New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
sbccpl.F90 in branches/2015/nemo_v3_6_STABLE/NEMOGCM/NEMO/OPA_SRC/SBC – NEMO

source: branches/2015/nemo_v3_6_STABLE/NEMOGCM/NEMO/OPA_SRC/SBC/sbccpl.F90 @ 7494

Last change on this file since 7494 was 7494, checked in by timgraham, 7 years ago

Addition of extra diagnostic outputs in CMIP6 data request. NB. Will require update to field_def file from shaconemo

  • Property svn:keywords set to Id
File size: 127.2 KB
Line 
1MODULE sbccpl
2   !!======================================================================
3   !!                       ***  MODULE  sbccpl  ***
4   !! Surface Boundary Condition :  momentum, heat and freshwater fluxes in coupled mode
5   !!======================================================================
6   !! History :  2.0  ! 2007-06  (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod
7   !!            3.0  ! 2008-02  (G. Madec, C Talandier)  surface module
8   !!            3.1  ! 2009_02  (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface
9   !!            3.4  ! 2011_11  (C. Harris) more flexibility + multi-category fields
10   !!----------------------------------------------------------------------
11   !!----------------------------------------------------------------------
12   !!   namsbc_cpl      : coupled formulation namlist
13   !!   sbc_cpl_init    : initialisation of the coupled exchanges
14   !!   sbc_cpl_rcv     : receive fields from the atmosphere over the ocean (ocean only)
15   !!                     receive stress from the atmosphere over the ocean (ocean-ice case)
16   !!   sbc_cpl_ice_tau : receive stress from the atmosphere over ice
17   !!   sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice
18   !!   sbc_cpl_snd     : send     fields to the atmosphere
19   !!----------------------------------------------------------------------
20   USE dom_oce         ! ocean space and time domain
21   USE sbc_oce         ! Surface boundary condition: ocean fields
22   USE sbc_ice         ! Surface boundary condition: ice fields
23   USE sbcapr
24   USE sbcdcy          ! surface boundary condition: diurnal cycle
25   USE phycst          ! physical constants
26#if defined key_lim3
27   USE ice             ! ice variables
28#endif
29#if defined key_lim2
30   USE par_ice_2       ! ice parameters
31   USE ice_2           ! ice variables
32#endif
33   USE cpl_oasis3      ! OASIS3 coupling
34   USE geo2ocean       !
35   USE oce   , ONLY : tsn, un, vn, sshn, ub, vb, sshb, fraqsr_1lev
36   USE albedo          !
37   USE in_out_manager  ! I/O manager
38   USE iom             ! NetCDF library
39   USE lib_mpp         ! distribued memory computing library
40   USE wrk_nemo        ! work arrays
41   USE timing          ! Timing
42   USE lbclnk          ! ocean lateral boundary conditions (or mpp link)
43   USE eosbn2
44   USE sbcrnf   , ONLY : l_rnfcpl
45#if defined key_cpl_carbon_cycle
46   USE p4zflx, ONLY : oce_co2
47#endif
48#if defined key_cice
49   USE ice_domain_size, only: ncat
50#endif
51#if defined key_lim3
52   USE limthd_dh       ! for CALL lim_thd_snwblow
53#endif
54
55   IMPLICIT NONE
56   PRIVATE
57
58   PUBLIC   sbc_cpl_init       ! routine called by sbcmod.F90
59   PUBLIC   sbc_cpl_rcv        ! routine called by sbc_ice_lim(_2).F90
60   PUBLIC   sbc_cpl_snd        ! routine called by step.F90
61   PUBLIC   sbc_cpl_ice_tau    ! routine called by sbc_ice_lim(_2).F90
62   PUBLIC   sbc_cpl_ice_flx    ! routine called by sbc_ice_lim(_2).F90
63   PUBLIC   sbc_cpl_alloc      ! routine called in sbcice_cice.F90
64
65   INTEGER, PARAMETER ::   jpr_otx1   =  1            ! 3 atmosphere-ocean stress components on grid 1
66   INTEGER, PARAMETER ::   jpr_oty1   =  2            !
67   INTEGER, PARAMETER ::   jpr_otz1   =  3            !
68   INTEGER, PARAMETER ::   jpr_otx2   =  4            ! 3 atmosphere-ocean stress components on grid 2
69   INTEGER, PARAMETER ::   jpr_oty2   =  5            !
70   INTEGER, PARAMETER ::   jpr_otz2   =  6            !
71   INTEGER, PARAMETER ::   jpr_itx1   =  7            ! 3 atmosphere-ice   stress components on grid 1
72   INTEGER, PARAMETER ::   jpr_ity1   =  8            !
73   INTEGER, PARAMETER ::   jpr_itz1   =  9            !
74   INTEGER, PARAMETER ::   jpr_itx2   = 10            ! 3 atmosphere-ice   stress components on grid 2
75   INTEGER, PARAMETER ::   jpr_ity2   = 11            !
76   INTEGER, PARAMETER ::   jpr_itz2   = 12            !
77   INTEGER, PARAMETER ::   jpr_qsroce = 13            ! Qsr above the ocean
78   INTEGER, PARAMETER ::   jpr_qsrice = 14            ! Qsr above the ice
79   INTEGER, PARAMETER ::   jpr_qsrmix = 15 
80   INTEGER, PARAMETER ::   jpr_qnsoce = 16            ! Qns above the ocean
81   INTEGER, PARAMETER ::   jpr_qnsice = 17            ! Qns above the ice
82   INTEGER, PARAMETER ::   jpr_qnsmix = 18
83   INTEGER, PARAMETER ::   jpr_rain   = 19            ! total liquid precipitation (rain)
84   INTEGER, PARAMETER ::   jpr_snow   = 20            ! solid precipitation over the ocean (snow)
85   INTEGER, PARAMETER ::   jpr_tevp   = 21            ! total evaporation
86   INTEGER, PARAMETER ::   jpr_ievp   = 22            ! solid evaporation (sublimation)
87   INTEGER, PARAMETER ::   jpr_sbpr   = 23            ! sublimation - liquid precipitation - solid precipitation
88   INTEGER, PARAMETER ::   jpr_semp   = 24            ! solid freshwater budget (sublimation - snow)
89   INTEGER, PARAMETER ::   jpr_oemp   = 25            ! ocean freshwater budget (evap - precip)
90   INTEGER, PARAMETER ::   jpr_w10m   = 26            ! 10m wind
91   INTEGER, PARAMETER ::   jpr_dqnsdt = 27            ! d(Q non solar)/d(temperature)
92   INTEGER, PARAMETER ::   jpr_rnf    = 28            ! runoffs
93   INTEGER, PARAMETER ::   jpr_cal    = 29            ! calving
94   INTEGER, PARAMETER ::   jpr_taum   = 30            ! wind stress module
95   INTEGER, PARAMETER ::   jpr_co2    = 31
96   INTEGER, PARAMETER ::   jpr_topm   = 32            ! topmeltn
97   INTEGER, PARAMETER ::   jpr_botm   = 33            ! botmeltn
98   INTEGER, PARAMETER ::   jpr_sflx   = 34            ! salt flux
99   INTEGER, PARAMETER ::   jpr_toce   = 35            ! ocean temperature
100   INTEGER, PARAMETER ::   jpr_soce   = 36            ! ocean salinity
101   INTEGER, PARAMETER ::   jpr_ocx1   = 37            ! ocean current on grid 1
102   INTEGER, PARAMETER ::   jpr_ocy1   = 38            !
103   INTEGER, PARAMETER ::   jpr_ssh    = 39            ! sea surface height
104   INTEGER, PARAMETER ::   jpr_fice   = 40            ! ice fraction         
105   INTEGER, PARAMETER ::   jpr_e3t1st = 41            ! first T level thickness
106   INTEGER, PARAMETER ::   jpr_fraqsr = 42            ! fraction of solar net radiation absorbed in the first ocean level
107   INTEGER, PARAMETER ::   jprcv      = 42            ! total number of fields received
108
109   INTEGER, PARAMETER ::   jps_fice   =  1            ! ice fraction sent to the atmosphere
110   INTEGER, PARAMETER ::   jps_toce   =  2            ! ocean temperature
111   INTEGER, PARAMETER ::   jps_tice   =  3            ! ice   temperature
112   INTEGER, PARAMETER ::   jps_tmix   =  4            ! mixed temperature (ocean+ice)
113   INTEGER, PARAMETER ::   jps_albice =  5            ! ice   albedo
114   INTEGER, PARAMETER ::   jps_albmix =  6            ! mixed albedo
115   INTEGER, PARAMETER ::   jps_hice   =  7            ! ice  thickness
116   INTEGER, PARAMETER ::   jps_hsnw   =  8            ! snow thickness
117   INTEGER, PARAMETER ::   jps_ocx1   =  9            ! ocean current on grid 1
118   INTEGER, PARAMETER ::   jps_ocy1   = 10            !
119   INTEGER, PARAMETER ::   jps_ocz1   = 11            !
120   INTEGER, PARAMETER ::   jps_ivx1   = 12            ! ice   current on grid 1
121   INTEGER, PARAMETER ::   jps_ivy1   = 13            !
122   INTEGER, PARAMETER ::   jps_ivz1   = 14            !
123   INTEGER, PARAMETER ::   jps_co2    = 15
124   INTEGER, PARAMETER ::   jps_soce   = 16            ! ocean salinity
125   INTEGER, PARAMETER ::   jps_ssh    = 17            ! sea surface height
126   INTEGER, PARAMETER ::   jps_qsroce = 18            ! Qsr above the ocean
127   INTEGER, PARAMETER ::   jps_qnsoce = 19            ! Qns above the ocean
128   INTEGER, PARAMETER ::   jps_oemp   = 20            ! ocean freshwater budget (evap - precip)
129   INTEGER, PARAMETER ::   jps_sflx   = 21            ! salt flux
130   INTEGER, PARAMETER ::   jps_otx1   = 22            ! 2 atmosphere-ocean stress components on grid 1
131   INTEGER, PARAMETER ::   jps_oty1   = 23            !
132   INTEGER, PARAMETER ::   jps_rnf    = 24            ! runoffs
133   INTEGER, PARAMETER ::   jps_taum   = 25            ! wind stress module
134   INTEGER, PARAMETER ::   jps_fice2  = 26            ! ice fraction sent to OPA (by SAS when doing SAS-OPA coupling)
135   INTEGER, PARAMETER ::   jps_e3t1st = 27            ! first level depth (vvl)
136   INTEGER, PARAMETER ::   jps_fraqsr = 28            ! fraction of solar net radiation absorbed in the first ocean level
137   INTEGER, PARAMETER ::   jpsnd      = 28            ! total number of fields sended
138
139   !                                                         !!** namelist namsbc_cpl **
140   TYPE ::   FLD_C
141      CHARACTER(len = 32) ::   cldes                  ! desciption of the coupling strategy
142      CHARACTER(len = 32) ::   clcat                  ! multiple ice categories strategy
143      CHARACTER(len = 32) ::   clvref                 ! reference of vector ('spherical' or 'cartesian')
144      CHARACTER(len = 32) ::   clvor                  ! orientation of vector fields ('eastward-northward' or 'local grid')
145      CHARACTER(len = 32) ::   clvgrd                 ! grids on which is located the vector fields
146   END TYPE FLD_C
147   ! Send to the atmosphere                           !
148   TYPE(FLD_C) ::   sn_snd_temp, sn_snd_alb, sn_snd_thick, sn_snd_crt, sn_snd_co2                       
149   ! Received from the atmosphere                     !
150   TYPE(FLD_C) ::   sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_dqnsdt, sn_rcv_qsr, sn_rcv_qns, sn_rcv_emp, sn_rcv_rnf
151   TYPE(FLD_C) ::   sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2                       
152   ! Other namelist parameters                        !
153   INTEGER     ::   nn_cplmodel            ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
154   LOGICAL     ::   ln_usecplmask          !  use a coupling mask file to merge data received from several models
155                                           !   -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
156   TYPE ::   DYNARR     
157      REAL(wp), POINTER, DIMENSION(:,:,:)    ::   z3   
158   END TYPE DYNARR
159
160   TYPE( DYNARR ), SAVE, DIMENSION(jprcv) ::   frcv                      ! all fields recieved from the atmosphere
161
162   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   albedo_oce_mix     ! ocean albedo sent to atmosphere (mix clear/overcast sky)
163
164   INTEGER , ALLOCATABLE, SAVE, DIMENSION(    :) ::   nrcvinfo           ! OASIS info argument
165
166   !! Substitution
167#  include "domzgr_substitute.h90"
168#  include "vectopt_loop_substitute.h90"
169   !!----------------------------------------------------------------------
170   !! NEMO/OPA 3.3 , NEMO Consortium (2010)
171   !! $Id$
172   !! Software governed by the CeCILL licence     (NEMOGCM/NEMO_CeCILL.txt)
173   !!----------------------------------------------------------------------
174
175CONTAINS
176 
177   INTEGER FUNCTION sbc_cpl_alloc()
178      !!----------------------------------------------------------------------
179      !!             ***  FUNCTION sbc_cpl_alloc  ***
180      !!----------------------------------------------------------------------
181      INTEGER :: ierr(3)
182      !!----------------------------------------------------------------------
183      ierr(:) = 0
184      !
185      ALLOCATE( albedo_oce_mix(jpi,jpj), nrcvinfo(jprcv),  STAT=ierr(1) )
186     
187#if ! defined key_lim3 && ! defined key_lim2 && ! defined key_cice
188      ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) )  ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init)
189#endif
190      ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) )
191      !
192      sbc_cpl_alloc = MAXVAL( ierr )
193      IF( lk_mpp            )   CALL mpp_sum ( sbc_cpl_alloc )
194      IF( sbc_cpl_alloc > 0 )   CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed')
195      !
196   END FUNCTION sbc_cpl_alloc
197
198
199   SUBROUTINE sbc_cpl_init( k_ice )     
200      !!----------------------------------------------------------------------
201      !!             ***  ROUTINE sbc_cpl_init  ***
202      !!
203      !! ** Purpose :   Initialisation of send and received information from
204      !!                the atmospheric component
205      !!
206      !! ** Method  : * Read namsbc_cpl namelist
207      !!              * define the receive interface
208      !!              * define the send    interface
209      !!              * initialise the OASIS coupler
210      !!----------------------------------------------------------------------
211      INTEGER, INTENT(in) ::   k_ice       ! ice management in the sbc (=0/1/2/3)
212      !!
213      INTEGER ::   jn   ! dummy loop index
214      INTEGER ::   ios  ! Local integer output status for namelist read
215      INTEGER ::   inum 
216      REAL(wp), POINTER, DIMENSION(:,:) ::   zacs, zaos
217      !!
218      NAMELIST/namsbc_cpl/  sn_snd_temp, sn_snd_alb   , sn_snd_thick, sn_snd_crt   , sn_snd_co2,      &
219         &                  sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau  , sn_rcv_dqnsdt, sn_rcv_qsr,      &
220         &                  sn_rcv_qns , sn_rcv_emp   , sn_rcv_rnf  , sn_rcv_cal   , sn_rcv_iceflx,   &
221         &                  sn_rcv_co2 , nn_cplmodel  , ln_usecplmask
222      !!---------------------------------------------------------------------
223      !
