
30
31%-----------------------------------namtra_ldf - namdyn_ldf--------------------------------------------
32
33%--------------------------------------------------------------------------------------------------------------
34
35% ================================================================
36% Lateral Mixing Operator
37% ================================================================
38\section[Lateral mixing operators]{Lateral mixing operators}
39\label{sec:LDF_op}
40We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}.
41
42\subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF} \& \protect\np{ln_dynldf_OFF}{ln\_dynldf\_OFF})}
43
44It is possible to run without explicit lateral diffusion on tracers (\protect\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}) and/or
45momentum (\protect\np[=.true.]{ln_dynldf_OFF}{ln\_dynldf\_OFF}). The latter option is even recommended if using the
46UBS advection scheme on momentum (\np[=.true.]{ln_dynadv_ubs}{ln\_dynadv\_ubs},
47see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes.
48
49\subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln_traldf_lap}{ln\_traldf\_lap} \& \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})}
50Setting \protect\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap} and/or \protect\np[=.true.]{ln_dynldf_lap}{ln\_dynldf\_lap} enables
51a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine
52Laplacian and Bilaplacian operators for the same variable.
53
54\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln_traldf_blp}{ln\_traldf\_blp} \& \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp})}
55Setting \protect\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp} and/or \protect\np[=.true.]{ln_dynldf_blp}{ln\_dynldf\_blp} enables
56a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice.
57We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed.
58
59% ================================================================
60% Direction of lateral Mixing
61% ================================================================
62\section[Direction of lateral mixing (\textit{ldfslp.F90})]{Direction of lateral mixing (\protect\mdl{ldfslp})}
63\label{sec:LDF_slp}
64
65%%%
66\gmcomment{
67  we should emphasize here that the implementation is a rather old one.
68  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme.
69}
70
71A direction for lateral mixing has to be defined when the desired operator does not act along the model levels.
72This occurs when $(a)$ horizontal mixing is required on tracer or momentum
73(\np{ln_traldf_hor}{ln\_traldf\_hor} or \np{ln_dynldf_hor}{ln\_dynldf\_hor}) in $s$- or mixed $s$-$z$- coordinates,
74and $(b)$ isoneutral mixing is required whatever the vertical coordinate is.
75This direction of mixing is defined by its slopes in the \textbf{i}- and \textbf{j}-directions at the face of
76the cell of the quantity to be diffused.
77For a tracer, this leads to the following four slopes:
78$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}),
79while for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and
80$r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.
81
82%gm% add here afigure of the slope in i-direction
83
84\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate}
85
86In $s$-coordinates, geopotential mixing (\ie\ horizontal mixing) $r_1$ and $r_2$ are the slopes between
87the geopotential and computational surfaces.
88Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when
89the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform,
90\ie\ a linear function of $z_T$, the depth of a $T$-point.
91%gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient}
92
93\begin{equation}
94  \label{eq:LDF_slp_geo}
95  \begin{aligned}
96    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)}
97    \;\delta_{i+1/2}[z_t]
98    &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t] \ \ \ \\
99    r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)}
100    \;\delta_{j+1/2} [z_t]
101    &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t] \ \ \ \\
102    r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2}
103    &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}\\
104    r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2}
105    &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}]
106  \end{aligned}
107\end{equation}
108
109%gm%  caution I'm not sure the simplification was a good idea!
110
111These slopes are computed once in \rou{ldf\_slp\_init} when \np[=.true.]{ln_sco}{ln\_sco},
112and either \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} or \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}.
113
114\subsection{Slopes for tracer iso-neutral mixing}
115\label{subsec:LDF_slp_iso}
116
117In iso-neutral mixing  $r_1$ and $r_2$ are the slopes between the iso-neutral and computational surfaces.
118Their formulation does not depend on the vertical coordinate used.
119Their discrete formulation is found using the fact that the diffusive fluxes of
120locally referenced potential density (\ie\ $in situ$ density) vanish.
