New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in branches/DEV_r1826_DOC/DOC/TexFiles/Biblio – NEMO

source: branches/DEV_r1826_DOC/DOC/TexFiles/Biblio/Biblio.bib @ 2195

Last change on this file since 2195 was 2195, checked in by gm, 14 years ago

ticket:#658 update TRA DYN & SBC with sbc, qsr, nxt and rnf considerations

  • Property svn:executable set to *
File size: 120.2 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OD = {Ocean Dynamics}}
67
68@STRING{OM = {Ocean Modelling}}
69
70@STRING{OS = {Ocean Science}}
71
72@STRING{OUP = {Oxford University Press}}
73
74@STRING{PH = {Prentice-Hall}}
75
76@STRING{PO = {Prog. Oceangr.}}
77
78@STRING{PP = {Pergamon Press}}
79
80@STRING{PRSL = {Proceedings of the Royal Society of London}}
81
82@STRING{QJRMS = {Quart. J. Roy. Meteor. Soc.}}
83
84@STRING{Recherche = {La Recherche}}
85
86@STRING{Science = {Science}}
87
88@STRING{SV = {Springer-Verlag}}
89
90@STRING{Tellus = {Tellus}}
91
92@ARTICLE{Adcroft_Campin_OM04,
93  author = {A. Adcroft and J.-M. Campin},
94  title = {Re-scaled height coordinates for accurate representation of free-surface
95   flows in ocean circulation models},
96  journal = OM,
97  year = {2004},
98  volume = {7},
99  owner = {gm},
100  timestamp = {2008.01.27}
101}
102
103@ARTICLE{Arakawa1966,
104  author = {A. Arakawa},
105  title = {Computational design for long term numerical integration of the equations
106   of fluid motion, two-dimensional incompressible flow, Part. I.},
107  journal = JCP,
108  year = {1966},
109  volume = {I},
110  pages = {119--149},
111  owner = {gm},
112  timestamp = {2007.08.04}
113}
114
115@ARTICLE{Arakawa_Hsu_MWR90,
116  author = {A. Arakawa and Y.-J. G. Hsu},
117  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
118   the Shallow Water Equations},
119  journal = MWR,
120  year = {1990},
121  volume = {118},
122  pages = {1960--1969},
123  number = {10},
124  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
125   water equations with no or arbitrarily small energy dissipation,
126   a family of finite-difference schemes have been derived with which
127   potential enstrophy is guaranteed to decrease while energy is conserved
128   (when the mass flux is nondivergent and time is continuous). Among
129   this family of schemes, there is a member that minimizes the spurious
130   impact of infinite potential vorticities associated with infinitesimal
131   fluid depth. The scheme is, therefore, useful for problems in which
132   the free surface may intersect with the lower boundary.},
133  date = {October 01, 1990},
134  owner = {gm},
135  timestamp = {2007.08.05}
136}
137
138@ARTICLE{Arakawa_Lamb_MWR81,
139  author = {Arakawa, Akio and Lamb, Vivian R.},
140  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
141   Water Equations},
142  journal = MWR,
143  year = {1981},
144  volume = {109},
145  pages = {18--36},
146  number = {1},
147  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
148   topography, a potential enstrophy and energy conserving scheme for
149   the shallow water equations is derived. It is pointed out that a
150   family of schemes can conserve total energy for general flow and
151   potential enstrophy for flow with no mass flux divergence. The newly
152   derived scheme is a unique member of this family, that conserves
153   both potential enstrophy and energy for general flow. Comparison
154   by means of numerical experiment with a scheme that conserves (potential)
155   enstrophy for purely horizontal nondivergent flow demonstrated the
156   considerable superiority of the newly derived potential enstrophy
157   and energy conserving scheme, not only in suppressing a spurious
158   energy cascade but also in determining the overall flow regime. The
159   potential enstrophy and energy conserving scheme for a spherical
160   grid is also presented.},
161  date = {January 01, 1981},
162  owner = {gm},
163  timestamp = {2007.08.05}
164}
165
166@ARTICLE{Arhan2006,
167  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
169   Atlantic Ocean from a general circulation model},
170  journal = JPO,
171  year = {2006},
172  volume = { 36},
173  pages = {1502--1522}
174}
175
176@ARTICLE{ASSELIN_MWR72,
177  author = {R. Asselin},
178  title = {Frequency Filter for Time Integrations},
179  journal = MWR,
180  year = {1972},
181  volume = {100},
182  pages = {487--490},
183  number = {6},
184  abstract = {A simple filter for controlling high-frequency computational and physical
185   modes arising in time integrations is proposed. A linear analysis
186   of the filter with leapfrog, implicit, and semi-implicit, differences
187   is made. The filter very quickly removes the computational mode and
188   is also very useful in damping high-frequency physical waves. The
189   stability of the leapfrog scheme is adversely affected when a large
190   filter parameter is used, but the analysis shows that the use of