224      IF( nn_timing == 1 )  CALL timing_start('sbc_cpl_init')
225      !
226      CALL wrk_alloc( jpi,jpj, zacs, zaos )
227
228      ! ================================ !
229      !      Namelist informations       !
230      ! ================================ !
231
232      REWIND( numnam_ref )              ! Namelist namsbc_cpl in reference namelist : Variables for OASIS coupling
233      READ  ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901)
234901   IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist', lwp )
235
236      REWIND( numnam_cfg )              ! Namelist namsbc_cpl in configuration namelist : Variables for OASIS coupling
237      READ  ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 )
238902   IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist', lwp )
239      IF(lwm) WRITE ( numond, namsbc_cpl )
240
241      IF(lwp) THEN                        ! control print
242         WRITE(numout,*)
243         WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist '
244         WRITE(numout,*)'~~~~~~~~~~~~'
245      ENDIF
246      IF( lwp .AND. ln_cpl ) THEN                        ! control print
247         WRITE(numout,*)'  received fields (mutiple ice categogies)'
248         WRITE(numout,*)'      10m wind module                 = ', TRIM(sn_rcv_w10m%cldes  ), ' (', TRIM(sn_rcv_w10m%clcat  ), ')'
249         WRITE(numout,*)'      stress module                   = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')'
250         WRITE(numout,*)'      surface stress                  = ', TRIM(sn_rcv_tau%cldes   ), ' (', TRIM(sn_rcv_tau%clcat   ), ')'
251         WRITE(numout,*)'                     - referential    = ', sn_rcv_tau%clvref
252         WRITE(numout,*)'                     - orientation    = ', sn_rcv_tau%clvor
253         WRITE(numout,*)'                     - mesh           = ', sn_rcv_tau%clvgrd
254         WRITE(numout,*)'      non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')'
255         WRITE(numout,*)'      solar heat flux                 = ', TRIM(sn_rcv_qsr%cldes   ), ' (', TRIM(sn_rcv_qsr%clcat   ), ')'
256         WRITE(numout,*)'      non-solar heat flux             = ', TRIM(sn_rcv_qns%cldes   ), ' (', TRIM(sn_rcv_qns%clcat   ), ')'
257         WRITE(numout,*)'      freshwater budget               = ', TRIM(sn_rcv_emp%cldes   ), ' (', TRIM(sn_rcv_emp%clcat   ), ')'
258         WRITE(numout,*)'      runoffs                         = ', TRIM(sn_rcv_rnf%cldes   ), ' (', TRIM(sn_rcv_rnf%clcat   ), ')'
259         WRITE(numout,*)'      calving                         = ', TRIM(sn_rcv_cal%cldes   ), ' (', TRIM(sn_rcv_cal%clcat   ), ')'
260         WRITE(numout,*)'      sea ice heat fluxes             = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')'
261         WRITE(numout,*)'      atm co2                         = ', TRIM(sn_rcv_co2%cldes   ), ' (', TRIM(sn_rcv_co2%clcat   ), ')'
262         WRITE(numout,*)'  sent fields (multiple ice categories)'
263         WRITE(numout,*)'      surface temperature             = ', TRIM(sn_snd_temp%cldes  ), ' (', TRIM(sn_snd_temp%clcat  ), ')'
264         WRITE(numout,*)'      albedo                          = ', TRIM(sn_snd_alb%cldes   ), ' (', TRIM(sn_snd_alb%clcat   ), ')'
265         WRITE(numout,*)'      ice/snow thickness              = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')'
266         WRITE(numout,*)'      surface current                 = ', TRIM(sn_snd_crt%cldes   ), ' (', TRIM(sn_snd_crt%clcat   ), ')'
267         WRITE(numout,*)'                      - referential   = ', sn_snd_crt%clvref 
268         WRITE(numout,*)'                      - orientation   = ', sn_snd_crt%clvor
269         WRITE(numout,*)'                      - mesh          = ', sn_snd_crt%clvgrd
270         WRITE(numout,*)'      oce co2 flux                    = ', TRIM(sn_snd_co2%cldes   ), ' (', TRIM(sn_snd_co2%clcat   ), ')'
271         WRITE(numout,*)'  nn_cplmodel                         = ', nn_cplmodel
272         WRITE(numout,*)'  ln_usecplmask                       = ', ln_usecplmask
273      ENDIF
274
275      !                                   ! allocate sbccpl arrays
276      IF( sbc_cpl_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )
277     
278      ! ================================ !
279      !   Define the receive interface   !
280      ! ================================ !
281      nrcvinfo(:) = OASIS_idle   ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress
282
283      ! for each field: define the OASIS name                              (srcv(:)%clname)
284      !                 define receive or not from the namelist parameters (srcv(:)%laction)
285      !                 define the north fold type of lbc                  (srcv(:)%nsgn)
286
287      ! default definitions of srcv
288      srcv(:)%laction = .FALSE.   ;   srcv(:)%clgrid = 'T'   ;   srcv(:)%nsgn = 1.   ;   srcv(:)%nct = 1
289
290      !                                                      ! ------------------------- !
291      !                                                      ! ice and ocean wind stress !   
292      !                                                      ! ------------------------- !
293      !                                                           ! Name
294      srcv(jpr_otx1)%clname = 'O_OTaux1'      ! 1st ocean component on grid ONE (T or U)
295      srcv(jpr_oty1)%clname = 'O_OTauy1'      ! 2nd   -      -         -     -
296      srcv(jpr_otz1)%clname = 'O_OTauz1'      ! 3rd   -      -         -     -
297      srcv(jpr_otx2)%clname = 'O_OTaux2'      ! 1st ocean component on grid TWO (V)
298      srcv(jpr_oty2)%clname = 'O_OTauy2'      ! 2nd   -      -         -     -
299      srcv(jpr_otz2)%clname = 'O_OTauz2'      ! 3rd   -      -         -     -
300      !
301      srcv(jpr_itx1)%clname = 'O_ITaux1'      ! 1st  ice  component on grid ONE (T, F, I or U)
302      srcv(jpr_ity1)%clname = 'O_ITauy1'      ! 2nd   -      -         -     -
303      srcv(jpr_itz1)%clname = 'O_ITauz1'      ! 3rd   -      -         -     -
304      srcv(jpr_itx2)%clname = 'O_ITaux2'      ! 1st  ice  component on grid TWO (V)
305      srcv(jpr_ity2)%clname = 'O_ITauy2'      ! 2nd   -      -         -     -
306      srcv(jpr_itz2)%clname = 'O_ITauz2'      ! 3rd   -      -         -     -
307      !
308      ! Vectors: change of sign at north fold ONLY if on the local grid
309      IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' )   srcv(jpr_otx1:jpr_itz2)%nsgn = -1.
310     
311      !                                                           ! Set grid and action
312      SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) )      !  'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V'
313      CASE( 'T' ) 
314         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
315         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
316         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
317      CASE( 'U,V' ) 
318         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
319         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
320         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
321         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
322         srcv(jpr_otx1:jpr_itz2)%laction = .TRUE.     ! receive oce and ice components on both grid 1 & 2
323      CASE( 'U,V,T' )
324         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
325         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
326         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'T'        ! ice components given at T-point
327         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
328         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
329      CASE( 'U,V,I' )
330         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
331         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
332         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
333         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
334         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
335      CASE( 'U,V,F' )
336         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
337         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
338         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
339         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
340         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
341      CASE( 'T,I' ) 
342         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
343         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
344         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
345         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
346      CASE( 'T,F' ) 
347         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
348         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
349         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
350         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
351      CASE( 'T,U,V' )
352         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'T'        ! oce components given at T-point
353         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
354         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
355         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1 only
356         srcv(jpr_itx1:jpr_itz2)%laction = .TRUE.     ! receive ice components on grid 1 & 2
357      CASE default   
358         CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' )
359      END SELECT
360      !
361      IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' )   &           ! spherical: 3rd component not received
362         &     srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE. 
363      !
364      IF( TRIM( sn_rcv_tau%clvor  ) == 'local grid' ) THEN        ! already on local grid -> no need of the second grid
365            srcv(jpr_otx2:jpr_otz2)%laction = .FALSE. 
366            srcv(jpr_itx2:jpr_itz2)%laction = .FALSE. 
367            srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid   ! not needed but cleaner...
368            srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid   ! not needed but cleaner...
369      ENDIF
370      !
371      IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN        ! 'oce and ice' case ocean stress on ocean mesh used
372         srcv(jpr_itx1:jpr_itz2)%laction = .FALSE.    ! ice components not received
373         srcv(jpr_itx1)%clgrid = 'U'                  ! ocean stress used after its transformation
374         srcv(jpr_ity1)%clgrid = 'V'                  ! i.e. it is always at U- & V-points for i- & j-comp. resp.
375      ENDIF
376       
377      !                                                      ! ------------------------- !
378      !                                                      !    freshwater budget      !   E-P
379      !                                                      ! ------------------------- !
380      ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid)
381      ! over ice of free ocean within the same atmospheric cell.cd
382      srcv(jpr_rain)%clname = 'OTotRain'      ! Rain = liquid precipitation
383      srcv(jpr_snow)%clname = 'OTotSnow'      ! Snow = solid precipitation
384      srcv(jpr_tevp)%clname = 'OTotEvap'      ! total evaporation (over oce + ice sublimation)
385      srcv(jpr_ievp)%clname = 'OIceEvap'      ! evaporation over ice = sublimation
386      srcv(jpr_sbpr)%clname = 'OSubMPre'      ! sublimation - liquid precipitation - solid precipitation
387      srcv(jpr_semp)%clname = 'OISubMSn'      ! ice solid water budget = sublimation - solid precipitation
388      srcv(jpr_oemp)%clname = 'OOEvaMPr'      ! ocean water budget = ocean Evap - ocean precip
389      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
390      CASE( 'none'          )       ! nothing to do
391      CASE( 'oce only'      )   ;   srcv(                                 jpr_oemp   )%laction = .TRUE. 
392      CASE( 'conservative'  )
393         srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE.
394         IF ( k_ice <= 1 )  srcv(jpr_ievp)%laction = .FALSE.
395      CASE( 'oce and ice'   )   ;   srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE.
396      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' )
397      END SELECT
398
399      !                                                      ! ------------------------- !
400      !                                                      !     Runoffs & Calving     !   
401      !                                                      ! ------------------------- !
402      srcv(jpr_rnf   )%clname = 'O_Runoff'
403      IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) THEN
404         srcv(jpr_rnf)%laction = .TRUE.
405         l_rnfcpl              = .TRUE.                      ! -> no need to read runoffs in sbcrnf
406         ln_rnf                = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas
407         IF(lwp) WRITE(numout,*)
408         IF(lwp) WRITE(numout,*) '   runoffs received from oasis -> force ln_rnf = ', ln_rnf
409      ENDIF
410      !
411      srcv(jpr_cal   )%clname = 'OCalving'   ;   IF( TRIM( sn_rcv_cal%cldes ) == 'coupled' )   srcv(jpr_cal)%laction = .TRUE.
412
413      !                                                      ! ------------------------- !
414      !                                                      !    non solar radiation    !   Qns
415      !                                                      ! ------------------------- !
416      srcv(jpr_qnsoce)%clname = 'O_QnsOce'
417      srcv(jpr_qnsice)%clname = 'O_QnsIce'
418      srcv(jpr_qnsmix)%clname = 'O_QnsMix'
419      SELECT CASE( TRIM( sn_rcv_qns%cldes ) )
420      CASE( 'none'          )       ! nothing to do
421      CASE( 'oce only'      )   ;   srcv(               jpr_qnsoce   )%laction = .TRUE.
422      CASE( 'conservative'  )   ;   srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE.
423      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE.
424      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qnsmix   )%laction = .TRUE. 
425      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' )
426      END SELECT
427      IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) &
428         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
429      !                                                      ! ------------------------- !
430      !                                                      !    solar radiation        !   Qsr
431      !                                                      ! ------------------------- !
432      srcv(jpr_qsroce)%clname = 'O_QsrOce'
433      srcv(jpr_qsrice)%clname = 'O_QsrIce'
434      srcv(jpr_qsrmix)%clname = 'O_QsrMix'
435      SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )
436      CASE( 'none'          )       ! nothing to do
437      CASE( 'oce only'      )   ;   srcv(               jpr_qsroce   )%laction = .TRUE.
438      CASE( 'conservative'  )   ;   srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE.
439      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE.
440      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qsrmix   )%laction = .TRUE. 
441      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' )
442      END SELECT
443      IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) &
444         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
445      !                                                      ! ------------------------- !
446      !                                                      !   non solar sensitivity   !   d(Qns)/d(T)
447      !                                                      ! ------------------------- !
448      srcv(jpr_dqnsdt)%clname = 'O_dQnsdT'   
449      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' )   srcv(jpr_dqnsdt)%laction = .TRUE.
450      !
451      ! non solar sensitivity mandatory for LIM ice model
452      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. k_ice /= 0 .AND. k_ice /= 4 .AND. nn_components /= jp_iam_sas ) &
453         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_dqnsdt%cldes must be coupled in namsbc_cpl namelist' )
454      ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique
455      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' ) &
456         CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' )
457      !                                                      ! ------------------------- !
458      !                                                      !      10m wind module      !   
459      !                                                      ! ------------------------- !
460      srcv(jpr_w10m)%clname = 'O_Wind10'   ;   IF( TRIM(sn_rcv_w10m%cldes  ) == 'coupled' )   srcv(jpr_w10m)%laction = .TRUE. 
461      !
462      !                                                      ! ------------------------- !
463      !                                                      !   wind stress module      !   
464      !                                                      ! ------------------------- !
465      srcv(jpr_taum)%clname = 'O_TauMod'   ;   IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' )   srcv(jpr_taum)%laction = .TRUE.
466      lhftau = srcv(jpr_taum)%laction
467
468      !                                                      ! ------------------------- !
469      !                                                      !      Atmospheric CO2      !
470      !                                                      ! ------------------------- !
471      srcv(jpr_co2 )%clname = 'O_AtmCO2'   ;   IF( TRIM(sn_rcv_co2%cldes   ) == 'coupled' )    srcv(jpr_co2 )%laction = .TRUE.
472      !                                                      ! ------------------------- !
473      !                                                      !   topmelt and botmelt     !   
474      !                                                      ! ------------------------- !
475      srcv(jpr_topm )%clname = 'OTopMlt'
476      srcv(jpr_botm )%clname = 'OBotMlt'
477      IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN
478         IF ( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN
479            srcv(jpr_topm:jpr_botm)%nct = jpl
480         ELSE
481            CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' )
482         ENDIF
483         srcv(jpr_topm:jpr_botm)%laction = .TRUE.
484      ENDIF
485      !                                                      ! ------------------------------- !
486      !                                                      !   OPA-SAS coupling - rcv by opa !   
487      !                                                      ! ------------------------------- !