121So, substituting $T$ by $\rho$ in \autoref{eq:TRA_ldf_iso} and setting the diffusive fluxes in
122the three directions to zero leads to the following definition for the neutral slopes:
123
124\begin{equation}
125  \label{eq:LDF_slp_iso}
126  \begin{split}
127    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]}
128    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,i+1/2,\,k}} \\
129    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac{\delta_{j+1/2}\left[\rho \right]}
130    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,j+1/2,\,k}} \\
131    r_{1w} &= \frac{e_{3w}}{e_{1w}}\;
132    \frac{\overline{\overline{\delta_{i+1/2}[\rho]}}^{\,i,\,k+1/2}}
133    {\delta_{k+1/2}[\rho]} \\
134    r_{2w} &= \frac{e_{3w}}{e_{2w}}\;
135    \frac{\overline{\overline{\delta_{j+1/2}[\rho]}}^{\,j,\,k+1/2}}
136    {\delta_{k+1/2}[\rho]}
137  \end{split}
138\end{equation}
139
140%gm% rewrite this as the explanation is not very clear !!!
141%In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.
142
143%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters).
144
145%In the $z$-coordinate, the derivative of the  \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.
146
147As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to
148be evaluated at the same local pressure
149(which, in decibars, is approximated by the depth in meters in the model).
150Therefore \autoref{eq:LDF_slp_iso} cannot be used as such,
151but further transformation is needed depending on the vertical coordinate used:
152
153\begin{description}
154
155\item[$z$-coordinate with full step: ]
156  in \autoref{eq:LDF_slp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth,
157  thus the $in situ$ density can be used.
158  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$,
159  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87}
160  (see \autoref{subsec:TRA_bn2}).
161
162\item[$z$-coordinate with partial step: ]
163  this case is identical to the full step case except that at partial step level,
164  the \emph{horizontal} density gradient is evaluated as described in \autoref{sec:TRA_zpshde}.
165
166\item[$s$- or hybrid $s$-$z$- coordinate: ]
167  in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if
168  the Griffies scheme is used (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad};
169  see \autoref{apdx:TRIADS}).
170  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state
171  (\np[=.true.]{ln_seos}{ln\_seos}).
172  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso}
173  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes.
174
175%gm%
176  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for
177  the constraint on iso-neutral fluxes.
178  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of
179  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between
180  the neutral direction diffusive fluxes of potential temperature and salinity:
181  \[
182    \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S)
183  \]
184  % gm{  where vector F is ....}
185
186This constraint leads to the following definition for the slopes:
187
188\[
189  % \label{eq:LDF_slp_iso2}
190  \begin{split}
191    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac
192    {\alpha_u \;\delta_{i+1/2}[T] - \beta_u \;\delta_{i+1/2}[S]}
193    {\alpha_u \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,i+1/2,\,k}
194      -\beta_u  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,i+1/2,\,k} } \\
195    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac
196    {\alpha_v \;\delta_{j+1/2}[T] - \beta_v \;\delta_{j+1/2}[S]}
197    {\alpha_v \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,j+1/2,\,k}
198      -\beta_v  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,j+1/2,\,k} }    \\
199    r_{1w} &= \frac{e_{3w}}{e_{1w}}\; \frac
200    {\alpha_w \;\overline{\overline{\delta_{i+1/2}[T]}}^{\,i,\,k+1/2}
201      -\beta_w  \;\overline{\overline{\delta_{i+1/2}[S]}}^{\,i,\,k+1/2} }
202    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
203    r_{2w} &= \frac{e_{3w}}{e_{2w}}\; \frac
204    {\alpha_w \;\overline{\overline{\delta_{j+1/2}[T]}}^{\,j,\,k+1/2}
205      -\beta_w  \;\overline{\overline{\delta_{j+1/2}[S]}}^{\,j,\,k+1/2} }
206    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\
207  \end{split}
208\]
209where $\alpha$ and $\beta$, the thermal expansion and saline contraction coefficients introduced in
210\autoref{subsec:TRA_bn2}, have to be evaluated at the three velocity points.
211In order to save computation time, they should be approximated by the mean of their values at $T$-points
212(for example in the case of $\alpha$:
213$\alpha_u=\overline{\alpha_T}^{i+1/2}$$\alpha_v=\overline{\alpha_T}^{j+1/2}$ and
214$\alpha_w=\overline{\alpha_T}^{k+1/2}$).
215
216Note that such a formulation could be also used in the $z$-coordinate and $z$-coordinate with partial steps cases.
