New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_time_domain.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex @ 11597

Last change on this file since 11597 was 11597, checked in by nicolasmartin, 5 years ago

Continuation of coding rules application
Recovery of some sections deleted by the previous commit

File size: 19.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Time Domain}
6\label{chap:TD}
7\chaptertoc
8
9% Missing things:
10%  - daymod: definition of the time domain (nit000, nitend and the calendar)
11
12\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here,
13  would help  ==> to be added}
14%%%%
15
16
17Having defined the continuous equations in \autoref{chap:MB}, we need now to choose a time discretization,
18a key feature of an ocean model as it exerts a strong influence on the structure of the computer code
19(\ie\ on its flowchart).
20In the present chapter, we provide a general description of the \NEMO\  time stepping strategy and
21the consequences for the order in which the equations are solved.
22
23%% =================================================================================================
24\section{Time stepping environment}
25\label{sec:TD_environment}
26
27The time stepping used in \NEMO\ is a three level scheme that can be represented as follows:
28\begin{equation}
29  \label{eq:TD}
30  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t - \rdt, \, t, \, t + \rdt}
31\end{equation}
32where $x$ stands for $u$, $v$, $T$ or $S$;
33RHS is the Right-Hand-Side of the corresponding time evolution equation;
34$\rdt$ is the time step;
35and the superscripts indicate the time at which a quantity is evaluated.
36Each term of the RHS is evaluated at a specific time stepping depending on the physics with which it is associated.
37
38The choice of the time stepping used for this evaluation is discussed below as well as
39the implications for starting or restarting a model simulation.
40Note that the time stepping calculation is generally performed in a single operation.
41With such a complex and nonlinear system of equations it would be dangerous to let a prognostic variable evolve in
42time for each term separately.
43
44The three level scheme requires three arrays for each prognostic variable.
45For each variable $x$ there is $x_b$ (before), $x_n$ (now) and $x_a$.
46The third array, although referred to as $x_a$ (after) in the code,
47is usually not the variable at the after time step;
48but rather it is used to store the time derivative (RHS in \autoref{eq:TD}) prior to time-stepping the equation.
49The time stepping itself is performed once at each time step where implicit vertical diffusion is computed, \ie\ in the \mdl{trazdf} and \mdl{dynzdf} modules.
50
51%% =================================================================================================
52\section{Non-diffusive part --- Leapfrog scheme}
53\label{sec:TD_leap_frog}
54
55The time stepping used for processes other than diffusion is the well-known leapfrog scheme
56\citep{mesinger.arakawa_bk76}.
57This scheme is widely used for advection processes in low-viscosity fluids.
58It is a time centred scheme, \ie\ the RHS in \autoref{eq:TD} is evaluated at time step $t$, the now time step.
59It may be used for momentum and tracer advection, pressure gradient, and Coriolis terms,
60but not for diffusion terms.
61It is an efficient method that achieves second-order accuracy with
62just one right hand side evaluation per time step.
63Moreover, it does not artificially damp linear oscillatory motion nor does it produce instability by
64amplifying the oscillations.
65These advantages are somewhat diminished by the large phase-speed error of the leapfrog scheme,
66and the unsuitability of leapfrog differencing for the representation of diffusion and Rayleigh damping processes.
67However, the scheme allows the coexistence of a numerical and a physical mode due to
68its leading third order dispersive error.
69In other words a divergence of odd and even time steps may occur.
70To prevent it, the leapfrog scheme is often used in association with a Robert-Asselin time filter
71(hereafter the LF-RA scheme).
72This filter, first designed by \citet{robert_JMSJ66} and more comprehensively studied by \citet{asselin_MWR72},
73is a kind of laplacian diffusion in time that mixes odd and even time steps:
74\begin{equation}
75  \label{eq:TD_asselin}
76  x_F^t = x^t + \gamma \, \lt[ x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt]
77\end{equation}
78where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient.
79$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (namelist parameter).
80Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp} (see \autoref{sec:TD_mLF}),
81causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}).
82The addition of a time filter degrades the accuracy of the calculation from second to first order.
83However, the second order truncation error is proportional to $\gamma$, which is small compared to 1.
84Therefore, the LF-RA is a quasi second order accurate scheme.
85The LF-RA scheme is preferred to other time differencing schemes such as predictor corrector or trapezoidal schemes,
86because the user has an explicit and simple control of the magnitude of the time diffusion of the scheme.
87When used with the 2nd order space centred discretisation of the advection terms in
88the momentum and tracer equations, LF-RA avoids implicit numerical diffusion:
89diffusion is set explicitly by the user through the Robert-Asselin
90filter parameter and the viscosity and diffusion coefficients.