488      srcv(jpr_sflx)%clname = 'O_SFLX'
489      srcv(jpr_fice)%clname = 'RIceFrc'
490      !
491      IF( nn_components == jp_iam_opa ) THEN    ! OPA coupled to SAS via OASIS: force received field by OPA (sent by SAS)
492         srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
493         srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
494         srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
495         srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE.
496         srcv(jpr_otx1)%clgrid = 'U'        ! oce components given at U-point
497         srcv(jpr_oty1)%clgrid = 'V'        !           and           V-point
498         ! Vectors: change of sign at north fold ONLY if on the local grid
499         srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1.
500         sn_rcv_tau%clvgrd = 'U,V'
501         sn_rcv_tau%clvor = 'local grid'
502         sn_rcv_tau%clvref = 'spherical'
503         sn_rcv_emp%cldes = 'oce only'
504         !
505         IF(lwp) THEN                        ! control print
506            WRITE(numout,*)
507            WRITE(numout,*)'               Special conditions for SAS-OPA coupling  '
508            WRITE(numout,*)'               OPA component  '
509            WRITE(numout,*)
510            WRITE(numout,*)'  received fields from SAS component '
511            WRITE(numout,*)'                  ice cover '
512            WRITE(numout,*)'                  oce only EMP  '
513            WRITE(numout,*)'                  salt flux  '
514            WRITE(numout,*)'                  mixed oce-ice solar flux  '
515            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
516            WRITE(numout,*)'                  wind stress U,V on local grid and sperical coordinates '
517            WRITE(numout,*)'                  wind stress module'
518            WRITE(numout,*)
519         ENDIF
520      ENDIF
521      !                                                      ! -------------------------------- !
522      !                                                      !   OPA-SAS coupling - rcv by sas  !   
523      !                                                      ! -------------------------------- !
524      srcv(jpr_toce  )%clname = 'I_SSTSST'
525      srcv(jpr_soce  )%clname = 'I_SSSal'
526      srcv(jpr_ocx1  )%clname = 'I_OCurx1'
527      srcv(jpr_ocy1  )%clname = 'I_OCury1'
528      srcv(jpr_ssh   )%clname = 'I_SSHght'
529      srcv(jpr_e3t1st)%clname = 'I_E3T1st'   
530      srcv(jpr_fraqsr)%clname = 'I_FraQsr'   
531      !
532      IF( nn_components == jp_iam_sas ) THEN
533         IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
534         IF( .NOT. ln_cpl ) srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
535         IF( .NOT. ln_cpl ) srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
536         srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE.
537         srcv( jpr_e3t1st )%laction = lk_vvl
538         srcv(jpr_ocx1)%clgrid = 'U'        ! oce components given at U-point
539         srcv(jpr_ocy1)%clgrid = 'V'        !           and           V-point
540         ! Vectors: change of sign at north fold ONLY if on the local grid
541         srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1.
542         ! Change first letter to couple with atmosphere if already coupled OPA
543         ! this is nedeed as each variable name used in the namcouple must be unique:
544         ! for example O_Runoff received by OPA from SAS and therefore O_Runoff received by SAS from the Atmosphere
545         DO jn = 1, jprcv
546            IF ( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname))
547         END DO
548         !
549         IF(lwp) THEN                        ! control print
550            WRITE(numout,*)
551            WRITE(numout,*)'               Special conditions for SAS-OPA coupling  '
552            WRITE(numout,*)'               SAS component  '
553            WRITE(numout,*)
554            IF( .NOT. ln_cpl ) THEN
555               WRITE(numout,*)'  received fields from OPA component '
556            ELSE
557               WRITE(numout,*)'  Additional received fields from OPA component : '
558            ENDIF
559            WRITE(numout,*)'               sea surface temperature (Celcius) '
560            WRITE(numout,*)'               sea surface salinity ' 
561            WRITE(numout,*)'               surface currents ' 
562            WRITE(numout,*)'               sea surface height ' 
563            WRITE(numout,*)'               thickness of first ocean T level '       
564            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
565            WRITE(numout,*)
566         ENDIF
567      ENDIF
568     
569      ! =================================================== !
570      ! Allocate all parts of frcv used for received fields !
571      ! =================================================== !
572      DO jn = 1, jprcv
573         IF ( srcv(jn)%laction ) ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) )
574      END DO
575      ! Allocate taum part of frcv which is used even when not received as coupling field
576      IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) )
577      ! Allocate w10m part of frcv which is used even when not received as coupling field
578      IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) )
579      ! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field
580      IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) )
581      IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) )
582      ! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE.
583      IF( k_ice /= 0 ) THEN
584         IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) )
585         IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) )
586      END IF
587
588      ! ================================ !
589      !     Define the send interface    !
590      ! ================================ !
591      ! for each field: define the OASIS name                           (ssnd(:)%clname)
592      !                 define send or not from the namelist parameters (ssnd(:)%laction)
593      !                 define the north fold type of lbc               (ssnd(:)%nsgn)
594     
595      ! default definitions of nsnd
596      ssnd(:)%laction = .FALSE.   ;   ssnd(:)%clgrid = 'T'   ;   ssnd(:)%nsgn = 1.  ; ssnd(:)%nct = 1
597         
598      !                                                      ! ------------------------- !
599      !                                                      !    Surface temperature    !
600      !                                                      ! ------------------------- !
601      ssnd(jps_toce)%clname = 'O_SSTSST'
602      ssnd(jps_tice)%clname = 'O_TepIce'
603      ssnd(jps_tmix)%clname = 'O_TepMix'
604      SELECT CASE( TRIM( sn_snd_temp%cldes ) )
605      CASE( 'none'                                 )       ! nothing to do
606      CASE( 'oce only'                             )   ;   ssnd( jps_toce )%laction = .TRUE.
607      CASE( 'oce and ice' , 'weighted oce and ice' )
608         ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE.
609         IF ( TRIM( sn_snd_temp%clcat ) == 'yes' )  ssnd(jps_tice)%nct = jpl
610      CASE( 'mixed oce-ice'                        )   ;   ssnd( jps_tmix )%laction = .TRUE.
611      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' )
612      END SELECT
613           
614      !                                                      ! ------------------------- !
615      !                                                      !          Albedo           !
616      !                                                      ! ------------------------- !
617      ssnd(jps_albice)%clname = 'O_AlbIce' 
618      ssnd(jps_albmix)%clname = 'O_AlbMix'
619      SELECT CASE( TRIM( sn_snd_alb%cldes ) )
620      CASE( 'none'                 )     ! nothing to do
621      CASE( 'ice' , 'weighted ice' )   ; ssnd(jps_albice)%laction = .TRUE.
622      CASE( 'mixed oce-ice'        )   ; ssnd(jps_albmix)%laction = .TRUE.
623      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' )
624      END SELECT
625      !
626      ! Need to calculate oceanic albedo if
627      !     1. sending mixed oce-ice albedo or
628      !     2. receiving mixed oce-ice solar radiation
629      IF ( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN
630         CALL albedo_oce( zaos, zacs )
631         ! Due to lack of information on nebulosity : mean clear/overcast sky
632         albedo_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5
633      ENDIF
634
635      !                                                      ! ------------------------- !
636      !                                                      !  Ice fraction & Thickness !
637      !                                                      ! ------------------------- !
638      ssnd(jps_fice)%clname = 'OIceFrc'
639      ssnd(jps_hice)%clname = 'OIceTck'
640      ssnd(jps_hsnw)%clname = 'OSnwTck'
641      IF( k_ice /= 0 ) THEN
642         ssnd(jps_fice)%laction = .TRUE.                  ! if ice treated in the ocean (even in climato case)
643! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now
644         IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_fice)%nct = jpl
645      ENDIF
646     
647      SELECT CASE ( TRIM( sn_snd_thick%cldes ) )
648      CASE( 'none'         )       ! nothing to do
649      CASE( 'ice and snow' ) 
650         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
651         IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN
652            ssnd(jps_hice:jps_hsnw)%nct = jpl
653         ENDIF
654      CASE ( 'weighted ice and snow' ) 
655         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
656         IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = jpl
657      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' )
658      END SELECT
659
660      !                                                      ! ------------------------- !
661      !                                                      !      Surface current      !
662      !                                                      ! ------------------------- !
663      !        ocean currents              !            ice velocities
664      ssnd(jps_ocx1)%clname = 'O_OCurx1'   ;   ssnd(jps_ivx1)%clname = 'O_IVelx1'
665      ssnd(jps_ocy1)%clname = 'O_OCury1'   ;   ssnd(jps_ivy1)%clname = 'O_IVely1'
666      ssnd(jps_ocz1)%clname = 'O_OCurz1'   ;   ssnd(jps_ivz1)%clname = 'O_IVelz1'
667      !
668      ssnd(jps_ocx1:jps_ivz1)%nsgn = -1.   ! vectors: change of the sign at the north fold
669
670      IF( sn_snd_crt%clvgrd == 'U,V' ) THEN
671         ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V'
672      ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN 
673         CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' )
674         ssnd(jps_ocx1:jps_ivz1)%clgrid  = 'T'      ! all oce and ice components on the same unique grid
675      ENDIF
676      ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE.   ! default: all are send
677      IF( TRIM( sn_snd_crt%clvref ) == 'spherical' )   ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE. 
678      IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1.
679      SELECT CASE( TRIM( sn_snd_crt%cldes ) )
680      CASE( 'none'                 )   ;   ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE.
681      CASE( 'oce only'             )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
682      CASE( 'weighted oce and ice' )   !   nothing to do
683      CASE( 'mixed oce-ice'        )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
684      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' )
685      END SELECT
686
687      !                                                      ! ------------------------- !
688      !                                                      !          CO2 flux         !
689      !                                                      ! ------------------------- !
690      ssnd(jps_co2)%clname = 'O_CO2FLX' ;  IF( TRIM(sn_snd_co2%cldes) == 'coupled' )    ssnd(jps_co2 )%laction = .TRUE.
691
692      !                                                      ! ------------------------------- !
693      !                                                      !   OPA-SAS coupling - snd by opa !   
694      !                                                      ! ------------------------------- !
695      ssnd(jps_ssh   )%clname = 'O_SSHght' 
696      ssnd(jps_soce  )%clname = 'O_SSSal' 
697      ssnd(jps_e3t1st)%clname = 'O_E3T1st'   
698      ssnd(jps_fraqsr)%clname = 'O_FraQsr'
699      !
700      IF( nn_components == jp_iam_opa ) THEN
701         ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
702         ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE.
703         ssnd( jps_e3t1st )%laction = lk_vvl
704         ! vector definition: not used but cleaner...
705         ssnd(jps_ocx1)%clgrid  = 'U'        ! oce components given at U-point
706         ssnd(jps_ocy1)%clgrid  = 'V'        !           and           V-point
707         sn_snd_crt%clvgrd = 'U,V'
708         sn_snd_crt%clvor = 'local grid'
709         sn_snd_crt%clvref = 'spherical'
710         !
711         IF(lwp) THEN                        ! control print
712            WRITE(numout,*)
713            WRITE(numout,*)'  sent fields to SAS component '
714            WRITE(numout,*)'               sea surface temperature (T before, Celcius) '
715            WRITE(numout,*)'               sea surface salinity ' 
716            WRITE(numout,*)'               surface currents U,V on local grid and spherical coordinates' 
717            WRITE(numout,*)'               sea surface height ' 
718            WRITE(numout,*)'               thickness of first ocean T level '       
719            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
720            WRITE(numout,*)
721         ENDIF
722      ENDIF
723      !                                                      ! ------------------------------- !
724      !                                                      !   OPA-SAS coupling - snd by sas !   
725      !                                                      ! ------------------------------- !
726      ssnd(jps_sflx  )%clname = 'I_SFLX'     
727      ssnd(jps_fice2 )%clname = 'IIceFrc'
728      ssnd(jps_qsroce)%clname = 'I_QsrOce'   
729      ssnd(jps_qnsoce)%clname = 'I_QnsOce'   
730      ssnd(jps_oemp  )%clname = 'IOEvaMPr' 
731      ssnd(jps_otx1  )%clname = 'I_OTaux1'   
732      ssnd(jps_oty1  )%clname = 'I_OTauy1'   
733      ssnd(jps_rnf   )%clname = 'I_Runoff'   
734      ssnd(jps_taum  )%clname = 'I_TauMod'   
735      !
736      IF( nn_components == jp_iam_sas ) THEN
737         IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
738         ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE.
739         !
740         ! Change first letter to couple with atmosphere if already coupled with sea_ice
741         ! this is nedeed as each variable name used in the namcouple must be unique:
742         ! for example O_SSTSST sent by OPA to SAS and therefore S_SSTSST sent by SAS to the Atmosphere
743         DO jn = 1, jpsnd
744            IF ( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname))
745         END DO
746         !
747         IF(lwp) THEN                        ! control print
748            WRITE(numout,*)
749            IF( .NOT. ln_cpl ) THEN
750               WRITE(numout,*)'  sent fields to OPA component '
751            ELSE
752               WRITE(numout,*)'  Additional sent fields to OPA component : '
753            ENDIF
754            WRITE(numout,*)'                  ice cover '
755            WRITE(numout,*)'                  oce only EMP  '
756            WRITE(numout,*)'                  salt flux  '
757            WRITE(numout,*)'                  mixed oce-ice solar flux  '
758            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
759            WRITE(numout,*)'                  wind stress U,V components'
760            WRITE(numout,*)'                  wind stress module'
761         ENDIF
762      ENDIF
763
764      !
765      ! ================================ !
766      !   initialisation of the coupler  !
767      ! ================================ !
768
769      CALL cpl_define(jprcv, jpsnd, nn_cplmodel)
770     
771      IF (ln_usecplmask) THEN
772         xcplmask(:,:,:) = 0.
773         CALL iom_open( 'cplmask', inum )
774         CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:nlci,1:nlcj,1:nn_cplmodel),   &
775            &          kstart = (/ mig(1),mjg(1),1 /), kcount = (/ nlci,nlcj,nn_cplmodel /) )
776         CALL iom_close( inum )
777      ELSE
778         xcplmask(:,:,:) = 1.
779      ENDIF
780      xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 )
781      !
782      ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' )
783      IF( ln_dm2dc .AND. ln_cpl .AND. ncpl_qsr_freq /= 86400 )   &
784         &   CALL ctl_stop( 'sbc_cpl_init: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' )
785      ncpl_qsr_freq = 86400 / ncpl_qsr_freq
786
787      CALL wrk_dealloc( jpi,jpj, zacs, zaos )
788      !
789      IF( nn_timing == 1 )  CALL timing_stop('sbc_cpl_init')
790      !
791   END SUBROUTINE sbc_cpl_init
792
793
794   SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice )     
795      !!----------------------------------------------------------------------
796      !!             ***  ROUTINE sbc_cpl_rcv  ***
797      !!
798      !! ** Purpose :   provide the stress over the ocean and, if no sea-ice,
799      !!                provide the ocean heat and freshwater fluxes.
800      !!
801      !! ** Method  : - Receive all the atmospheric fields (stored in frcv array). called at each time step.
802      !!                OASIS controls if there is something do receive or not. nrcvinfo contains the info
803      !!                to know if the field was really received or not
804      !!