217
218\end{description}
219
220This implementation is a rather old one.
221It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion.
222Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires
223a minimum background horizontal diffusion for numerical stability reasons.
224To overcome this problem, several techniques have been proposed in which the numerical schemes of
225the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}.
226Griffies's scheme is now available in \NEMO\ if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; see \autoref{apdx:TRIADS}.
227Here, another strategy is presented \citep{lazar_phd97}:
228a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of
229grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}).
230This allows an iso-neutral diffusion scheme without additional background horizontal mixing.
231This technique can be viewed as a diffusion operator that acts along large-scale
232(2~$\Delta$x) \gmcomment{2deltax doesnt seem very large scale} iso-neutral surfaces.
233The diapycnal diffusion required for numerical stability is thus minimized and its net effect on the flow is quite small when compared to the effect of an horizontal background mixing.
234
235Nevertheless, this iso-neutral operator does not ensure that variance cannot increase,
236contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property.
237
238%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
239\begin{figure}[!ht]
240  \centering
241  \includegraphics[width=0.66\textwidth]{Fig_LDF_ZDF1}
242  \caption{Averaging procedure for isopycnal slope computation}
243  \label{fig:LDF_ZDF1}
244\end{figure}
245%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
246
247%There are three additional questions about the slope calculation.
248%First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes.
249%Second, numerical stability issues also require a bound on slopes.
250%Third, the question of boundary condition specified on slopes...
251
252%from griffies: chapter 13.1....
253
254
255
256% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04},
257% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly
258% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the
259% surface motivates this flattening of isopycnals near the surface).
260
261For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by
262the namelist scalar \np{rn_slpmax}{rn\_slpmax} (usually $1/100$) everywhere.
263This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to
264$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean
265(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface).
266\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.}
267
268%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
269\begin{figure}[!ht]
270  \centering
271  \includegraphics[width=0.66\textwidth]{Fig_eiv_slp}
272  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{
273    Vertical profile of the slope used for lateral mixing in the mixed layer:
274    \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior,
275    which has to be adjusted at the surface boundary
276    \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface:
277    wall boundary condition).
278    Nevertheless,
279    the profile between the surface zero value and the interior iso-neutral one is unknown,
280    and especially the value at the base of the mixed layer;
281    \textit{(b)} profile of slope using a linear tapering of the slope near the surface and
282    imposing a maximum slope of 1/100;
283    \textit{(c)} profile of slope actually used in \NEMO:
284    a linear decrease of the slope from zero at the surface to
285    its ocean interior value computed just below the mixed layer.
286    Note the huge change in the slope at the base of the mixed layer between
287    \textit{(b)} and \textit{(c)}.}
288  \label{fig:LDF_eiv_slp}
289\end{figure}
290%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
291
292\colorbox{yellow}{add here a discussion about the flattening of the slopes, vs tapering the coefficient.}
293
294\subsection{Slopes for momentum iso-neutral mixing}
295
296The iso-neutral diffusion operator on momentum is the same as the one used on tracers but
297applied to each component of the velocity separately
298(see \autoref{eq:DYN_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}).
299The slopes between the surface along which the diffusion operator acts and the surface of computation
300($z$- or $s$-surfaces) are defined at $T$-, $f$-, and \textit{uw}- points for the $u$-component, and $T$-, $f$- and
301\textit{vw}- points for the $v$-component.
302They are computed from the slopes used for tracer diffusion,
303\ie\ \autoref{eq:LDF_slp_geo} and \autoref{eq:LDF_slp_iso}:
304
305\[
306  % \label{eq:LDF_slp_dyn}
307  \begin{aligned}
308    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\
309    &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&  r_{2t}\ &= \overline{r_{2v}}^{\,j} \\
310    &r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\
311    &r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\
312  \end{aligned}
313\]
314
315The major issue remaining is in the specification of the boundary conditions.
316The same boundary conditions are chosen as those used for lateral diffusion along model level surfaces,
317\ie\ using the shear computed along the model levels and with no additional friction at the ocean bottom
318(see \autoref{sec:LBC_coast}).
319
320
321% ================================================================
322% Lateral Mixing Coefficients
323% ================================================================
324\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t} \& \forcode{nn_ahm_ijk_t})]{Lateral mixing coefficient (\protect\np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
325\label{sec:LDF_coef}
326
327The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}.
