New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_conservation.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex @ 11582

Last change on this file since 11582 was 11582, checked in by nicolasmartin, 5 years ago

New LaTeX commands \nam and \np to mention namelist content (step 2)
Finally convert \forcode{...} following \np{}{} into optional arg of the new command \np[]{}{}

File size: 17.8 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\onlyinsubfile{\makeindex}
4
5\begin{document}
6
7% ================================================================
8% Invariant of the Equations
9% ================================================================
10\chapter{Invariants of the Primitive Equations}
11\label{chap:CONS}
12
13\chaptertoc
14
15The continuous equations of motion have many analytic properties.
16Many quantities (total mass, energy, enstrophy, etc.) are strictly conserved in the inviscid and unforced limit,
17while ocean physics conserve the total quantities on which they act (momentum, temperature, salinity) but
18dissipate their total variance (energy, enstrophy, etc.).
19Unfortunately, the finite difference form of these equations is not guaranteed to
20retain all these important properties.
21In constructing the finite differencing schemes, we wish to ensure that
22certain integral constraints will be maintained.
23In particular, it is desirable to construct the finite difference equations so that
24horizontal kinetic energy and/or potential enstrophy of horizontally non-divergent flow,
25and variance of temperature and salinity will be conserved in the absence of dissipative effects and forcing.
26\citet{arakawa_JCP66} has first pointed out the advantage of this approach.
27He showed that if integral constraints on energy are maintained,
28the computation will be free of the troublesome "non linear" instability originally pointed out by
29\citet{phillips_TAMS59}.
30A consistent formulation of the energetic properties is also extremely important in carrying out
31long-term numerical simulations for an oceanographic model.
32Such a formulation avoids systematic errors that accumulate with time \citep{bryan_JCP97}.
33
34The general philosophy of OPA which has led to the discrete formulation presented in {\S}II.2 and II.3 is to
35choose second order non-diffusive scheme for advective terms for both dynamical and tracer equations.
36At this level of complexity, the resulting schemes are dispersive schemes.
37Therefore, they require the addition of a diffusive operator to be stable.
38The alternative is to use diffusive schemes such as upstream or flux corrected schemes.
39This last option was rejected because we prefer a complete handling of the model diffusion,
40\ie\ of the model physics rather than letting the advective scheme produces its own implicit diffusion without
41controlling the space and time structure of this implicit diffusion.
42Note that in some very specific cases as passive tracer studies, the positivity of the advective scheme is required.
43In that case, and in that case only, the advective scheme used for passive tracer is a flux correction scheme
44\citep{Marti1992?, Levy1996?, Levy1998?}.
45
46% -------------------------------------------------------------------------------------------------------------
47%       Conservation Properties on Ocean Dynamics
48% -------------------------------------------------------------------------------------------------------------
49\section{Conservation properties on ocean dynamics}
50\label{sec:CONS_Invariant_dyn}
51
52The non linear term of the momentum equations has been split into a vorticity term,
53a gradient of horizontal kinetic energy and a vertical advection term.
54Three schemes are available for the former (see {\S}~II.2) according to the CPP variable defined
55(default option\textbf{?}or \textbf{key{\_}vorenergy} or \textbf{key{\_}vorcombined} defined).
56They differ in their conservative properties (energy or enstrophy conserving scheme).
57The two latter terms preserve the total kinetic energy:
58the large scale kinetic energy is also preserved in practice.
59The remaining non-diffusive terms of the momentum equation
60(namely the hydrostatic and surface pressure gradient terms) also preserve the total kinetic energy and
61have no effect on the vorticity of the flow.
62
63\textbf{* relative, planetary and total vorticity term:}
64
65Let us define as either the relative, planetary and total potential vorticity, \ie, ?, and ?, respectively.
66The continuous formulation of the vorticity term satisfies following integral constraints:
67\[
68  % \label{eq:CONS_vor_vorticity}
69  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma
70        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0
71\]
72
73\[
74  % \label{eq:CONS_vor_enstrophy}
75  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot
76    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv}
77  =0
78\]
79
80\[
81  % \label{eq:CONS_vor_energy}
82  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0
83\]
84where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element.
85(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part.
86It means that $\varsigma^2$ is conserved for a horizontally non-divergent flow.
87(II.4.1c) is even satisfied locally since the vorticity term is orthogonal to the horizontal velocity.
88It means that the vorticity term has no contribution to the evolution of the total kinetic energy.
89(II.4.1a) is obviously always satisfied, but (II.4.1b) and (II.4.1c) cannot be satisfied simultaneously with
90a second order scheme.
91Using the symmetry or anti-symmetry properties of the operators (Eqs II.1.10 and 11),
92it can be shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c),
93while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).