805      !!              --> If ocean stress was really received:
806      !!
807      !!                  - transform the received ocean stress vector from the received
808      !!                 referential and grid into an atmosphere-ocean stress in
809      !!                 the (i,j) ocean referencial and at the ocean velocity point.
810      !!                    The received stress are :
811      !!                     - defined by 3 components (if cartesian coordinate)
812      !!                            or by 2 components (if spherical)
813      !!                     - oriented along geographical   coordinate (if eastward-northward)
814      !!                            or  along the local grid coordinate (if local grid)
815      !!                     - given at U- and V-point, resp.   if received on 2 grids
816      !!                            or at T-point               if received on 1 grid
817      !!                    Therefore and if necessary, they are successively
818      !!                  processed in order to obtain them
819      !!                     first  as  2 components on the sphere
820      !!                     second as  2 components oriented along the local grid
821      !!                     third  as  2 components on the U,V grid
822      !!
823      !!              -->
824      !!
825      !!              - In 'ocean only' case, non solar and solar ocean heat fluxes
826      !!             and total ocean freshwater fluxes 
827      !!
828      !! ** Method  :   receive all fields from the atmosphere and transform
829      !!              them into ocean surface boundary condition fields
830      !!
831      !! ** Action  :   update  utau, vtau   ocean stress at U,V grid
832      !!                        taum         wind stress module at T-point
833      !!                        wndm         wind speed  module at T-point over free ocean or leads in presence of sea-ice
834      !!                        qns          non solar heat fluxes including emp heat content    (ocean only case)
835      !!                                     and the latent heat flux of solid precip. melting
836      !!                        qsr          solar ocean heat fluxes   (ocean only case)
837      !!                        emp          upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case)
838      !!----------------------------------------------------------------------
839      INTEGER, INTENT(in)           ::   kt          ! ocean model time step index
840      INTEGER, INTENT(in)           ::   k_fsbc      ! frequency of sbc (-> ice model) computation
841      INTEGER, INTENT(in)           ::   k_ice       ! ice management in the sbc (=0/1/2/3)
842
843      !!
844      LOGICAL  ::   llnewtx, llnewtau      ! update wind stress components and module??
845      INTEGER  ::   ji, jj, jn             ! dummy loop indices
846      INTEGER  ::   isec                   ! number of seconds since nit000 (assuming rdttra did not change since nit000)
847      REAL(wp) ::   zcumulneg, zcumulpos   ! temporary scalars     
848      REAL(wp) ::   zcoef                  ! temporary scalar
849      REAL(wp) ::   zrhoa  = 1.22          ! Air density kg/m3
850      REAL(wp) ::   zcdrag = 1.5e-3        ! drag coefficient
851      REAL(wp) ::   zzx, zzy               ! temporary variables
852      REAL(wp), POINTER, DIMENSION(:,:) ::   ztx, zty, zmsk, zemp, zqns, zqsr
853      !!----------------------------------------------------------------------
854      !
855      IF( nn_timing == 1 )  CALL timing_start('sbc_cpl_rcv')
856      !
857      CALL wrk_alloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr )
858      !
859      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
860      !
861      !                                                      ! ======================================================= !
862      !                                                      ! Receive all the atmos. fields (including ice information)
863      !                                                      ! ======================================================= !
864      isec = ( kt - nit000 ) * NINT( rdttra(1) )                ! date of exchanges
865      DO jn = 1, jprcv                                          ! received fields sent by the atmosphere
866         IF( srcv(jn)%laction )   CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) )
867      END DO
868
869      !                                                      ! ========================= !
870      IF( srcv(jpr_otx1)%laction ) THEN                      !  ocean stress components  !
871         !                                                   ! ========================= !
872         ! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid
873         ! => need to be done only when we receive the field
874         IF(  nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN
875            !
876            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
877               !                                                       ! (cartesian to spherical -> 3 to 2 components)
878               !
879               CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1),   &
880                  &          srcv(jpr_otx1)%clgrid, ztx, zty )
881               frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
882               frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
883               !
884               IF( srcv(jpr_otx2)%laction ) THEN
885                  CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1),   &
886                     &          srcv(jpr_otx2)%clgrid, ztx, zty )
887                  frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
888                  frcv(jpr_oty2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
889               ENDIF
890               !
891            ENDIF
892            !
893            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
894               !                                                       ! (geographical to local grid -> rotate the components)
895               CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx )   
896               IF( srcv(jpr_otx2)%laction ) THEN
897                  CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty )   
898               ELSE 
899                  CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty ) 
900               ENDIF
901               frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
902               frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 2nd grid
903            ENDIF
904            !                             
905            IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN
906               DO jj = 2, jpjm1                                          ! T ==> (U,V)
907                  DO ji = fs_2, fs_jpim1   ! vector opt.
908                     frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1) )
909                     frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji  ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) )
910                  END DO
911               END DO
912               CALL lbc_lnk( frcv(jpr_otx1)%z3(:,:,1), 'U',  -1. )   ;   CALL lbc_lnk( frcv(jpr_oty1)%z3(:,:,1), 'V',  -1. )
913            ENDIF
914            llnewtx = .TRUE.
915         ELSE
916            llnewtx = .FALSE.
917         ENDIF
918         !                                                   ! ========================= !
919      ELSE                                                   !   No dynamical coupling   !
920         !                                                   ! ========================= !
921         frcv(jpr_otx1)%z3(:,:,1) = 0.e0                               ! here simply set to zero
922         frcv(jpr_oty1)%z3(:,:,1) = 0.e0                               ! an external read in a file can be added instead
923         llnewtx = .TRUE.
924         !
925      ENDIF
926      !                                                      ! ========================= !
927      !                                                      !    wind stress module     !   (taum)
928      !                                                      ! ========================= !
929      !
930      IF( .NOT. srcv(jpr_taum)%laction ) THEN                    ! compute wind stress module from its components if not received
931         ! => need to be done only when otx1 was changed
932         IF( llnewtx ) THEN
933!CDIR NOVERRCHK
934            DO jj = 2, jpjm1
935!CDIR NOVERRCHK
936               DO ji = fs_2, fs_jpim1   ! vect. opt.
937                  zzx = frcv(jpr_otx1)%z3(ji-1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1)
938                  zzy = frcv(jpr_oty1)%z3(ji  ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1)
939                  frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy )
940               END DO
941            END DO
942            CALL lbc_lnk( frcv(jpr_taum)%z3(:,:,1), 'T', 1. )
943            llnewtau = .TRUE.
944         ELSE
945            llnewtau = .FALSE.
946         ENDIF
947      ELSE
948         llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv
949         ! Stress module can be negative when received (interpolation problem)
950         IF( llnewtau ) THEN
951            frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) )
952         ENDIF
953      ENDIF
954      !
955      !                                                      ! ========================= !
956      !                                                      !      10 m wind speed      !   (wndm)
957      !                                                      ! ========================= !
958      !
959      IF( .NOT. srcv(jpr_w10m)%laction ) THEN                    ! compute wind spreed from wind stress module if not received 
960         ! => need to be done only when taumod was changed
961         IF( llnewtau ) THEN
962            zcoef = 1. / ( zrhoa * zcdrag ) 
963!CDIR NOVERRCHK
964            DO jj = 1, jpj
965!CDIR NOVERRCHK
966               DO ji = 1, jpi 
967                  frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef )
968               END DO
969            END DO
970         ENDIF
971      ENDIF
972
973      ! u(v)tau and taum will be modified by ice model
974      ! -> need to be reset before each call of the ice/fsbc     
975      IF( MOD( kt-1, k_fsbc ) == 0 ) THEN
976         !
977         IF( ln_mixcpl ) THEN
978            utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:)
979            vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:)
980            taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:)
981            wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:)
982         ELSE
983            utau(:,:) = frcv(jpr_otx1)%z3(:,:,1)
984            vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1)
985            taum(:,:) = frcv(jpr_taum)%z3(:,:,1)
986            wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1)
987         ENDIF
988         CALL iom_put( "taum_oce", taum )   ! output wind stress module
989         
990      ENDIF
991
992#if defined key_cpl_carbon_cycle
993      !                                                      ! ================== !
994      !                                                      ! atmosph. CO2 (ppm) !
995      !                                                      ! ================== !
996      IF( srcv(jpr_co2)%laction )   atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1)
997#endif
998
999      !  Fields received by SAS when OASIS coupling
1000      !  (arrays no more filled at sbcssm stage)
1001      !                                                      ! ================== !
1002      !                                                      !        SSS         !
1003      !                                                      ! ================== !
1004      IF( srcv(jpr_soce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1005         sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1)
1006         CALL iom_put( 'sss_m', sss_m )
1007      ENDIF
1008      !                                               
1009      !                                                      ! ================== !
1010      !                                                      !        SST         !
1011      !                                                      ! ================== !
1012      IF( srcv(jpr_toce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1013         sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1)
1014         IF( srcv(jpr_soce)%laction .AND. ln_useCT ) THEN    ! make sure that sst_m is the potential temperature
1015            sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) )
1016         ENDIF
1017      ENDIF
1018      !                                                      ! ================== !
1019      !                                                      !        SSH         !
1020      !                                                      ! ================== !
1021      IF( srcv(jpr_ssh )%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1022         ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1)
1023         CALL iom_put( 'ssh_m', ssh_m )
1024      ENDIF
1025      !                                                      ! ================== !
1026      !                                                      !  surface currents  !
1027      !                                                      ! ================== !
1028      IF( srcv(jpr_ocx1)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1029         ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1)
1030         ub (:,:,1) = ssu_m(:,:)                             ! will be used in sbcice_lim in the call of lim_sbc_tau
1031         un (:,:,1) = ssu_m(:,:)                             ! will be used in sbc_cpl_snd if atmosphere coupling
1032         CALL iom_put( 'ssu_m', ssu_m )
1033      ENDIF
1034      IF( srcv(jpr_ocy1)%laction ) THEN
1035         ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1)
1036         vb (:,:,1) = ssv_m(:,:)                             ! will be used in sbcice_lim in the call of lim_sbc_tau
1037         vn (:,:,1) = ssv_m(:,:)                             ! will be used in sbc_cpl_snd if atmosphere coupling
1038         CALL iom_put( 'ssv_m', ssv_m )
1039      ENDIF
1040      !                                                      ! ======================== !
1041      !                                                      !  first T level thickness !
1042      !                                                      ! ======================== !
1043      IF( srcv(jpr_e3t1st )%laction ) THEN                   ! received by sas in case of opa <-> sas coupling
1044         e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1)
1045         CALL iom_put( 'e3t_m', e3t_m(:,:) )
1046      ENDIF
1047      !                                                      ! ================================ !
1048      !                                                      !  fraction of solar net radiation !
1049      !                                                      ! ================================ !
1050      IF( srcv(jpr_fraqsr)%laction ) THEN                    ! received by sas in case of opa <-> sas coupling
1051         frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1)
1052         CALL iom_put( 'frq_m', frq_m )
1053      ENDIF
1054     
1055      !                                                      ! ========================= !
1056      IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN   !  heat & freshwater fluxes ! (Ocean only case)
1057         !                                                   ! ========================= !
1058         !
1059         !                                                       ! total freshwater fluxes over the ocean (emp)
1060         IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN
1061            SELECT CASE( TRIM( sn_rcv_emp%cldes ) )                                    ! evaporation - precipitation
1062            CASE( 'conservative' )
1063               zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) )
1064            CASE( 'oce only', 'oce and ice' )
1065               zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1)
1066            CASE default
1067               CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' )
1068            END SELECT
1069         ELSE
1070            zemp(:,:) = 0._wp
1071         ENDIF
1072         !
1073         !                                                        ! runoffs and calving (added in emp)
1074         IF( srcv(jpr_rnf)%laction )     rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1075         IF( srcv(jpr_cal)%laction )     zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1)
1076         
1077         IF( ln_mixcpl ) THEN   ;   emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:)
1078         ELSE                   ;   emp(:,:) =                              zemp(:,:)
1079         ENDIF
1080         !
1081         !                                                       ! non solar heat flux over the ocean (qns)
1082         IF(      srcv(jpr_qnsoce)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
1083         ELSE IF( srcv(jpr_qnsmix)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
1084         ELSE                                       ;   zqns(:,:) = 0._wp
1085         END IF
1086         ! update qns over the free ocean with:
1087         IF( nn_components /= jp_iam_opa ) THEN
1088            zqns(:,:) =  zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp         ! remove heat content due to mass flux (assumed to be at SST)
1089            IF( srcv(jpr_snow  )%laction ) THEN
1090               zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * lfus    ! energy for melting solid precipitation over the free ocean
1091            ENDIF
1092         ENDIF
1093         IF( ln_mixcpl ) THEN   ;   qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:)
1094         ELSE                   ;   qns(:,:) =                              zqns(:,:)
1095         ENDIF
1096
1097         !                                                       ! solar flux over the ocean          (qsr)
1098         IF     ( srcv(jpr_qsroce)%laction ) THEN   ;   zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1)
1099         ELSE IF( srcv(jpr_qsrmix)%laction ) then   ;   zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1)
1100         ELSE                                       ;   zqsr(:,:) = 0._wp
1101         ENDIF
1102         IF( ln_dm2dc .AND. ln_cpl )   zqsr(:,:) = sbc_dcy( zqsr )   ! modify qsr to include the diurnal cycle
1103         IF( ln_mixcpl ) THEN   ;   qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:)
1104         ELSE                   ;   qsr(:,:) =                              zqsr(:,:)
1105         ENDIF
1106         !
1107         ! salt flux over the ocean (received by opa in case of opa <-> sas coupling)
1108         IF( srcv(jpr_sflx )%laction )   sfx(:,:) = frcv(jpr_sflx  )%z3(:,:,1)
1109         ! Ice cover  (received by opa in case of opa <-> sas coupling)
1110         IF( srcv(jpr_fice )%laction )   fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1)
1111         !
1112
1113      ENDIF
1114      !
1115      CALL wrk_dealloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr )
1116      !
1117      IF( nn_timing == 1 )  CALL timing_stop('sbc_cpl_rcv')
1118      !
1119   END SUBROUTINE sbc_cpl_rcv
1120   
1121
1122   SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj )     
1123      !!----------------------------------------------------------------------
1124      !!             ***  ROUTINE sbc_cpl_ice_tau  ***
1125      !!
1126      !! ** Purpose :   provide the stress over sea-ice in coupled mode
1127      !!
1128      !! ** Method  :   transform the received stress from the atmosphere into
1129      !!             an atmosphere-ice stress in the (i,j) ocean referencial
1130      !!             and at the velocity point of the sea-ice model (cp_ice_msh):
1131      !!                'C'-grid : i- (j-) components given at U- (V-) point
1132      !!                'I'-grid : B-grid lower-left corner: both components given at I-point
1133      !!