328The way the mixing coefficients are set in the reference version can be described as follows:
329
330\subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np[=-20, -30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=-20, -30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
331
332Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model,
333the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and
334decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}.
335Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05.
336The provided fields can either be 2d (\np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}) or 3d (\np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}\np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}).
337
338%-------------------------------------------------TABLE---------------------------------------------------
339\begin{table}[htb]
340  \centering
341  \begin{tabular}{|l|l|l|l|}
342    \hline
343    Namelist parameter                       & Input filename                               & dimensions & variable names                      \\  \hline
344    \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}     & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline
345    \np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$           & \forcode{ahtu_2d, ahtv_2d}    \\   \hline
346    \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}        & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline
347    \np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}     & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline
348  \end{tabular}
349  \caption{Description of expected input files if mixing coefficients are read from NetCDF files}
350  \label{tab:LDF_files}
351\end{table}
352%--------------------------------------------------------------------------------------------------------------
353
354\subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np[=0]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=0]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
355
356If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that:
357
358\begin{equation}
359  \label{eq:LDF_constantah}
360  A_o^l = \left\{
361    \begin{aligned}
362      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\
363      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator }
364    \end{aligned}
365  \right.
366\end{equation}
367
368 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}, \np{rn_Ld}{rn\_Ld} and \np{rn_Lv}{rn\_Lv}.
369
370\subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np[=10]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=10]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
371
372In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which
373the surface value is given by \autoref{eq:LDF_constantah}, the bottom value is 1/4 of the surface value,
374and the transition takes place around z=500~m with a width of 200~m.
375This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users.
376
377\subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np[=20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
378
379In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and
380the type of operator used:
381\begin{equation}
382  \label{eq:LDF_title}
383  A_l = \left\{
384    \begin{aligned}
385      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\
386      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator }
387    \end{aligned}
388  \right.
389\end{equation}
390where $U_{scl}$ is a user defined velocity scale (\np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}).
391This variation is intended to reflect the lesser need for subgrid scale eddy mixing where
392the grid size is smaller in the domain.
393It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}.
394Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of
395model configurations presenting large changes in grid spacing such as global ocean models.
396Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to
397large coefficient compare to the smallest grid size (see \autoref{sec:TD_forward_imp}),
398especially when using a bilaplacian operator.
399
400\colorbox{yellow}{CASE \np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} = 21 to be added}
401
402\subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np[=30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
403
404The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above,
405\ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of
406the magnitude of the coefficient.
407
408\subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np[=31]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=31]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
409In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$):
410\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?}
411
412\begin{equation}
413  \label{eq:LDF_flowah}
414  A_l = \left\{
415    \begin{aligned}
416      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\
417      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator }
418    \end{aligned}
419  \right.
420\end{equation}
421
422\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})}
423
424This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a
425characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.:
426
427\begin{equation}
428  \label{eq:LDF_smag1}
429  \begin{split}
430    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^} \\
431    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2}
432  \end{split}
433\end{equation}
434
435Introducing a user defined constant $C$ (given in the namelist as \np{rn_csmc}{rn\_csmc}), one can deduce the mixing coefficients as follows:
436
437\begin{equation}
438  \label{eq:LDF_smag2}
439  A_{smag} = \left\{
440    \begin{aligned}
441      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\
442      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator }
443    \end{aligned}
444  \right.
445\end{equation}
446
447For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:TD_forward_imp}) so that:
448\begin{equation}
449  \label{eq:LDF_smag3}
450    \begin{aligned}
451      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\
452      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator }
453    \end{aligned}
454\end{equation}
455
456where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn_minfac}{rn\_minfac} and \np{rn_maxfac}{rn\_maxfac} respectively.
457
458\subsection{About space and time varying mixing coefficients}
459
460The following points are relevant when the eddy coefficient varies spatially:
461
462(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and
463divergent components of the horizontal current (see \autoref{subsec:MB_ldf}).
464Although the eddy coefficient could be set to different values in these two terms,
465this option is not currently available.
466
467(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of
468the horizontal divergence for operators acting along model-surfaces are no longer satisfied
469(\autoref{sec:INVARIANTS_dynldf_properties}).
