New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in branches/2010_and_older/DEV_r2106_LOCEAN2010/DOC/TexFiles/Chapters – NEMO

source: branches/2010_and_older/DEV_r2106_LOCEAN2010/DOC/TexFiles/Chapters/Annex_B.tex @ 8554

Last change on this file since 8554 was 1223, checked in by gm, 16 years ago

minor corrections in the Appendix from Steven see ticket #282

  • Property svn:executable set to *
File size: 18.1 KB
Line 
1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
8% ================================================================
9% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
10% ================================================================
11\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
12\label{Apdx_B_1}
13
14
15In the $z$-coordinate, the horizontal/vertical second order tracer diffusion operator
16is given by:
17\begin{multline} \label{Apdx_B1}
18 D^T = \frac{1}{e_1 \, e_2}      \left[
19  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.          \\
20                       \left.
21+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]         
22+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
23\end{multline}
24
25In the $s$-coordinate, we defined the slopes of $s$-surfaces, $\sigma_1$ and
26$\sigma_2$ by (!!!A.1!!!) and the vertical/horizontal ratio of diffusion coefficient
27by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by:
28
29\begin{equation} \label{Apdx_B2}
30D^T = \left. \nabla \right|_s \cdot 
31           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
32\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
33 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
34 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
35 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
36^2+\sigma _2 ^2} \hfill \\
37\end{array} }} \right)
38\end{equation}
39or in expanded form:
40\begin{multline} \label{Apdx_B3}
41D^T=\frac{1}{e_1\,e_2\,e_3 }\;\left[ {\quad \; \; e_2\,e_3\,A^{lT} \;\left.
42{\frac{\partial }{\partial i}\left( {\frac{1}{e_1 }\;\left. {\frac{\partial 
43T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial 
44T}{\partial s}} \right)} \right|_s } \right\\
45+e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
46 \;\;+e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. \; \\
47\shoveright{\;\;\left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;\,} \right]} 
48\end{multline}
49
50Equation \eqref{Apdx_B2} (or equivalently \eqref{Apdx_B3}) is obtained from
51\eqref{Apdx_B1} without any additional assumption. Indeed, for the special
52case $k=z$ and thus $e_3 =1$, we introduce an arbitrary vertical coordinate
53$s = s (i,j,z)$ as in Appendix~\ref{Apdx_A} and use \eqref{Apdx_A_s_slope} 
54and \eqref{Apdx_A_s_chain_rule}. Since no cross horizontal derivative
55$\partial _i \partial _j $ appears in \eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$)
56planes are independent. The derivation can then be demonstrated for the
57($i$,$z$)~$\to$~($j$,$s$) transformation without any loss of generality:
58
59\begin{equation*}
60D^T=\frac{1}{e_1\,e_2 }\left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)        \qquad  \qquad  \qquad  \qquad \qquad  \qquad \qquad     \\
61\end{equation*}
62\begin{multline*}
63 =\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 
64 \left. { -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]   
65\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \\ 
66\end{multline*}
67\begin{multline*}
68 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1
69}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 
70 \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left(
71{\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
72 \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;} \right] }\\ 
73\end{multline*}
74
75Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:
76
77\begin{multline*}
78 =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left.
79-\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
80\qquad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
81\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
82\end{multline*}
83\begin{multline*}
84 =\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial 
85i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
86 \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
87-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
88\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
89\end{multline*}
90using the same remark as just above, it becomes:
91\begin{multline*}
92= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
93+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
94-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
95\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
96\end{multline*}
97
98Since the horizontal scale factors do not depend on the vertical coordinate,
99the last term of the first line and the first term of the last line cancel, while
100the second line reduces to a single vertical derivative, so it becomes:
101
102\begin{multline*}
103 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
104 \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
105\end{multline*}
106
107in other words, the horizontal Laplacian operator in the ($i$,$s$) plane takes the following form :
108
109\begin{equation*}
110D^T = {\frac{1}{e_1\,e_2\,e_3}}
111\left( {{\begin{array}{*{30}c}
112{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
113{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
114\end{array}}}\right)
115\cdot \left[ {A^{lT}
116\left( {{\begin{array}{*{30}c}
117 {1} \hfill & {-\sigma_1 } \hfill \\
118 {-\sigma_1} \hfill & {\varepsilon_1^2} \hfill \\
119\end{array} }} \right)
120\cdot 
121\left( {{\begin{array}{*{30}c}
122{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
123{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
124\end{array}}}
125\right) \left( T \right)} \right]
126\end{equation*}
127 
128
129% ================================================================
130% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
131% ================================================================
132\section{Iso/diapycnal 2nd Order Tracer Diffusive Operators}
133\label{Apdx_B_2}
134
135
136The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the ($i$,$j$,$k$)
137curvilinear coordinate system in which the equations of the ocean circulation model are
138formulated, takes the following form \citep{Redi_JPO82}:
139
140\begin{equation*}
141\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