1134      !!                The received stress are :
1135      !!                 - defined by 3 components (if cartesian coordinate)
1136      !!                        or by 2 components (if spherical)
1137      !!                 - oriented along geographical   coordinate (if eastward-northward)
1138      !!                        or  along the local grid coordinate (if local grid)
1139      !!                 - given at U- and V-point, resp.   if received on 2 grids
1140      !!                        or at a same point (T or I) if received on 1 grid
1141      !!                Therefore and if necessary, they are successively
1142      !!             processed in order to obtain them
1143      !!                 first  as  2 components on the sphere
1144      !!                 second as  2 components oriented along the local grid
1145      !!                 third  as  2 components on the cp_ice_msh point
1146      !!
1147      !!                Except in 'oce and ice' case, only one vector stress field
1148      !!             is received. It has already been processed in sbc_cpl_rcv
1149      !!             so that it is now defined as (i,j) components given at U-
1150      !!             and V-points, respectively. Therefore, only the third
1151      !!             transformation is done and only if the ice-grid is a 'I'-grid.
1152      !!
1153      !! ** Action  :   return ptau_i, ptau_j, the stress over the ice at cp_ice_msh point
1154      !!----------------------------------------------------------------------
1155      REAL(wp), INTENT(out), DIMENSION(:,:) ::   p_taui   ! i- & j-components of atmos-ice stress [N/m2]
1156      REAL(wp), INTENT(out), DIMENSION(:,:) ::   p_tauj   ! at I-point (B-grid) or U & V-point (C-grid)
1157      !!
1158      INTEGER ::   ji, jj                          ! dummy loop indices
1159      INTEGER ::   itx                             ! index of taux over ice
1160      REAL(wp), POINTER, DIMENSION(:,:) ::   ztx, zty 
1161      !!----------------------------------------------------------------------
1162      !
1163      IF( nn_timing == 1 )  CALL timing_start('sbc_cpl_ice_tau')
1164      !
1165      CALL wrk_alloc( jpi,jpj, ztx, zty )
1166
1167      IF( srcv(jpr_itx1)%laction ) THEN   ;   itx =  jpr_itx1   
1168      ELSE                                ;   itx =  jpr_otx1
1169      ENDIF
1170
1171      ! do something only if we just received the stress from atmosphere
1172      IF(  nrcvinfo(itx) == OASIS_Rcv ) THEN
1173
1174         !                                                      ! ======================= !
1175         IF( srcv(jpr_itx1)%laction ) THEN                      !   ice stress received   !
1176            !                                                   ! ======================= !
1177           
1178            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
1179               !                                                       ! (cartesian to spherical -> 3 to 2 components)
1180               CALL geo2oce(  frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1),   &
1181                  &          srcv(jpr_itx1)%clgrid, ztx, zty )
1182               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
1183               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
1184               !
1185               IF( srcv(jpr_itx2)%laction ) THEN
1186                  CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1),   &
1187                     &          srcv(jpr_itx2)%clgrid, ztx, zty )
1188                  frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
1189                  frcv(jpr_ity2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
1190               ENDIF
1191               !
1192            ENDIF
1193            !
1194            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
1195               !                                                       ! (geographical to local grid -> rotate the components)
1196               CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx )   
1197               IF( srcv(jpr_itx2)%laction ) THEN
1198                  CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty )   
1199               ELSE
1200                  CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty ) 
1201               ENDIF
1202               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
1203               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 1st grid
1204            ENDIF
1205            !                                                   ! ======================= !
1206         ELSE                                                   !     use ocean stress    !
1207            !                                                   ! ======================= !
1208            frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1)
1209            frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1)
1210            !
1211         ENDIF
1212         !                                                      ! ======================= !
1213         !                                                      !     put on ice grid     !
1214         !                                                      ! ======================= !
1215         !   
1216         !                                                  j+1   j     -----V---F
1217         ! ice stress on ice velocity point (cp_ice_msh)                 !       |
1218         ! (C-grid ==>(U,V) or B-grid ==> I or F)                 j      |   T   U
1219         !                                                               |       |
1220         !                                                   j    j-1   -I-------|
1221         !                                               (for I)         |       |
1222         !                                                              i-1  i   i
1223         !                                                               i      i+1 (for I)
1224         SELECT CASE ( cp_ice_msh )
1225            !
1226         CASE( 'I' )                                         ! B-grid ==> I
1227            SELECT CASE ( srcv(jpr_itx1)%clgrid )
1228            CASE( 'U' )
1229               DO jj = 2, jpjm1                                   ! (U,V) ==> I
1230                  DO ji = 2, jpim1   ! NO vector opt.
1231                     p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji-1,jj  ,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) )
1232                     p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji  ,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) )
1233                  END DO
1234               END DO
1235            CASE( 'F' )
1236               DO jj = 2, jpjm1                                   ! F ==> I
1237                  DO ji = 2, jpim1   ! NO vector opt.
1238                     p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji-1,jj-1,1)
1239                     p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji-1,jj-1,1)
1240                  END DO
1241               END DO
1242            CASE( 'T' )
1243               DO jj = 2, jpjm1                                   ! T ==> I
1244                  DO ji = 2, jpim1   ! NO vector opt.
1245                     p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj  ,1) + frcv(jpr_itx1)%z3(ji-1,jj  ,1)   &
1246                        &                   + frcv(jpr_itx1)%z3(ji,jj-1,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) ) 
1247                     p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj  ,1) + frcv(jpr_ity1)%z3(ji-1,jj  ,1)   &
1248                        &                   + frcv(jpr_oty1)%z3(ji,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) )
1249                  END DO
1250               END DO
1251            CASE( 'I' )
1252               p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1)                   ! I ==> I
1253               p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
1254            END SELECT
1255            IF( srcv(jpr_itx1)%clgrid /= 'I' ) THEN
1256               CALL lbc_lnk( p_taui, 'I',  -1. )   ;   CALL lbc_lnk( p_tauj, 'I',  -1. )
1257            ENDIF
1258            !
1259         CASE( 'F' )                                         ! B-grid ==> F
1260            SELECT CASE ( srcv(jpr_itx1)%clgrid )
1261            CASE( 'U' )
1262               DO jj = 2, jpjm1                                   ! (U,V) ==> F
1263                  DO ji = fs_2, fs_jpim1   ! vector opt.
1264                     p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji  ,jj+1,1) )
1265                     p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji,jj,1) + frcv(jpr_ity1)%z3(ji+1,jj  ,1) )
1266                  END DO
1267               END DO
1268            CASE( 'I' )
1269               DO jj = 2, jpjm1                                   ! I ==> F
1270                  DO ji = 2, jpim1   ! NO vector opt.
1271                     p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji+1,jj+1,1)
1272                     p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji+1,jj+1,1)
1273                  END DO
1274               END DO
1275            CASE( 'T' )
1276               DO jj = 2, jpjm1                                   ! T ==> F
1277                  DO ji = 2, jpim1   ! NO vector opt.
1278                     p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj  ,1) + frcv(jpr_itx1)%z3(ji+1,jj  ,1)   &
1279                        &                   + frcv(jpr_itx1)%z3(ji,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj+1,1) ) 
1280                     p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj  ,1) + frcv(jpr_ity1)%z3(ji+1,jj  ,1)   &
1281                        &                   + frcv(jpr_ity1)%z3(ji,jj+1,1) + frcv(jpr_ity1)%z3(ji+1,jj+1,1) )
1282                  END DO
1283               END DO
1284            CASE( 'F' )
1285               p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1)                   ! F ==> F
1286               p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
1287            END SELECT
1288            IF( srcv(jpr_itx1)%clgrid /= 'F' ) THEN
1289               CALL lbc_lnk( p_taui, 'F',  -1. )   ;   CALL lbc_lnk( p_tauj, 'F',  -1. )
1290            ENDIF
1291            !
1292         CASE( 'C' )                                         ! C-grid ==> U,V
1293            SELECT CASE ( srcv(jpr_itx1)%clgrid )
1294            CASE( 'U' )
1295               p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1)                   ! (U,V) ==> (U,V)
1296               p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
1297            CASE( 'F' )
1298               DO jj = 2, jpjm1                                   ! F ==> (U,V)
1299                  DO ji = fs_2, fs_jpim1   ! vector opt.
1300                     p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji  ,jj-1,1) )
1301                     p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(jj,jj,1) + frcv(jpr_ity1)%z3(ji-1,jj  ,1) )
1302                  END DO
1303               END DO
1304            CASE( 'T' )
1305               DO jj = 2, jpjm1                                   ! T ==> (U,V)
1306                  DO ji = fs_2, fs_jpim1   ! vector opt.
1307                     p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj  ,1) + frcv(jpr_itx1)%z3(ji,jj,1) )
1308                     p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji  ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) )
1309                  END DO
1310               END DO
1311            CASE( 'I' )
1312               DO jj = 2, jpjm1                                   ! I ==> (U,V)
1313                  DO ji = 2, jpim1   ! NO vector opt.
1314                     p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj  ,1) )
1315                     p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji+1,jj+1,1) + frcv(jpr_ity1)%z3(ji  ,jj+1,1) )
1316                  END DO
1317               END DO
1318            END SELECT
1319            IF( srcv(jpr_itx1)%clgrid /= 'U' ) THEN
1320               CALL lbc_lnk( p_taui, 'U',  -1. )   ;   CALL lbc_lnk( p_tauj, 'V',  -1. )
1321            ENDIF
1322         END SELECT
1323
1324      ENDIF
1325      !   
1326      CALL wrk_dealloc( jpi,jpj, ztx, zty )
1327      !
1328      IF( nn_timing == 1 )  CALL timing_stop('sbc_cpl_ice_tau')
1329      !
1330   END SUBROUTINE sbc_cpl_ice_tau
1331   
1332
1333   SUBROUTINE sbc_cpl_ice_flx( p_frld, palbi, psst, pist )
1334      !!----------------------------------------------------------------------
1335      !!             ***  ROUTINE sbc_cpl_ice_flx  ***
1336      !!
1337      !! ** Purpose :   provide the heat and freshwater fluxes of the ocean-ice system
1338      !!
1339      !! ** Method  :   transform the fields received from the atmosphere into
1340      !!             surface heat and fresh water boundary condition for the
1341      !!             ice-ocean system. The following fields are provided:
1342      !!               * total non solar, solar and freshwater fluxes (qns_tot,
1343      !!             qsr_tot and emp_tot) (total means weighted ice-ocean flux)
1344      !!             NB: emp_tot include runoffs and calving.
1345      !!               * fluxes over ice (qns_ice, qsr_ice, emp_ice) where
1346      !!             emp_ice = sublimation - solid precipitation as liquid
1347      !!             precipitation are re-routed directly to the ocean and
1348      !!             calving directly enter the ocean (runoffs are read but included in trasbc.F90)
1349      !!               * solid precipitation (sprecip), used to add to qns_tot
1350      !!             the heat lost associated to melting solid precipitation
1351      !!             over the ocean fraction.
1352      !!               * heat content of rain, snow and evap can also be provided,
1353      !!             otherwise heat flux associated with these mass flux are
1354      !!             guessed (qemp_oce, qemp_ice)
1355      !!
1356      !!             - the fluxes have been separated from the stress as
1357      !!               (a) they are updated at each ice time step compare to
1358      !!               an update at each coupled time step for the stress, and
1359      !!               (b) the conservative computation of the fluxes over the
1360      !!               sea-ice area requires the knowledge of the ice fraction
1361      !!               after the ice advection and before the ice thermodynamics,
1362      !!               so that the stress is updated before the ice dynamics
1363      !!               while the fluxes are updated after it.
1364      !!
1365      !! ** Details
1366      !!             qns_tot = pfrld * qns_oce + ( 1 - pfrld ) * qns_ice   => provided
1367      !!                     + qemp_oce + qemp_ice                         => recalculated and added up to qns
1368      !!
1369      !!             qsr_tot = pfrld * qsr_oce + ( 1 - pfrld ) * qsr_ice   => provided
1370      !!
1371      !!             emp_tot = emp_oce + emp_ice                           => calving is provided and added to emp_tot (and emp_oce)
1372      !!                                                                      river runoff (rnf) is provided but not included here
1373      !!
1374      !! ** Action  :   update at each nf_ice time step:
1375      !!                   qns_tot, qsr_tot  non-solar and solar total heat fluxes
1376      !!                   qns_ice, qsr_ice  non-solar and solar heat fluxes over the ice
1377      !!                   emp_tot           total evaporation - precipitation(liquid and solid) (-calving)
1378      !!                   emp_ice           ice sublimation - solid precipitation over the ice
1379      !!                   dqns_ice          d(non-solar heat flux)/d(Temperature) over the ice
1380      !!                   sprecip           solid precipitation over the ocean 
1381      !!----------------------------------------------------------------------
1382      REAL(wp), INTENT(in   ), DIMENSION(:,:)   ::   p_frld     ! lead fraction                [0 to 1]
1383      ! optional arguments, used only in 'mixed oce-ice' case
1384      REAL(wp), INTENT(in   ), DIMENSION(:,:,:), OPTIONAL ::   palbi      ! all skies ice albedo
1385      REAL(wp), INTENT(in   ), DIMENSION(:,:  ), OPTIONAL ::   psst       ! sea surface temperature     [Celsius]
1386      REAL(wp), INTENT(in   ), DIMENSION(:,:,:), OPTIONAL ::   pist       ! ice surface temperature     [Kelvin]
1387      !
1388      INTEGER ::   jl         ! dummy loop index
1389      REAL(wp), POINTER, DIMENSION(:,:  ) ::   zcptn, ztmp, zicefr, zmsk, zsnw
1390      REAL(wp), POINTER, DIMENSION(:,:  ) ::   zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice
1391      REAL(wp), POINTER, DIMENSION(:,:  ) ::   zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice
1392      REAL(wp), POINTER, DIMENSION(:,:,:) ::   zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice
1393      !!----------------------------------------------------------------------
1394      !
1395      IF( nn_timing == 1 )  CALL timing_start('sbc_cpl_ice_flx')
1396      !
1397      CALL wrk_alloc( jpi,jpj,     zcptn, ztmp, zicefr, zmsk, zsnw )
1398      CALL wrk_alloc( jpi,jpj,     zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice )
1399      CALL wrk_alloc( jpi,jpj,     zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice )
1400      CALL wrk_alloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice )
1401
1402      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
1403      zicefr(:,:) = 1.- p_frld(:,:)
1404      zcptn(:,:) = rcp * sst_m(:,:)
1405      !
1406      !                                                      ! ========================= !
1407      !                                                      !    freshwater budget      !   (emp_tot)
1408      !                                                      ! ========================= !
1409      !