91
92%% =================================================================================================
93\section{Diffusive part --- Forward or backward scheme}
94\label{sec:TD_forward_imp}
95
96The leapfrog differencing scheme is unsuitable for the representation of diffusion and damping processes.
97For a tendency $D_x$, representing a diffusion term or a restoring term to a tracer climatology
98(when present, see \autoref{sec:TRA_dmp}), a forward time differencing scheme is used :
99\[
100  %\label{eq:TD_euler}
101  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ D_x^{t - \rdt}
102\]
103
104This is diffusive in time and conditionally stable.
105The conditions for stability of second and fourth order horizontal diffusion schemes are \citep{griffies_bk04}:
106\begin{equation}
107  \label{eq:TD_euler_stability}
108  A^h <
109  \begin{cases}
110    \frac{e^2}{ 8 \, \rdt} & \text{laplacian diffusion} \\
111    \frac{e^4}{64 \, \rdt} & \text{bilaplacian diffusion}
112  \end{cases}
113\end{equation}
114where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is the mixing coefficient.
115The linear constraint \autoref{eq:TD_euler_stability} is a necessary condition, but not sufficient.
116If it is not satisfied, even mildly, then the model soon becomes wildly unstable.
117The instability can be removed by either reducing the length of the time steps or reducing the mixing coefficient.
118
119For the vertical diffusion terms, a forward time differencing scheme can be used,
120but usually the numerical stability condition imposes a strong constraint on the time step. To overcome the stability constraint, a
121backward (or implicit) time differencing scheme is used. This scheme is unconditionally stable but diffusive and can be written as follows:
122\begin{equation}
123  \label{eq:TD_imp}
124  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t + \rdt}
125\end{equation}
126
127%%gm
128%%gm   UPDATE the next paragraphs with time varying thickness ...
129%%gm
130
131This scheme is rather time consuming since it requires a matrix inversion. For example, the finite difference approximation of the temperature equation is:
132\[
133  % \label{eq:TD_imp_zdf}
134  \frac{T(k)^{t + 1} - T(k)^{t - 1}}{2 \; \rdt}
135  \equiv
136  \text{RHS} + \frac{1}{e_{3t}} \delta_k \lt[ \frac{A_w^{vT}}{e_{3w} } \delta_{k + 1/2} \lt[ T^{t + 1} \rt] \rt]
137\]
138where RHS is the right hand side of the equation except for the vertical diffusion term.
139We rewrite \autoref{eq:TD_imp} as:
140\begin{equation}
141  \label{eq:TD_imp_mat}
142  -c(k + 1) \; T^{t + 1}(k + 1) + d(k) \; T^{t + 1}(k) - \; c(k) \; T^{t + 1}(k - 1) \equiv b(k)
143\end{equation}
144where
145\begin{align*}
146  c(k) &= A_w^{vT} (k) \, / \, e_{3w} (k)     \\
147  d(k) &= e_{3t}   (k)       \, / \, (2 \rdt) + c_k + c_{k + 1}    \\
148  b(k) &= e_{3t}   (k) \; \lt( T^{t - 1}(k) \, / \, (2 \rdt) + \text{RHS} \rt)
149\end{align*}
150
151\autoref{eq:TD_imp_mat} is a linear system of equations with an associated matrix which is tridiagonal.
152Moreover,
153$c(k)$ and $d(k)$ are positive and the diagonal term is greater than the sum of the two extra-diagonal terms,
154therefore a special adaptation of the Gauss elimination procedure is used to find the solution
155(see for example \citet{richtmyer.morton_bk67}).
156
157%% =================================================================================================
158\section{Surface pressure gradient}
159\label{sec:TD_spg_ts}
160
161The leapfrog environment supports a centred in time computation of the surface pressure, \ie\ evaluated
162at \textit{now} time step. This refers to as the explicit free surface case in the code (\np[=.true.]{ln_dynspg_exp}{ln\_dynspg\_exp}).
163This choice however imposes a strong constraint on the time step which should be small enough to resolve the propagation
164of external gravity waves. As a matter of fact, one rather use in a realistic setup, a split-explicit free surface
165(\np[=.true.]{ln_dynspg_ts}{ln\_dynspg\_ts}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc
166time steps. The use of the time-splitting (in combination with non-linear free surface) imposes some constraints on the design of
167the overall flowchart, in particular to ensure exact tracer conservation (see \autoref{fig:TD_TimeStep_flowchart}).