142\left[ {{\begin{array}{*{20}c}
143 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
144 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
145 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
146\end{array} }} \right]
147\end{equation*}
148where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions:
149\begin{equation*}
150a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
151\qquad , \qquad
152a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 
153\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
154\end{equation*}
155
156In practice, the isopycnal slopes are generally less than $10^{-2}$ in the ocean, so
157$\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
158\begin{equation*}
159{\textbf{A}_{\textbf{I}}} \approx A^{lT}
160\left[ {{\begin{array}{*{20}c}
161 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
162 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
163 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
164\end{array} }} \right]
165\end{equation*}
166
167The resulting isopycnal operator conserves the quantity and dissipates its square.
168The demonstration of the first property is trivial as \eqref{Apdx_B2} is the divergence
169of fluxes. Let us demonstrate the second one:
170\begin{equation*}
171\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
172\end{equation*}
173since
174\begin{align*}
175 \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 
176\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
177\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
178{\frac{\partial T}{\partial j}} \right)^2} \right. \\ 
179&\qquad \qquad \qquad \quad
180{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial 
181k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} 
182\right)^2} \right]} \\
183&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]\quad \geq 0
184\end{align*}
185the property becomes obvious.
186
187The resulting diffusion operator in $z$-coordinate has the following form :
188\begin{multline*} \label{Apdx_B_ldfiso}
189 D^T=\frac{1}{e_1 e_2 }\left\{ {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2 }{e_1 }\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right.\;\; \\ 
190 \;\left. {\;\;\;+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1 }{e_2 }\frac{\partial T}{\partial j}-a_2 \frac{e_1 }{e_3 }\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
191\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\ 
192\end{multline*}
193
194It has to be emphasised that the simplification introduced, leads to a decoupling
195between ($i$,$z$) and ($j$,$z$) planes. The operator has therefore the same
196expression as \eqref{Apdx_B3}, the diffusion operator obtained for geopotential
197diffusion in the $s$-coordinate.
198
199% ================================================================
200% Lateral/Vertical Momentum Diffusive Operators
201% ================================================================
202\section{Lateral/Vertical Momentum Diffusive Operators}
203\label{Apdx_B_3}
204
205The second order momentum diffusion operator (Laplacian) in the $z$-coordinate
206is found by applying \eqref{Eq_PE_lap_vector}, the expression for the Laplacian
207of a vector,  to the horizontal velocity vector :
208\begin{align*}
209\Delta {\textbf{U}}_h
210&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
211\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
212\\
213&=\left( {{\begin{array}{*{20}c}
214 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
215 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
216 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
217\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
218 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
219}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 
220u}{\partial k}} \right)} \hfill \\
221 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
222}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 
223}{\partial i}} \hfill \\
224 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
225}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 
226j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 
227\hfill \\
228\end{array} }} \right)
229\\
230\\
231&=\left( {{\begin{array}{*{20}c}
232{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
233{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
2340 \\
235\end{array} }} \right)
236+\frac{1}{e_3 }
237\left( {{\begin{array}{*{20}c}
238{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
239{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
240{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
241\end{array} }} \right)
242\end{align*}
243Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third
244componant of the second vector is obviously zero and thus :
245\begin{equation*}
246\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
247\end{equation*}
248
249Note that this operator ensures a full separation between the vorticity and horizontal
250divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian
251applied to each component in Cartesian coordinates, not on the sphere.
252
253The horizontal/vertical second order (Laplacian type) operator used to diffuse
254horizontal momentum in the $z$-coordinate therefore takes the following form :
255\begin{equation} \label{Apdx_B_Lap_U}
256 {\textbf{D}}^{\textbf{U}} =
257     \nabla _h \left( {A^{lm}\;\chi } \right)
258   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
259   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
260            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 
261\end{equation}
262that is, in expanded form:
263\begin{align*}
264D^{\textbf{U}}_u
265& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
266     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
267     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
268D^{\textbf{U}}_v   
269& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
270     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
271     +\frac{1}{e_3} \frac{\partial v}{\partial k}
272\end{align*}
273
274Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to a
275useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
276Similarly, we did not found an expression of practical use for the geopotential
277horizontal/vertical Laplacian operator in the $s$-coordinate. Generally,
278\eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate systems, that is
279a Laplacian diffusion is applied on momentum along the coordinate directions.
Note: See TracBrowser for help on using the repository browser.