1410      !                                                           ! solid Precipitation                                (sprecip)
1411      !                                                           ! liquid + solid Precipitation                       (tprecip)
1412      !                                                           ! total Evaporation - total Precipitation            (emp_tot)
1413      !                                                           ! sublimation - solid precipitation (cell average)   (emp_ice)
1414      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
1415      CASE( 'conservative' )   ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp
1416         zsprecip(:,:) =   frcv(jpr_snow)%z3(:,:,1)                  ! May need to ensure positive here
1417         ztprecip(:,:) =   frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:)  ! May need to ensure positive here
1418         zemp_tot(:,:) =   frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:)
1419         zemp_ice(:,:) = ( frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_snow)%z3(:,:,1) ) * zicefr(:,:)
1420         IF( iom_use('precip') )          &
1421            &  CALL iom_put( 'precip'       ,   frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1)                              )  ! total  precipitation
1422         IF( iom_use('rain') )            &
1423            &  CALL iom_put( 'rain'         ,   frcv(jpr_rain)%z3(:,:,1)                                                         )  ! liquid precipitation
1424         IF( iom_use('rain_ao_cea') )   &
1425            &  CALL iom_put( 'rain_ao_cea'  , frcv(jpr_rain)%z3(:,:,1)* p_frld(:,:) * tmask(:,:,1)      )   ! liquid precipitation
1426         IF( iom_use('hflx_rain_cea') )   &
1427            CALL iom_put( 'hflx_rain_cea', frcv(jpr_rain)%z3(:,:,1) * zcptn(:,:) * tmask(:,:,1))   ! heat flux from liq. precip.
1428         IF( iom_use('hflx_prec_cea') )   &
1429            CALL iom_put( 'hflx_prec_cea', ztprecip * zcptn(:,:) * tmask(:,:,1) * p_frld(:,:) )   ! heat content flux from all precip  (cell avg)
1430         IF( iom_use('evap_ao_cea') .OR. iom_use('hflx_evap_cea') )   &
1431            ztmp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:)
1432         IF( iom_use('evap_ao_cea'  ) )   &
1433            CALL iom_put( 'evap_ao_cea'  , ztmp * tmask(:,:,1)                  )   ! ice-free oce evap (cell average)
1434         IF( iom_use('hflx_evap_cea') )   &
1435            CALL iom_put( 'hflx_evap_cea', ztmp(:,:) * zcptn(:,:) * tmask(:,:,1) )   ! heat flux from from evap (cell average)
1436      CASE( 'oce and ice'   )   ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp
1437         zemp_tot(:,:) = p_frld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + zicefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1)
1438         zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * zicefr(:,:)
1439         zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1)
1440         ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:)
1441      END SELECT
1442
1443#if defined key_lim3
1444      ! zsnw = snow fraction over ice after wind blowing
1445      zsnw(:,:) = 0._wp  ;  CALL lim_thd_snwblow( p_frld, zsnw )
1446     
1447      ! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- !
1448      zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( zicefr(:,:) - zsnw(:,:) )  ! emp_ice = A * sublimation - zsnw * sprecip
1449      zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:)                                ! emp_oce = emp_tot - emp_ice
1450
1451      ! --- evaporation over ocean (used later for qemp) --- !
1452      zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:)
1453
1454      ! --- evaporation over ice (kg/m2/s) --- !
1455      zevap_ice(:,:) = frcv(jpr_ievp)%z3(:,:,1)
1456      ! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0
1457      ! therefore, sublimation is not redistributed over the ice categories in case no subgrid scale fluxes are provided by atm.
1458      zdevap_ice(:,:) = 0._wp
1459     
1460      ! --- runoffs (included in emp later on) --- !
1461      IF( srcv(jpr_rnf)%laction )   rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1462
1463      ! --- calving (put in emp_tot and emp_oce) --- !
1464      IF( srcv(jpr_cal)%laction ) THEN
1465         zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
1466         zemp_oce(:,:) = zemp_oce(:,:) - frcv(jpr_cal)%z3(:,:,1)
1467         CALL iom_put( 'calving_cea', frcv(jpr_cal)%z3(:,:,1) )
1468      ENDIF
1469
1470      IF( ln_mixcpl ) THEN
1471         emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
1472         emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
1473         emp_oce(:,:) = emp_oce(:,:) * xcplmask(:,:,0) + zemp_oce(:,:) * zmsk(:,:)
1474         sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
1475         tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
1476         DO jl=1,jpl
1477            evap_ice (:,:,jl) = evap_ice (:,:,jl) * xcplmask(:,:,0) + zevap_ice (:,:) * zmsk(:,:)
1478            devap_ice(:,:,jl) = devap_ice(:,:,jl) * xcplmask(:,:,0) + zdevap_ice(:,:) * zmsk(:,:)
1479         ENDDO
1480      ELSE
1481         emp_tot(:,:) =         zemp_tot(:,:)
1482         emp_ice(:,:) =         zemp_ice(:,:)
1483         emp_oce(:,:) =         zemp_oce(:,:)     
1484         sprecip(:,:) =         zsprecip(:,:)
1485         tprecip(:,:) =         ztprecip(:,:)
1486         DO jl=1,jpl
1487            evap_ice (:,:,jl) = zevap_ice (:,:)
1488            devap_ice(:,:,jl) = zdevap_ice(:,:)
1489         ENDDO
1490      ENDIF
1491
1492      IF( iom_use('subl_ai_cea') )   CALL iom_put( 'subl_ai_cea', zevap_ice(:,:) * zicefr(:,:)         )  ! Sublimation over sea-ice (cell average)
1493                                     CALL iom_put( 'snowpre'    , sprecip(:,:)                         )  ! Snow
1494      IF( iom_use('snow_ao_cea') )   CALL iom_put( 'snow_ao_cea', sprecip(:,:) * ( 1._wp - zsnw(:,:) ) )  ! Snow over ice-free ocean  (cell average)
1495      IF( iom_use('snow_ai_cea') )   CALL iom_put( 'snow_ai_cea', sprecip(:,:) *           zsnw(:,:)   )  ! Snow over sea-ice         (cell average)
1496#else
1497      ! runoffs and calving (put in emp_tot)
1498      IF( srcv(jpr_rnf)%laction )   rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1499      IF( iom_use('hflx_rnf_cea') )   &
1500         CALL iom_put( 'hflx_rnf_cea' , rnf(:,:) * zcptn(:,:) )
1501      IF( srcv(jpr_cal)%laction ) THEN
1502         zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
1503         CALL iom_put( 'calving_cea', frcv(jpr_cal)%z3(:,:,1) )
1504      ENDIF
1505
1506      IF( ln_mixcpl ) THEN
1507         emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
1508         emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
1509         sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
1510         tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
1511      ELSE
1512         emp_tot(:,:) =                                  zemp_tot(:,:)
1513         emp_ice(:,:) =                                  zemp_ice(:,:)
1514         sprecip(:,:) =                                  zsprecip(:,:)
1515         tprecip(:,:) =                                  ztprecip(:,:)
1516      ENDIF
1517
1518      IF( iom_use('subl_ai_cea') )  CALL iom_put( 'subl_ai_cea', frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) )  ! Sublimation over sea-ice (cell average)
1519                                    CALL iom_put( 'snowpre'    , sprecip(:,:)               )   ! Snow
1520      IF( iom_use('snow_ao_cea') )  CALL iom_put( 'snow_ao_cea', sprecip(:,:) * p_frld(:,:) )   ! Snow over ice-free ocean  (cell average)
1521      IF( iom_use('snow_ai_cea') )  CALL iom_put( 'snow_ai_cea', sprecip(:,:) * zicefr(:,:) )   ! Snow over sea-ice         (cell average)
1522#endif
1523
1524      !                                                      ! ========================= !
1525      SELECT CASE( TRIM( sn_rcv_qns%cldes ) )                !   non solar heat fluxes   !   (qns)
1526      !                                                      ! ========================= !
1527      CASE( 'oce only' )         ! the required field is directly provided
1528         zqns_tot(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
1529      CASE( 'conservative' )     ! the required fields are directly provided
1530         zqns_tot(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
1531         IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
1532            zqns_ice(:,:,1:jpl) = frcv(jpr_qnsice)%z3(:,:,1:jpl)
1533         ELSE
1534            DO jl=1,jpl
1535               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) ! Set all category values equal
1536            ENDDO
1537         ENDIF
1538      CASE( 'oce and ice' )      ! the total flux is computed from ocean and ice fluxes
1539         zqns_tot(:,:) =  p_frld(:,:) * frcv(jpr_qnsoce)%z3(:,:,1)
1540         IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
1541            DO jl=1,jpl
1542               zqns_tot(:,:   ) = zqns_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qnsice)%z3(:,:,jl)   
1543               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,jl)
1544            ENDDO
1545         ELSE
1546            qns_tot(:,:) = qns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1)
1547            DO jl=1,jpl
1548               zqns_tot(:,:   ) = zqns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1)
1549               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1)
1550            ENDDO
1551         ENDIF
1552      CASE( 'mixed oce-ice' )    ! the ice flux is cumputed from the total flux, the SST and ice informations
1553! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED **
1554         zqns_tot(:,:  ) = frcv(jpr_qnsmix)%z3(:,:,1)
1555         zqns_ice(:,:,1) = frcv(jpr_qnsmix)%z3(:,:,1)    &
1556            &            + frcv(jpr_dqnsdt)%z3(:,:,1) * ( pist(:,:,1) - ( (rt0 + psst(:,:  ) ) * p_frld(:,:)   &
1557            &                                           + pist(:,:,1) * zicefr(:,:) ) )
1558      END SELECT
1559!!gm
1560!!    currently it is taken into account in leads budget but not in the zqns_tot, and thus not in
1561!!    the flux that enter the ocean....
1562!!    moreover 1 - it is not diagnose anywhere....
1563!!             2 - it is unclear for me whether this heat lost is taken into account in the atmosphere or not...
1564!!
1565!! similar job should be done for snow and precipitation temperature
1566      !                                     
1567      IF( srcv(jpr_cal)%laction ) THEN   ! Iceberg melting
1568         zqns_tot(:,:) = zqns_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) * lfus  ! add the latent heat of iceberg melting
1569                                                                         ! we suppose it melts at 0deg, though it should be temp. of surrounding ocean
1570         IF( iom_use('hflx_cal_cea') )   CALL iom_put( 'hflx_cal_cea', - frcv(jpr_cal)%z3(:,:,1) * lfus )   ! heat flux from calving
1571      ENDIF
1572
1573#if defined key_lim3     
1574      ! --- non solar flux over ocean --- !
1575      !         note: p_frld cannot be = 0 since we limit the ice concentration to amax
1576      zqns_oce = 0._wp
1577      WHERE( p_frld /= 0._wp )  zqns_oce(:,:) = ( zqns_tot(:,:) - SUM( a_i * zqns_ice, dim=3 ) ) / p_frld(:,:)
1578
1579      ! --- heat flux associated with emp (W/m2) --- !
1580      zqemp_oce(:,:) = -  zevap_oce(:,:)                                      *   zcptn(:,:)   &       ! evap
1581         &             + ( ztprecip(:,:) - zsprecip(:,:) )                    *   zcptn(:,:)   &       ! liquid precip
1582         &             +   zsprecip(:,:)                   * ( 1._wp - zsnw ) * ( zcptn(:,:) - lfus )  ! solid precip over ocean + snow melting
1583!      zqemp_ice(:,:) = -   frcv(jpr_ievp)%z3(:,:,1)        * zicefr(:,:)      *   zcptn(:,:)   &      ! ice evap
1584!         &             +   zsprecip(:,:)                   * zsnw             * ( zcptn(:,:) - lfus ) ! solid precip over ice
1585      zqemp_ice(:,:) =      zsprecip(:,:)                   * zsnw             * ( zcptn(:,:) - lfus ) ! solid precip over ice (only)
1586                                                                                                       ! qevap_ice=0 since we consider Tice=0degC
1587     
1588      ! --- enthalpy of snow precip over ice in J/m3 (to be used in 1D-thermo) --- !
1589      zqprec_ice(:,:) = rhosn * ( zcptn(:,:) - lfus )
1590
1591      ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- !
1592      DO jl = 1, jpl
1593         zqevap_ice(:,:,jl) = 0._wp ! should be -evap * ( ( Tice - rt0 ) * cpic ) but we do not have Tice, so we consider Tice=0degC
1594      END DO
1595
1596      ! --- total non solar flux (including evap/precip) --- !
1597      zqns_tot(:,:) = zqns_tot(:,:) + zqemp_ice(:,:) + zqemp_oce(:,:)
1598
1599      ! --- in case both coupled/forced are active, we must mix values --- !
1600      IF( ln_mixcpl ) THEN
1601         qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:)
1602         qns_oce(:,:) = qns_oce(:,:) * xcplmask(:,:,0) + zqns_oce(:,:)* zmsk(:,:)
1603         DO jl=1,jpl
1604            qns_ice  (:,:,jl) = qns_ice  (:,:,jl) * xcplmask(:,:,0) +  zqns_ice  (:,:,jl)* zmsk(:,:)
1605            qevap_ice(:,:,jl) = qevap_ice(:,:,jl) * xcplmask(:,:,0) +  zqevap_ice(:,:,jl)* zmsk(:,:)
1606         ENDDO
1607         qprec_ice(:,:) = qprec_ice(:,:) * xcplmask(:,:,0) + zqprec_ice(:,:)* zmsk(:,:)
1608         qemp_oce (:,:) =  qemp_oce(:,:) * xcplmask(:,:,0) +  zqemp_oce(:,:)* zmsk(:,:)
1609         qemp_ice (:,:) =  qemp_ice(:,:) * xcplmask(:,:,0) +  zqemp_ice(:,:)* zmsk(:,:)
1610      ELSE
1611         qns_tot  (:,:  ) = zqns_tot  (:,:  )
1612         qns_oce  (:,:  ) = zqns_oce  (:,:  )
1613         qns_ice  (:,:,:) = zqns_ice  (:,:,:)
1614         qevap_ice(:,:,:) = zqevap_ice(:,:,:)
1615         qprec_ice(:,:  ) = zqprec_ice(:,:  )
1616         qemp_oce (:,:  ) = zqemp_oce (:,:  )
1617         qemp_ice (:,:  ) = zqemp_ice (:,:  )
1618      ENDIF
1619
1620      ! some more outputs
1621      IF( iom_use('hflx_snow_cea') )    CALL iom_put('hflx_snow_cea',   sprecip(:,:) * ( zcptn(:,:) - Lfus ) )                       ! heat flux from snow (cell average)
1622      IF( iom_use('hflx_rain_cea') )    CALL iom_put('hflx_rain_cea', ( tprecip(:,:) - sprecip(:,:) ) * zcptn(:,:) )                 ! heat flux from rain (cell average)
1623      IF( iom_use('hflx_snow_ao_cea') ) CALL iom_put('hflx_snow_ao_cea',sprecip(:,:) * ( zcptn(:,:) - Lfus ) * (1._wp - zsnw(:,:)) ) ! heat flux from snow (cell average)
1624      IF( iom_use('hflx_snow_ai_cea') ) CALL iom_put('hflx_snow_ai_cea',sprecip(:,:) * ( zcptn(:,:) - Lfus ) * zsnw(:,:) )           ! heat flux from snow (cell average)
1625
1626#else
1627      ! clem: this formulation is certainly wrong... but better than it was...