94Note that the enstrophy conserving scheme on total vorticity has been chosen as the standard discrete form of
95the vorticity term.
96
97\textbf{* Gradient of kinetic energy / vertical advection}
98
99In continuous formulation, the gradient of horizontal kinetic energy has no contribution to the evolution of
100the vorticity as the curl of a gradient is zero.
101This property is satisfied locally with the discrete form of both the gradient and the curl operator we have made
102(property (II.1.9)~).
103Another continuous property is that the change of horizontal kinetic energy due to
104vertical advection is exactly balanced by the change of horizontal kinetic energy due to
105the horizontal gradient of horizontal kinetic energy:
106
107\begin{equation} \label{eq:CONS_keg_zad}
108\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial
109{\textbf{U}}_h }{\partial k}\;dv}
110\end{equation}
111
112Using the discrete form given in {\S}II.2-a and the symmetry or anti-symmetry properties of
113the mean and difference operators, \autoref{eq:CONS_keg_zad} is demonstrated in the Appendix C.
114The main point here is that satisfying \autoref{eq:CONS_keg_zad} links the choice of the discrete forms of
115the vertical advection and of the horizontal gradient of horizontal kinetic energy.
116Choosing one imposes the other.
117The discrete form of the vertical advection given in {\S}II.2-a is a direct consequence of
118formulating the horizontal kinetic energy as $1/2 \left( \overline{u^2}^i + \overline{v^2}^j \right) $ in
119the gradient term.
120
121\textbf{* hydrostatic pressure gradient term}
122
123In continuous formulation, a pressure gradient has no contribution to the evolution of the vorticity as
124the curl of a gradient is zero.
125This properties is satisfied locally with the choice of discretization we have made (property (II.1.9)~).
126In addition, when the equation of state is linear
127(\ie\ when an advective-diffusive equation for density can be derived from those of temperature and salinity)
128the change of horizontal kinetic energy due to the work of pressure forces is balanced by the change of
129potential energy due to buoyancy forces:
130
131\[
132  % \label{eq:CONS_hpg_pe}
133  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv}
134\]
135
136Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of
137the mean and difference operators, (II.4.3) is demonstrated in the Appendix C.
138The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of
139$T$-points and of the term added to the pressure gradient in $s-$coordinates: the depth of a $T$-point, $z_T$,
140is defined as the sum the vertical scale factors at $w$-points starting from the surface.
141
142\textbf{* surface pressure gradient term}
143
144In continuous formulation, the surface pressure gradient has no contribution to the evolution of vorticity.
145This properties is trivially satisfied locally as (II.2.3)
146(the equation verified by $\psi$ has been derived from the discrete formulation of the momentum equations,
147vertical sum and curl).
148Nevertheless, the $\psi$-equation is solved numerically by an iterative solver (see {\S}~III.5),
149thus the property is only satisfied with the accuracy required on the solver.
150In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of
151surface pressure forces is exactly zero:
152\[
153  % \label{eq:CONS_spg}
154  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0
155\]
156
157(II.4.4) is satisfied in discrete form only if
158the discrete barotropic streamfunction time evolution equation is given by (II.2.3) (see appendix C).
159This shows that (II.2.3) is the only way to compute the streamfunction,
160otherwise there is no guarantee that the surface pressure force work vanishes.
161
162% -------------------------------------------------------------------------------------------------------------
163%       Conservation Properties on Ocean Thermodynamics
164% -------------------------------------------------------------------------------------------------------------
165\section{Conservation properties on ocean thermodynamics}
166\label{sec:CONS_Invariant_tra}
167
168In continuous formulation, the advective terms of the tracer equations conserve the tracer content and
169the quadratic form of the tracer, \ie
170\[
171  % \label{eq:CONS_tra_tra2}
172  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
173  \;\text{and}
174  \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0
175\]
176
177The numerical scheme used ({\S}II.2-b) (equations in flux form, second order centred finite differences) satisfies
178(II.4.5) (see appendix C).
179Note that in both continuous and discrete formulations, there is generally no strict conservation of mass,
180since the equation of state is non linear with respect to $T$ and $S$.
181In practice, the mass is conserved with a very good accuracy.