470
471% ================================================================
472% Eddy Induced Mixing
473% ================================================================
474\section[Eddy induced velocity (\forcode{ln_ldfeiv})]{Eddy induced velocity (\protect\np{ln_ldfeiv}{ln\_ldfeiv})}
475
476\label{sec:LDF_eiv}
477
478%--------------------------------------------namtra_eiv---------------------------------------------------
479
480\begin{listing}
481  \nlst{namtra_eiv}
482  \caption{\forcode{&namtra_eiv}}
483  \label{lst:namtra_eiv}
484\end{listing}
485
486%--------------------------------------------------------------------------------------------------------------
487
488
489%%gm  from Triad appendix  : to be incorporated....
490\gmcomment{
491  Values of iso-neutral diffusivity and GM coefficient are set as described in \autoref{sec:LDF_coef}.
492  If none of the keys \key{traldf\_cNd}, N=1,2,3 is set (the default), spatially constant iso-neutral $A_l$ and
493  GM diffusivity $A_e$ are directly set by \np{rn_aeih_0}{rn\_aeih\_0} and \np{rn_aeiv_0}{rn\_aeiv\_0}.
494  If 2D-varying coefficients are set with \key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal
495  scale factor according to \autoref{eq:title}
496  \footnote{
497    Except in global ORCA  $0.5^{\circ}$ runs with \key{traldf\_eiv},
498    where $A_l$ is set like $A_e$ but with a minimum vale of $100\;\mathrm{m}^2\;\mathrm{s}^{-1}$
499  }.
500  In idealised setups with \key{traldf\_c2d}, $A_e$ is reduced similarly, but if \key{traldf\_eiv} is set in
501  the global configurations with \key{traldf\_c2d}, a horizontally varying $A_e$ is instead set from
502  the Held-Larichev parameterisation
503  \footnote{
504    In this case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further reduced by a factor $|f/f_{20}|$,
505    where $f_{20}$ is the value of $f$ at $20^{\circ}$~N
506  } (\mdl{ldfeiv}) and \np{rn_aeiv_0}{rn\_aeiv\_0} is ignored unless it is zero.
507}
508
509When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np[=.true.]{ln_ldfeiv}{ln\_ldfeiv}),
510an eddy induced tracer advection term is added,
511the formulation of which depends on the slopes of iso-neutral surfaces.
512Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces,
513\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinates,
514and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates.
515
516If isopycnal mixing is used in the standard way, \ie\ \np[=.false.]{ln_traldf_triad}{ln\_traldf\_triad}, the eddy induced velocity is given by:
517\begin{equation}
518  \label{eq:LDF_eiv}
519  \begin{split}
520    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\
521    v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\
522    w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + \delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\
523  \end{split}
524\end{equation}
525where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} \nam{tra_eiv}{tra\_eiv} namelist parameter.
526The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and
527added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed.
528This has been preferred to a separate computation of the advective trends associated with the eiv velocity,
529since it allows us to take advantage of all the advection schemes offered for the tracers
530(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in
531previous releases of OPA \citep{madec.delecluse.ea_NPM98}.
532This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of
533paramount importance.
534
535At the surface, lateral and bottom boundaries, the eddy induced velocity,
536and thus the advective eddy fluxes of heat and salt, are set to zero.
537The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist parameters).
538\colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added}
539
540In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}.
541
542% ================================================================
543% Mixed layer eddies
544% ================================================================
545\section[Mixed layer eddies (\forcode{ln_mle})]{Mixed layer eddies (\protect\np{ln_mle}{ln\_mle})}
546\label{sec:LDF_mle}
547
548%--------------------------------------------namtra_eiv---------------------------------------------------
549
550\begin{listing}
551  \nlst{namtra_mle}
552  \caption{\forcode{&namtra_mle}}
553  \label{lst:namtra_mle}
554\end{listing}
555
556%--------------------------------------------------------------------------------------------------------------
557
558If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection.
559
560\colorbox{yellow}{TBC}
561
562\onlyinsubfile{\bibliography{../main/bibliography}}
563
564\onlyinsubfile{\printindex}
565
566\end{document}
Note: See TracBrowser for help on using the repository browser.