1628      zqns_tot(:,:) = zqns_tot(:,:)                       &            ! zqns_tot update over free ocean with:
1629         &          - ztmp(:,:)                           &            ! remove the latent heat flux of solid precip. melting
1630         &          - (  zemp_tot(:,:)                    &            ! remove the heat content of mass flux (assumed to be at SST)
1631         &             - zemp_ice(:,:) ) * zcptn(:,:) 
1632
1633     IF( ln_mixcpl ) THEN
1634         qns_tot(:,:) = qns(:,:) * p_frld(:,:) + SUM( qns_ice(:,:,:) * a_i(:,:,:), dim=3 )   ! total flux from blk
1635         qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) +  zqns_tot(:,:)* zmsk(:,:)
1636         DO jl=1,jpl
1637            qns_ice(:,:,jl) = qns_ice(:,:,jl) * xcplmask(:,:,0) +  zqns_ice(:,:,jl)* zmsk(:,:)
1638         ENDDO
1639      ELSE
1640         qns_tot(:,:  ) = zqns_tot(:,:  )
1641         qns_ice(:,:,:) = zqns_ice(:,:,:)
1642      ENDIF
1643#endif
1644
1645      !                                                      ! ========================= !
1646      SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )                !      solar heat fluxes    !   (qsr)
1647      !                                                      ! ========================= !
1648      CASE( 'oce only' )
1649         zqsr_tot(:,:  ) = MAX( 0._wp , frcv(jpr_qsroce)%z3(:,:,1) )
1650      CASE( 'conservative' )
1651         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1652         IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN
1653            zqsr_ice(:,:,1:jpl) = frcv(jpr_qsrice)%z3(:,:,1:jpl)
1654         ELSE
1655            ! Set all category values equal for the moment
1656            DO jl=1,jpl
1657               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1)
1658            ENDDO
1659         ENDIF
1660         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1661         zqsr_ice(:,:,1) = frcv(jpr_qsrice)%z3(:,:,1)
1662      CASE( 'oce and ice' )
1663         zqsr_tot(:,:  ) =  p_frld(:,:) * frcv(jpr_qsroce)%z3(:,:,1)
1664         IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN
1665            DO jl=1,jpl
1666               zqsr_tot(:,:   ) = zqsr_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qsrice)%z3(:,:,jl)   
1667               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,jl)
1668            ENDDO
1669         ELSE
1670            qsr_tot(:,:   ) = qsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1)
1671            DO jl=1,jpl
1672               zqsr_tot(:,:   ) = zqsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1)
1673               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1)
1674            ENDDO
1675         ENDIF
1676      CASE( 'mixed oce-ice' )
1677         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1678! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED **
1679!       Create solar heat flux over ice using incoming solar heat flux and albedos
1680!       ( see OASIS3 user guide, 5th edition, p39 )
1681         zqsr_ice(:,:,1) = frcv(jpr_qsrmix)%z3(:,:,1) * ( 1.- palbi(:,:,1) )   &
1682            &            / (  1.- ( albedo_oce_mix(:,:  ) * p_frld(:,:)       &
1683            &                     + palbi         (:,:,1) * zicefr(:,:) ) )
1684      END SELECT
1685      IF( ln_dm2dc .AND. ln_cpl ) THEN   ! modify qsr to include the diurnal cycle
1686         zqsr_tot(:,:  ) = sbc_dcy( zqsr_tot(:,:  ) )
1687         DO jl=1,jpl
1688            zqsr_ice(:,:,jl) = sbc_dcy( zqsr_ice(:,:,jl) )
1689         ENDDO
1690      ENDIF
1691
1692#if defined key_lim3
1693      ! --- solar flux over ocean --- !
1694      !         note: p_frld cannot be = 0 since we limit the ice concentration to amax
1695      zqsr_oce = 0._wp
1696      WHERE( p_frld /= 0._wp )  zqsr_oce(:,:) = ( zqsr_tot(:,:) - SUM( a_i * zqsr_ice, dim=3 ) ) / p_frld(:,:)
1697
1698      IF( ln_mixcpl ) THEN   ;   qsr_oce(:,:) = qsr_oce(:,:) * xcplmask(:,:,0) +  zqsr_oce(:,:)* zmsk(:,:)
1699      ELSE                   ;   qsr_oce(:,:) = zqsr_oce(:,:)   ;   ENDIF
1700#endif
1701
1702      IF( ln_mixcpl ) THEN
1703         qsr_tot(:,:) = qsr(:,:) * p_frld(:,:) + SUM( qsr_ice(:,:,:) * a_i(:,:,:), dim=3 )   ! total flux from blk
1704         qsr_tot(:,:) = qsr_tot(:,:) * xcplmask(:,:,0) +  zqsr_tot(:,:)* zmsk(:,:)
1705         DO jl=1,jpl
1706            qsr_ice(:,:,jl) = qsr_ice(:,:,jl) * xcplmask(:,:,0) +  zqsr_ice(:,:,jl)* zmsk(:,:)
1707         ENDDO
1708      ELSE
1709         qsr_tot(:,:  ) = zqsr_tot(:,:  )
1710         qsr_ice(:,:,:) = zqsr_ice(:,:,:)
1711      ENDIF
1712
1713      !                                                      ! ========================= !
1714      SELECT CASE( TRIM( sn_rcv_dqnsdt%cldes ) )             !          d(qns)/dt        !
1715      !                                                      ! ========================= !
1716      CASE ('coupled')
1717         IF ( TRIM(sn_rcv_dqnsdt%clcat) == 'yes' ) THEN
1718            zdqns_ice(:,:,1:jpl) = frcv(jpr_dqnsdt)%z3(:,:,1:jpl)
1719         ELSE
1720            ! Set all category values equal for the moment
1721            DO jl=1,jpl
1722               zdqns_ice(:,:,jl) = frcv(jpr_dqnsdt)%z3(:,:,1)
1723            ENDDO
1724         ENDIF
1725      END SELECT
1726     
1727      IF( ln_mixcpl ) THEN
1728         DO jl=1,jpl
1729            dqns_ice(:,:,jl) = dqns_ice(:,:,jl) * xcplmask(:,:,0) + zdqns_ice(:,:,jl) * zmsk(:,:)
1730         ENDDO
1731      ELSE
1732         dqns_ice(:,:,:) = zdqns_ice(:,:,:)
1733      ENDIF
1734     
1735      !                                                      ! ========================= !
1736      SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) )             !    topmelt and botmelt    !
1737      !                                                      ! ========================= !
1738      CASE ('coupled')
1739         topmelt(:,:,:)=frcv(jpr_topm)%z3(:,:,:)
1740         botmelt(:,:,:)=frcv(jpr_botm)%z3(:,:,:)
1741      END SELECT
1742
1743      ! Surface transimission parameter io (Maykut Untersteiner , 1971 ; Ebert and Curry, 1993 )
1744      ! Used for LIM2 and LIM3
1745      ! Coupled case: since cloud cover is not received from atmosphere
1746      !               ===> used prescribed cloud fraction representative for polar oceans in summer (0.81)
1747      fr1_i0(:,:) = ( 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice )
1748      fr2_i0(:,:) = ( 0.82 * ( 1.0 - cldf_ice ) + 0.65 * cldf_ice )
1749
1750      CALL wrk_dealloc( jpi,jpj,     zcptn, ztmp, zicefr, zmsk, zsnw )
1751      CALL wrk_dealloc( jpi,jpj,     zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice )
1752      CALL wrk_dealloc( jpi,jpj,     zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice )
1753      CALL wrk_dealloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice )
1754      !
1755      IF( nn_timing == 1 )  CALL timing_stop('sbc_cpl_ice_flx')
1756      !
1757   END SUBROUTINE sbc_cpl_ice_flx
1758   
1759   
1760   SUBROUTINE sbc_cpl_snd( kt )
1761      !!----------------------------------------------------------------------
1762      !!             ***  ROUTINE sbc_cpl_snd  ***
1763      !!
1764      !! ** Purpose :   provide the ocean-ice informations to the atmosphere
1765      !!
1766      !! ** Method  :   send to the atmosphere through a call to cpl_snd
1767      !!              all the needed fields (as defined in sbc_cpl_init)
1768      !!----------------------------------------------------------------------
1769      INTEGER, INTENT(in) ::   kt
1770      !
1771      INTEGER ::   ji, jj, jl   ! dummy loop indices
1772      INTEGER ::   isec, info   ! local integer
1773      REAL(wp) ::   zumax, zvmax
1774      REAL(wp), POINTER, DIMENSION(:,:)   ::   zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1
1775      REAL(wp), POINTER, DIMENSION(:,:,:) ::   ztmp3, ztmp4   
1776      !!----------------------------------------------------------------------
1777      !
1778      IF( nn_timing == 1 )  CALL timing_start('sbc_cpl_snd')
1779      !
1780      CALL wrk_alloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 )
1781      CALL wrk_alloc( jpi,jpj,jpl, ztmp3, ztmp4 )
1782
1783      isec = ( kt - nit000 ) * NINT(rdttra(1))        ! date of exchanges
1784
1785      zfr_l(:,:) = 1.- fr_i(:,:)
1786      !                                                      ! ------------------------- !
1787      !                                                      !    Surface temperature    !   in Kelvin
1788      !                                                      ! ------------------------- !
1789      IF( ssnd(jps_toce)%laction .OR. ssnd(jps_tice)%laction .OR. ssnd(jps_tmix)%laction ) THEN
1790         
1791         IF ( nn_components == jp_iam_opa ) THEN
1792            ztmp1(:,:) = tsn(:,:,1,jp_tem)   ! send temperature as it is (potential or conservative) -> use of ln_useCT on the received part
1793         ELSE
1794            ! we must send the surface potential temperature
1795            IF( ln_useCT )  THEN    ;   ztmp1(:,:) = eos_pt_from_ct( tsn(:,:,1,jp_tem), tsn(:,:,1,jp_sal) )
1796            ELSE                    ;   ztmp1(:,:) = tsn(:,:,1,jp_tem)
1797            ENDIF
1798            !
1799            SELECT CASE( sn_snd_temp%cldes)
1800            CASE( 'oce only'             )   ;   ztmp1(:,:) =   ztmp1(:,:) + rt0
1801            CASE( 'oce and ice'          )   ;   ztmp1(:,:) =   ztmp1(:,:) + rt0
1802               SELECT CASE( sn_snd_temp%clcat )
1803               CASE( 'yes' )   
1804                  ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl)
1805               CASE( 'no' )
1806                  WHERE( SUM( a_i, dim=3 ) /= 0. )
1807                     ztmp3(:,:,1) = SUM( tn_ice * a_i, dim=3 ) / SUM( a_i, dim=3 )
1808                  ELSEWHERE
1809                     ztmp3(:,:,1) = rt0
1810                  END WHERE
1811               CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' )
1812               END SELECT
1813            CASE( 'weighted oce and ice' )   ;   ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:)   
1814               SELECT CASE( sn_snd_temp%clcat )
1815               CASE( 'yes' )   
1816                  ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl)
1817               CASE( 'no' )
1818                  ztmp3(:,:,:) = 0.0
1819                  DO jl=1,jpl
1820                     ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl)
1821                  ENDDO
1822               CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' )
1823               END SELECT
1824            CASE( 'mixed oce-ice'        )   
1825               ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) 
1826               DO jl=1,jpl
1827                  ztmp1(:,:) = ztmp1(:,:) + tn_ice(:,:,jl) * a_i(:,:,jl)
1828               ENDDO
1829            CASE default                     ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%cldes' )
1830            END SELECT
1831         ENDIF
1832         IF( ssnd(jps_toce)%laction )   CALL cpl_snd( jps_toce, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
1833         IF( ssnd(jps_tice)%laction )   CALL cpl_snd( jps_tice, isec, ztmp3, info )
1834         IF( ssnd(jps_tmix)%laction )   CALL cpl_snd( jps_tmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
1835      ENDIF
1836      !                                                      ! ------------------------- !
1837      !                                                      !           Albedo          !
1838      !                                                      ! ------------------------- !
1839      IF( ssnd(jps_albice)%laction ) THEN                         ! ice
1840          SELECT CASE( sn_snd_alb%cldes )
1841          CASE( 'ice' )
1842             SELECT CASE( sn_snd_alb%clcat )
1843             CASE( 'yes' )   
1844                ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl)
1845             CASE( 'no' )
1846                WHERE( SUM( a_i, dim=3 ) /= 0. )
1847                   ztmp1(:,:) = SUM( alb_ice (:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) / SUM( a_i(:,:,1:jpl), dim=3 )
1848                ELSEWHERE
1849                   ztmp1(:,:) = albedo_oce_mix(:,:)
1850                END WHERE
1851             CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%clcat' )
1852             END SELECT
1853          CASE( 'weighted ice' )   ;
1854             SELECT CASE( sn_snd_alb%clcat )
1855             CASE( 'yes' )   
1856                ztmp3(:,:,1:jpl) =  alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl)
1857             CASE( 'no' )
1858                WHERE( fr_i (:,:) > 0. )
1859                   ztmp1(:,:) = SUM (  alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 )
1860                ELSEWHERE
1861                   ztmp1(:,:) = 0.
1862                END WHERE
1863             CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_ice%clcat' )
1864             END SELECT
1865          CASE default      ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%cldes' )
1866         END SELECT
1867
1868         SELECT CASE( sn_snd_alb%clcat )
1869            CASE( 'yes' )   
1870               CALL cpl_snd( jps_albice, isec, ztmp3, info )      !-> MV this has never been checked in coupled mode
1871            CASE( 'no'  )   
1872               CALL cpl_snd( jps_albice, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) 
1873         END SELECT
1874      ENDIF
1875
1876      IF( ssnd(jps_albmix)%laction ) THEN                         ! mixed ice-ocean
1877         ztmp1(:,:) = albedo_oce_mix(:,:) * zfr_l(:,:)
1878         DO jl=1,jpl
1879            ztmp1(:,:) = ztmp1(:,:) + alb_ice(:,:,jl) * a_i(:,:,jl)
1880         ENDDO
1881         CALL cpl_snd( jps_albmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
1882      ENDIF
1883      !                                                      ! ------------------------- !
1884      !                                                      !  Ice fraction & Thickness !
1885      !                                                      ! ------------------------- !