168
169Compared to the former use of the filtered free surface in \NEMO\ v3.6 (\citet{roullet.madec_JGR00}), the use of a split-explicit free surface is advantageous
170on massively parallel computers. Indeed, no global computations are anymore required by the elliptic solver which saves a substantial amount of communication
171time. Fast barotropic motions (such as tides) are also simulated with a better accuracy.
172
173%\gmcomment{
174\begin{figure}[!t]
175  \centering
176  \includegraphics[width=0.66\textwidth]{Fig_TimeStepping_flowchart_v4}
177  \caption[Leapfrog time stepping sequence with split-explicit free surface]{
178    Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface.
179    The latter combined with non-linear free surface requires the dynamical tendency being
180    updated prior tracers tendency to ensure conservation.
181    Note the use of time integrated fluxes issued from the barotropic loop in
182    subsequent calculations of tracer advection and in the continuity equation.
183    Details about the time-splitting scheme can be found in \autoref{subsec:DYN_spg_ts}.}
184  \label{fig:TD_TimeStep_flowchart}
185\end{figure}
186%}
187
188%% =================================================================================================
189\section{Modified Leapfrog -- Asselin filter scheme}
190\label{sec:TD_mLF}
191
192Significant changes have been introduced by \cite{leclair.madec_OM09} in the LF-RA scheme in order to
193ensure tracer conservation and to allow the use of a much smaller value of the Asselin filter parameter.
194The modifications affect both the forcing and filtering treatments in the LF-RA scheme.
195
196In a classical LF-RA environment, the forcing term is centred in time,
197\ie\ it is time-stepped over a $2 \rdt$ period:
198$x^t = x^t + 2 \rdt Q^t$ where $Q$ is the forcing applied to $x$,
199and the time filter is given by \autoref{eq:TD_asselin} so that $Q$ is redistributed over several time step.
200In the modified LF-RA environment, these two formulations have been replaced by:
201\begin{gather}
202  \label{eq:TD_forcing}
203  x^{t + \rdt} = x^{t - \rdt} + \rdt \lt( Q^{t - \rdt / 2} + Q^{t + \rdt / 2} \rt\\
204  \label{eq:TD_RA}
205  x_F^t       = x^t + \gamma \, \lt( x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt)
206                    - \gamma \, \rdt \, \lt( Q^{t + \rdt / 2} - Q^{t - \rdt / 2} \rt)
207\end{gather}
208The change in the forcing formulation given by \autoref{eq:TD_forcing} (see \autoref{fig:TD_MLF_forcing})
209has a significant effect:
210the forcing term no longer excites the divergence of odd and even time steps \citep{leclair.madec_OM09}.
211% forcing seen by the model....
212This property improves the LF-RA scheme in two aspects.
213First, the LF-RA can now ensure the local and global conservation of tracers.
214Indeed, time filtering is no longer required on the forcing part.
215The influence of the Asselin filter on the forcing is explicitly removed by adding a new term in the filter
216(last term in \autoref{eq:TD_RA} compared to \autoref{eq:TD_asselin}).
217Since the filtering of the forcing was the source of non-conservation in the classical LF-RA scheme,
218the modified formulation becomes conservative \citep{leclair.madec_OM09}.
219Second, the LF-RA becomes a truly quasi -second order scheme.
220Indeed, \autoref{eq:TD_forcing} used in combination with a careful treatment of static instability
221(\autoref{subsec:ZDF_evd}) and of the TKE physics (\autoref{subsec:ZDF_tke_ene})
222(the two other main sources of time step divergence),
223allows a reduction by two orders of magnitude of the Asselin filter parameter.
224
225Note that the forcing is now provided at the middle of a time step:
226$Q^{t + \rdt / 2}$ is the forcing applied over the $[t,t + \rdt]$ time interval.
227This and the change in the time filter, \autoref{eq:TD_RA},
228allows for an exact evaluation of the contribution due to the forcing term between any two time steps,
229even if separated by only $\rdt$ since the time filter is no longer applied to the forcing term.
230
231\begin{figure}[!t]
232  \centering
233  \includegraphics[width=0.66\textwidth]{Fig_MLF_forcing}
234  \caption[Forcing integration methods for modified leapfrog (top and bottom)]{
235    Illustration of forcing integration methods.
236    (top) ''Traditional'' formulation:
237    the forcing is defined at the same time as the variable to which it is applied
238    (integer value of the time step index) and it is applied over a $2 \rdt$ period.