182
183% -------------------------------------------------------------------------------------------------------------
184%       Conservation Properties on Momentum Physics
185% -------------------------------------------------------------------------------------------------------------
186\subsection{Conservation properties on momentum physics}
187\label{subsec:CONS_Invariant_dyn_physics}
188
189\textbf{* lateral momentum diffusion term}
190
191The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~:
192\[
193  % \label{eq:CONS_dynldf_dyn}
194  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla
195        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta
196            \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0
197\]
198
199\[
200  % \label{eq:CONS_dynldf_div}
201  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
202        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
203    \right]\;dv} =0
204\]
205
206\[
207  % \label{eq:CONS_dynldf_curl}
208  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }
209        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)}
210    \right]\;dv} \leqslant 0
211\]
212
213\[
214  % \label{eq:CONS_dynldf_curl2}
215  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot
216    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h
217        \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv}
218  \leqslant 0
219\]
220
221\[
222  % \label{eq:CONS_dynldf_div2}
223  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[
224      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(
225          {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0
226\]
227
228
229(II.4.6a) and (II.4.6b) means that the horizontal diffusion of momentum conserve both the potential vorticity and
230the divergence of the flow, while Eqs (II.4.6c) to (II.4.6e) mean that it dissipates the energy, the enstrophy and
231the square of the divergence.
232The two latter properties are only satisfied when the eddy coefficients are horizontally uniform.
233
234Using (II.1.8) and (II.1.9), and the symmetry or anti-symmetry properties of the mean and difference operators,
235it is shown that the discrete form of the lateral momentum diffusion given in
236{\S}II.2-c satisfies all the integral constraints (II.4.6) (see appendix C).
237In particular, when the eddy coefficients are horizontally uniform,
238a complete separation of vorticity and horizontal divergence fields is ensured,
239so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
240(variance of the horizontal divergence) and \textit{vice versa}.
241When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken,
242the term associated to the horizontal gradient of the divergence is zero locally.
243When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken,
244the term associated to the vertical curl of the vorticity is zero locally.
245The resulting term conserves $\chi$ and dissipates $\chi^2$ when the eddy coefficient is horizontally uniform.
246
247\textbf{* vertical momentum diffusion term}
248
249As for the lateral momentum physics, the continuous form of the vertical diffusion of
250momentum satisfies following integral constraints~:
251
252conservation of momentum, dissipation of horizontal kinetic energy
253
254\[
255  % \label{eq:CONS_dynzdf_dyn}
256  \begin{aligned}
257    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\
258    & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\
259  \end{aligned}
260\]
261conservation of vorticity, dissipation of enstrophy
262\[
263  % \label{eq:CONS_dynzdf_vor}
264  \begin{aligned}
265    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
266          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
267                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\
268    & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3
269          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm
270                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\
271  \end{aligned}
272\]
273conservation of horizontal divergence, dissipation of square of the horizontal divergence
274\[
275  % \label{eq:CONS_dynzdf_div}
276  \begin{aligned}
277    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
278            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
279          \right)} \right)\;dv} =0 \\
280    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial
281            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}}
282          \right)} \right)\;dv} \leq 0 \\
283  \end{aligned}
284\]
285
286In discrete form, all these properties are satisfied in $z$-coordinate (see Appendix C).
287In $s$-coordinates, only first order properties can be demonstrated,
288\ie\ the vertical momentum physics conserve momentum, potential vorticity, and horizontal divergence.
289
290% -------------------------------------------------------------------------------------------------------------
291%       Conservation Properties on Tracer Physics
292% -------------------------------------------------------------------------------------------------------------
293\subsection{Conservation properties on tracer physics}
294\label{subsec:CONS_Invariant_tra_physics}
295
296The numerical schemes used for tracer subgridscale physics are written in such a way that
297the heat and salt contents are conserved (equations in flux form, second order centred finite differences).
298As a form flux is used to compute the temperature and salinity,
299the quadratic form of these quantities (\ie\ their variance) globally tends to diminish.
300As for the advective term, there is generally no strict conservation of mass even if,
301in practice, the mass is conserved with a very good accuracy.
302
303\textbf{* lateral physics: }conservation of tracer, dissipation of tracer
304variance, i.e.
305
306\[
307  % \label{eq:CONS_traldf_t_t2}
308  \begin{aligned}
309    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\
310    &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\
311  \end{aligned}
312\]
313
314\textbf{* vertical physics: }conservation of tracer, dissipation of tracer variance, \ie
315
316\[
317  % \label{eq:CONS_trazdf_t_t2}
318  \begin{aligned}
319    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\
320    & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\
321  \end{aligned}
322\]
323
324Using the symmetry or anti-symmetry properties of the mean and difference operators,
325it is shown that the discrete form of tracer physics given in {\S}~II.2-c satisfies all the integral constraints
326(II.4.8) and (II.4.9) except the dissipation of the square of the tracer when non-geopotential diffusion is used
327(see appendix C).
328A discrete form of the lateral tracer physics can be derived which satisfies these last properties.
329Nevertheless, it requires a horizontal averaging of the vertical component of the lateral physics that
330prevents the use of implicit resolution in the vertical.
331It has not been implemented.
332
333\onlyinsubfile{\bibliography{../main/bibliography}}
334
335\onlyinsubfile{\printindex}
336
337\end{document}
Note: See TracBrowser for help on using the repository browser.