1886      ! Send ice fraction field to atmosphere
1887      IF( ssnd(jps_fice)%laction ) THEN
1888         SELECT CASE( sn_snd_thick%clcat )
1889         CASE( 'yes' )   ;   ztmp3(:,:,1:jpl) =  a_i(:,:,1:jpl)
1890         CASE( 'no'  )   ;   ztmp3(:,:,1    ) = fr_i(:,:      )
1891         CASE default    ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
1892         END SELECT
1893         IF( ssnd(jps_fice)%laction )   CALL cpl_snd( jps_fice, isec, ztmp3, info )
1894      ENDIF
1895     
1896      ! Send ice fraction field to OPA (sent by SAS in SAS-OPA coupling)
1897      IF( ssnd(jps_fice2)%laction ) THEN
1898         ztmp3(:,:,1) = fr_i(:,:)
1899         IF( ssnd(jps_fice2)%laction )   CALL cpl_snd( jps_fice2, isec, ztmp3, info )
1900      ENDIF
1901
1902      ! Send ice and snow thickness field
1903      IF( ssnd(jps_hice)%laction .OR. ssnd(jps_hsnw)%laction ) THEN
1904         SELECT CASE( sn_snd_thick%cldes)
1905         CASE( 'none'                  )       ! nothing to do
1906         CASE( 'weighted ice and snow' )   
1907            SELECT CASE( sn_snd_thick%clcat )
1908            CASE( 'yes' )   
1909               ztmp3(:,:,1:jpl) =  ht_i(:,:,1:jpl) * a_i(:,:,1:jpl)
1910               ztmp4(:,:,1:jpl) =  ht_s(:,:,1:jpl) * a_i(:,:,1:jpl)
1911            CASE( 'no' )
1912               ztmp3(:,:,:) = 0.0   ;  ztmp4(:,:,:) = 0.0
1913               DO jl=1,jpl
1914                  ztmp3(:,:,1) = ztmp3(:,:,1) + ht_i(:,:,jl) * a_i(:,:,jl)
1915                  ztmp4(:,:,1) = ztmp4(:,:,1) + ht_s(:,:,jl) * a_i(:,:,jl)
1916               ENDDO
1917            CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
1918            END SELECT
1919         CASE( 'ice and snow'         )   
1920            SELECT CASE( sn_snd_thick%clcat )
1921            CASE( 'yes' )
1922               ztmp3(:,:,1:jpl) = ht_i(:,:,1:jpl)
1923               ztmp4(:,:,1:jpl) = ht_s(:,:,1:jpl)
1924            CASE( 'no' )
1925               WHERE( SUM( a_i, dim=3 ) /= 0. )
1926                  ztmp3(:,:,1) = SUM( ht_i * a_i, dim=3 ) / SUM( a_i, dim=3 )
1927                  ztmp4(:,:,1) = SUM( ht_s * a_i, dim=3 ) / SUM( a_i, dim=3 )
1928               ELSEWHERE
1929                 ztmp3(:,:,1) = 0.
1930                 ztmp4(:,:,1) = 0.
1931               END WHERE
1932            CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
1933            END SELECT
1934         CASE default                     ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%cldes' )
1935         END SELECT
1936         IF( ssnd(jps_hice)%laction )   CALL cpl_snd( jps_hice, isec, ztmp3, info )
1937         IF( ssnd(jps_hsnw)%laction )   CALL cpl_snd( jps_hsnw, isec, ztmp4, info )
1938      ENDIF
1939      !
1940#if defined key_cpl_carbon_cycle
1941      !                                                      ! ------------------------- !
1942      !                                                      !  CO2 flux from PISCES     !
1943      !                                                      ! ------------------------- !
1944      IF( ssnd(jps_co2)%laction )   CALL cpl_snd( jps_co2, isec, RESHAPE ( oce_co2, (/jpi,jpj,1/) ) , info )
1945      !
1946#endif
1947      !                                                      ! ------------------------- !
1948      IF( ssnd(jps_ocx1)%laction ) THEN                      !      Surface current      !
1949         !                                                   ! ------------------------- !
1950         !   
1951         !                                                  j+1   j     -----V---F
1952         ! surface velocity always sent from T point                     !       |
1953         !                                                        j      |   T   U
1954         !                                                               |       |
1955         !                                                   j    j-1   -I-------|
1956         !                                               (for I)         |       |
1957         !                                                              i-1  i   i
1958         !                                                               i      i+1 (for I)
1959         IF( nn_components == jp_iam_opa ) THEN
1960            zotx1(:,:) = un(:,:,1) 
1961            zoty1(:,:) = vn(:,:,1) 
1962         ELSE       
1963            SELECT CASE( TRIM( sn_snd_crt%cldes ) )
1964            CASE( 'oce only'             )      ! C-grid ==> T
1965               DO jj = 2, jpjm1
1966                  DO ji = fs_2, fs_jpim1   ! vector opt.
1967                     zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj  ,1) )
1968                     zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji  ,jj-1,1) ) 
1969                  END DO
1970               END DO
1971            CASE( 'weighted oce and ice' )   
1972               SELECT CASE ( cp_ice_msh )
1973               CASE( 'C' )                      ! Ocean and Ice on C-grid ==> T
1974                  DO jj = 2, jpjm1
1975                     DO ji = fs_2, fs_jpim1   ! vector opt.
1976                        zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj) 
1977                        zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj)
1978                        zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj)
1979                        zity1(ji,jj) = 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj)
1980                     END DO
1981                  END DO
1982               CASE( 'I' )                      ! Ocean on C grid, Ice on I-point (B-grid) ==> T
1983                  DO jj = 2, jpjm1
1984                     DO ji = 2, jpim1   ! NO vector opt.
1985                        zotx1(ji,jj) = 0.5  * ( un(ji,jj,1)      + un(ji-1,jj  ,1) ) * zfr_l(ji,jj) 
1986                        zoty1(ji,jj) = 0.5  * ( vn(ji,jj,1)      + vn(ji  ,jj-1,1) ) * zfr_l(ji,jj) 
1987                        zitx1(ji,jj) = 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1)                     &
1988                           &                  + u_ice(ji+1,jj  ) + u_ice(ji,jj  )  ) *  fr_i(ji,jj)
1989                        zity1(ji,jj) = 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1)                     &
1990                           &                  + v_ice(ji+1,jj  ) + v_ice(ji,jj  )  ) *  fr_i(ji,jj)
1991                     END DO
1992                  END DO
1993               CASE( 'F' )                      ! Ocean on C grid, Ice on F-point (B-grid) ==> T
1994                  DO jj = 2, jpjm1
1995                     DO ji = 2, jpim1   ! NO vector opt.
1996                        zotx1(ji,jj) = 0.5  * ( un(ji,jj,1)      + un(ji-1,jj  ,1) ) * zfr_l(ji,jj) 
1997                        zoty1(ji,jj) = 0.5  * ( vn(ji,jj,1)      + vn(ji  ,jj-1,1) ) * zfr_l(ji,jj) 
1998                        zitx1(ji,jj) = 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1)                     &
1999                           &                  + u_ice(ji-1,jj  ) + u_ice(ji,jj  )  ) *  fr_i(ji,jj)
2000                        zity1(ji,jj) = 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1)                     &
2001                           &                  + v_ice(ji-1,jj  ) + v_ice(ji,jj  )  ) *  fr_i(ji,jj)
2002                     END DO
2003                  END DO
2004               END SELECT
2005               CALL lbc_lnk( zitx1, 'T', -1. )   ;   CALL lbc_lnk( zity1, 'T', -1. )
2006            CASE( 'mixed oce-ice'        )
2007               SELECT CASE ( cp_ice_msh )
2008               CASE( 'C' )                      ! Ocean and Ice on C-grid ==> T
2009                  DO jj = 2, jpjm1
2010                     DO ji = fs_2, fs_jpim1   ! vector opt.
2011                        zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj)   &
2012                           &         + 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj)
2013                        zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj)   &
2014                           &         + 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj)
2015                     END DO
2016                  END DO
2017               CASE( 'I' )                      ! Ocean on C grid, Ice on I-point (B-grid) ==> T
2018                  DO jj = 2, jpjm1
2019                     DO ji = 2, jpim1   ! NO vector opt.
2020                        zotx1(ji,jj) = 0.5  * ( un(ji,jj,1)      + un(ji-1,jj  ,1) ) * zfr_l(ji,jj)   &   
2021                           &         + 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1)                     &
2022                           &                  + u_ice(ji+1,jj  ) + u_ice(ji,jj  )  ) *  fr_i(ji,jj)
2023                        zoty1(ji,jj) = 0.5  * ( vn(ji,jj,1)      + vn(ji  ,jj-1,1) ) * zfr_l(ji,jj)   & 
2024                           &         + 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1)                     &
2025                           &                  + v_ice(ji+1,jj  ) + v_ice(ji,jj  )  ) *  fr_i(ji,jj)
2026                     END DO
2027                  END DO
2028               CASE( 'F' )                      ! Ocean on C grid, Ice on F-point (B-grid) ==> T
2029                  DO jj = 2, jpjm1
2030                     DO ji = 2, jpim1   ! NO vector opt.
2031                        zotx1(ji,jj) = 0.5  * ( un(ji,jj,1)      + un(ji-1,jj  ,1) ) * zfr_l(ji,jj)   &   
2032                           &         + 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1)                     &
2033                           &                  + u_ice(ji-1,jj  ) + u_ice(ji,jj  )  ) *  fr_i(ji,jj)
2034                        zoty1(ji,jj) = 0.5  * ( vn(ji,jj,1)      + vn(ji  ,jj-1,1) ) * zfr_l(ji,jj)   & 
2035                           &         + 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1)                     &
2036                           &                  + v_ice(ji-1,jj  ) + v_ice(ji,jj  )  ) *  fr_i(ji,jj)
2037                     END DO
2038                  END DO
2039               END SELECT
2040            END SELECT
2041            CALL lbc_lnk( zotx1, ssnd(jps_ocx1)%clgrid, -1. )   ;   CALL lbc_lnk( zoty1, ssnd(jps_ocy1)%clgrid, -1. )
2042            !
2043         ENDIF
2044         !
2045         !
2046         IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) THEN             ! Rotation of the components
2047            !                                                                     ! Ocean component
2048            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->e', ztmp1 )       ! 1st component
2049            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->n', ztmp2 )       ! 2nd component
2050            zotx1(:,:) = ztmp1(:,:)                                                   ! overwrite the components
2051            zoty1(:,:) = ztmp2(:,:)
2052            IF( ssnd(jps_ivx1)%laction ) THEN                                     ! Ice component
2053               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 )    ! 1st component
2054               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 )    ! 2nd component
2055               zitx1(:,:) = ztmp1(:,:)                                                ! overwrite the components
2056               zity1(:,:) = ztmp2(:,:)
2057            ENDIF
2058         ENDIF
2059         !
2060         ! spherical coordinates to cartesian -> 2 components to 3 components
2061         IF( TRIM( sn_snd_crt%clvref ) == 'cartesian' ) THEN
2062            ztmp1(:,:) = zotx1(:,:)                     ! ocean currents
2063            ztmp2(:,:) = zoty1(:,:)
2064            CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 )
2065            !
2066            IF( ssnd(jps_ivx1)%laction ) THEN           ! ice velocities
2067               ztmp1(:,:) = zitx1(:,:)
2068               ztmp1(:,:) = zity1(:,:)
2069               CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 )
2070            ENDIF
2071         ENDIF
2072         !
2073         IF( ssnd(jps_ocx1)%laction )   CALL cpl_snd( jps_ocx1, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info )   ! ocean x current 1st grid
2074         IF( ssnd(jps_ocy1)%laction )   CALL cpl_snd( jps_ocy1, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info )   ! ocean y current 1st grid
2075         IF( ssnd(jps_ocz1)%laction )   CALL cpl_snd( jps_ocz1, isec, RESHAPE ( zotz1, (/jpi,jpj,1/) ), info )   ! ocean z current 1st grid
2076         !
2077         IF( ssnd(jps_ivx1)%laction )   CALL cpl_snd( jps_ivx1, isec, RESHAPE ( zitx1, (/jpi,jpj,1/) ), info )   ! ice   x current 1st grid
2078         IF( ssnd(jps_ivy1)%laction )   CALL cpl_snd( jps_ivy1, isec, RESHAPE ( zity1, (/jpi,jpj,1/) ), info )   ! ice   y current 1st grid
2079         IF( ssnd(jps_ivz1)%laction )   CALL cpl_snd( jps_ivz1, isec, RESHAPE ( zitz1, (/jpi,jpj,1/) ), info )   ! ice   z current 1st grid
2080         !
2081      ENDIF
2082      !
2083      !
2084      !  Fields sent by OPA to SAS when doing OPA<->SAS coupling
2085      !                                                        ! SSH
2086      IF( ssnd(jps_ssh )%laction )  THEN
2087         !                          ! removed inverse barometer ssh when Patm
2088         !                          forcing is used (for sea-ice dynamics)
2089         IF( ln_apr_dyn ) THEN   ;   ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) )
2090         ELSE                    ;   ztmp1(:,:) = sshn(:,:)
2091         ENDIF
2092         CALL cpl_snd( jps_ssh   , isec, RESHAPE ( ztmp1            , (/jpi,jpj,1/) ), info )
2093
2094      ENDIF
2095      !                                                        ! SSS
2096      IF( ssnd(jps_soce  )%laction )  THEN
2097         CALL cpl_snd( jps_soce  , isec, RESHAPE ( tsn(:,:,1,jp_sal), (/jpi,jpj,1/) ), info )
2098      ENDIF
2099      !                                                        ! first T level thickness
2100      IF( ssnd(jps_e3t1st )%laction )  THEN
2101         CALL cpl_snd( jps_e3t1st, isec, RESHAPE ( fse3t_n(:,:,1)   , (/jpi,jpj,1/) ), info )
2102      ENDIF
2103      !                                                        ! Qsr fraction
2104      IF( ssnd(jps_fraqsr)%laction )  THEN
2105         CALL cpl_snd( jps_fraqsr, isec, RESHAPE ( fraqsr_1lev(:,:) , (/jpi,jpj,1/) ), info )
2106      ENDIF
2107      !
2108      !  Fields sent by SAS to OPA when OASIS coupling
2109      !                                                        ! Solar heat flux
2110      IF( ssnd(jps_qsroce)%laction )  CALL cpl_snd( jps_qsroce, isec, RESHAPE ( qsr , (/jpi,jpj,1/) ), info )
2111      IF( ssnd(jps_qnsoce)%laction )  CALL cpl_snd( jps_qnsoce, isec, RESHAPE ( qns , (/jpi,jpj,1/) ), info )
2112      IF( ssnd(jps_oemp  )%laction )  CALL cpl_snd( jps_oemp  , isec, RESHAPE ( emp , (/jpi,jpj,1/) ), info )
2113      IF( ssnd(jps_sflx  )%laction )  CALL cpl_snd( jps_sflx  , isec, RESHAPE ( sfx , (/jpi,jpj,1/) ), info )
2114      IF( ssnd(jps_otx1  )%laction )  CALL cpl_snd( jps_otx1  , isec, RESHAPE ( utau, (/jpi,jpj,1/) ), info )
2115      IF( ssnd(jps_oty1  )%laction )  CALL cpl_snd( jps_oty1  , isec, RESHAPE ( vtau, (/jpi,jpj,1/) ), info )
2116      IF( ssnd(jps_rnf   )%laction )  CALL cpl_snd( jps_rnf   , isec, RESHAPE ( rnf , (/jpi,jpj,1/) ), info )
2117      IF( ssnd(jps_taum  )%laction )  CALL cpl_snd( jps_taum  , isec, RESHAPE ( taum, (/jpi,jpj,1/) ), info )
2118
2119      CALL wrk_dealloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 )
2120      CALL wrk_dealloc( jpi,jpj,jpl, ztmp3, ztmp4 )
2121      !
2122      IF( nn_timing == 1 )  CALL timing_stop('sbc_cpl_snd')
2123      !
2124   END SUBROUTINE sbc_cpl_snd
2125   
2126   !!======================================================================
2127END MODULE sbccpl
Note: See TracBrowser for help on using the repository browser.