239    (bottom)  modified formulation:
240    the forcing is defined in the middle of the time
241    (integer and a half value of the time step index) and
242    the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over
243    a $2 \rdt$ period.}
244  \label{fig:TD_MLF_forcing}
245\end{figure}
246
247%% =================================================================================================
248\section{Start/Restart strategy}
249\label{sec:TD_rst}
250
251\begin{listing}
252  \nlst{namrun}
253  \caption{\forcode{&namrun}}
254  \label{lst:namrun}
255\end{listing}
256
257The first time step of this three level scheme when starting from initial conditions is a forward step
258(Euler time integration):
259\[
260  % \label{eq:TD_DOM_euler}
261  x^1 = x^0 + \rdt \ \text{RHS}^0
262\]
263This is done simply by keeping the leapfrog environment (\ie\ the \autoref{eq:TD} three level time stepping) but
264setting all $x^0$ (\textit{before}) and $x^1$ (\textit{now}) fields equal at the first time step and
265using half the value of a leapfrog time step ($2 \rdt$).
266
267It is also possible to restart from a previous computation, by using a restart file.
268The restart strategy is designed to ensure perfect restartability of the code:
269the user should obtain the same results to machine precision either by
270running the model for $2N$ time steps in one go,
271or by performing two consecutive experiments of $N$ steps with a restart.
272This requires saving two time levels and many auxiliary data in the restart files in machine precision.
273
274Note that the time step $\rdt$, is also saved in the restart file.
275When restarting, if the time step has been changed, or one of the prognostic variables at \textit{before} time step
276is missing, an Euler time stepping scheme is imposed. A forward initial step can still be enforced by the user by setting
277the namelist variable \np[=0]{nn_euler}{nn\_euler}. Other options to control the time integration of the model
278are defined through the  \nam{run}{run} namelist variables.
279%%%
280\gmcomment{
281add here how to force the restart to contain only one time step for operational purposes
282
283add also the idea of writing several restart for seasonal forecast : how is it done ?
284
285verify that all namelist pararmeters are truly described
286
287a word on the check of restart  .....
288}
289%%%
290
291\gmcomment{       % add a subsection here
292
293%        Time Domain
294% ------------------------------------------------------------------------------------------------------------
295%% =================================================================================================
296\subsection{Time domain}
297\label{subsec:TD_time}
298
299Options are defined through the  \nam{dom}{dom} namelist variables.
300 \colorbox{yellow}{add here a few word on nit000 and nitend}
301
302 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
303
304add a description of daymod, and the model calandar (leap-year and co)
305
306}        %% end add
307
308
309
310%%
311\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme
312
313Implicit time stepping in case of variable volume thickness.
314
315Tracer case (NB for momentum in vector invariant form take care!)
316
317\begin{flalign*}
318  &\frac{\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}}{2\rdt}
319  \equiv \text{RHS}+ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
320  \rt]      \\
321  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
322  \equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
323  \rt]      \\
324  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
325  \equiv 2\rdt \ \text{RHS}
326  + 2\rdt \ \lt\{ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2} [ T_{k +1}^{t+1} - T_k      ^{t+1} ]
327    - \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} [ T_k       ^{t+1} - T_{k -1}^{t+1} ]  \rt\}     \\
328  &\\
329  &\lt( e_{3t}\,T \rt)_k^{t+1}
330  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}                  T_{k +1}^{t+1}
331  + {2\rdt} \ \lt\{  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
332    +  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}     \rt\}   T_{k    }^{t+1}
333  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                  T_{k -1}^{t+1}      \\
334  &\equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}    \\
335  %
336\end{flalign*}
337\begin{flalign*}
338  \allowdisplaybreaks
339  \intertext{ Tracer case }
340  %
341  &  \qquad \qquad  \quad   -  {2\rdt}                  \ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
342  \qquad \qquad \qquad  \qquad  T_{k +1}^{t+1}   \\
343  &+ {2\rdt} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
344  +   \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
345  & \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\rdt} \                          \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                          \quad \ \ T_{k -1}^{t+1}
346  \ \equiv \ \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  \\
347  %
348\end{flalign*}
349\begin{flalign*}
350  \allowdisplaybreaks
351  \intertext{ Tracer content case }
352  %
353  & -  {2\rdt} \              & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_{k +1}^{t+1}}  && \  \lt( e_{3t}\,T \rt)_{k +1}^{t+1}   &\\
354  & + {2\rdt} \ \lt[ 1  \rt.+ & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_k^{t+1}}
355  + & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \lt\rt& \lt( e_{3t}\,T \rt)_{k   }^{t+1}  &\\
356  & -  {2\rdt} \               & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_{k -1}^{t+1}}     &\  \lt( e_{3t}\,T \rt)_{k -1}^{t+1}
357  \equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  &
358\end{flalign*}
359
360%%
361}
362
363\onlyinsubfile{\input{../../global/epilogue}}
364
365\end{document}
Note: See TracBrowser for help on using the repository browser.