191   centered differences with frequency filter is still more advantageous
192   than the use of the Euler-backward method. An example of the use
193   of the filter in an actual forecast with the meteorological equations
194   is shown.},
195  date = {June 01, 1972},
196  owner = {gm},
197  timestamp = {2007.08.03}
198}
199
200@ARTICLE{Atmadipoera_al_DSR09,
201  author = {A. Atmadipoera and R. Molcard and G. Madec and S.Wijffels and J.
202   Sprintall and A. Koch-Larrouy and I. Jaya and A. Supangat},
203  title = {Characteristics and Variability of the Indonesian Throughflow Water
204   at the Outflow Straits},
205  journal = DSR,
206  year = {2009},
207  volume = {in press},
208  owner = {gm},
209  timestamp = {2009.08.19}
210}
211
212@ARTICLE{Aumont_al_GBC99,
213  author = {O. Aumont and P. Monfray and J. C. Orr and G. Madec and E. Maier-Reimer},
214  title = {Nutrient trapping in the equatorial Pacific: The ocean circulation
215   solution},
216  journal = GBC,
217  year = {1999},
218  volume = {13},
219  pages = {351--369},
220  owner = {gm},
221  timestamp = {2009.08.20}
222}
223
224@ARTICLE{Aumont_al_CD98,
225  author = {O. Aumont and J.C. Orr and D. Jamous and P. Monfray and O. Marti
226   and G. Madec},
227  title = {A degradation approach to accelerate simulations to steady state
228   in a 3-D tracer transport model of the global ocean},
229  journal = CD,
230  year = {1998},
231  volume = {14},
232  pages = {101--116},
233  owner = {gm},
234  timestamp = {2009.08.20}
235}
236
237@ARTICLE{Axell_JGR02,
238  author = {L. B. Axell},
239  title = {Wind-driven internal waves and Langmuir circulations in a numerical
240   ocean model of the southern Baltic Sea},
241  journal = JGR,
242  year = {2002},
243  volume = {107},
244  doi = {10.1029/2001JC000922},
245  owner = {gm},
246  timestamp = {2009.01.16},
247  url = {http://dx.doi.org/10.1029/2001JC000922}
248}
249
250@ARTICLE{Ayina_al_JC06,
251  author = {L.-H. Ayina and A. Bentamy and A. Munes-Mestaz and G. Madec},
252  title = {The Impact of Satellite Winds and Latent Heat Fluxes in a Numerical
253   Simulation of the Tropical Pacific Ocean},
254  journal = JC,
255  year = {2006},
256  volume = {19},
257  pages = {5889–-5902},
258  owner = {gm},
259  timestamp = {2009.08.19}
260}
261
262@ARTICLE{Barnier_al_OD06,
263  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
264   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
265   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
266   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
267   and B. De Cuevas},
268  title = {Impact of partial steps and momentum advection schemes in a global
269   ocean circulation model at eddy-permitting resolution.},
270  journal = OD,
271  year = {2006},
272  volume = {56},
273  pages = {543--567},
274  doi = {10.1007/s10236-006-0082-1},
275  owner = {gm},
276  timestamp = {2008.01.25},
277  url = {http://dx.doi.org/10.1007/s10236-006-0082-1}
278}
279
280@INCOLLECTION{Barnier1996,
281  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
282  title = {Modeling the ocean circulation in the South Atlantic: A strategy
283   for dealing with open boundaries},
284  booktitle = {The South Atlantic: Present and Past Circulation},
285  publisher = {Springer-Verlag, Berlin},
286  year = {1996},
287  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
288  pages = {289-304}
289}
290
291@ARTICLE{Barnier1998,
292  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
293   and M. Coulibaly},
294  title = {A sigma-coordinate primitive equation model for studying the circulation
295   in the South Atlantic I, Model configuration with error estimates},
296  journal = DSR,
297  year = {1998},
298  volume = {45},
299  pages = {543--572}
300}
301
302@ARTICLE{Barthelet_al_CRAS98,
303  author = {P. Barthelet and S. Bony and P. Braconnot and A. Braum and D. Cariolle
304   and E. Cohen-Solal and J.-L. Dufresne and P. Delecluse and M. D\'{e}qu\'{e}
305   and L. Fairhead and M.-A. Filiberti and M. Forichon and J.-Y. Grandpeix
306   and E. Guilyardi and M.-N. Houssais and M. Imbard and H. Le Treut
307   and C. Lévy and Z.X. Li and G. Madec and P. Marquet and O. Marti
308   and S. Planton and L. Terray and O. Thual and S. Valcke},
309  title = {Global coupled simulations of climate change due to increased atmospheric
310   CO2 concentration. C. R. Acad. Sci Paris, 326, 677-684.},
311  journal = {C. R. Acad. Sci Paris},
312  year = {1998},
313  volume = {326},
314  pages = {677--684},
315  owner = {gm},
316  timestamp = {2009.08.20}
317}
318
319@ARTICLE{Beckmann1998,
320  author = {A. Beckmann},
321  title = {The representation of bottom boundary layer processes in numerical
322   ocean circulation models.},
323  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
324   (eds.), NATO Science Series, Kluwer Academic Publishers},
325  year = {1998},
326  owner = {gm},
327  timestamp = {2007.08.04}
328}
329
330@ARTICLE{Beckmann_Doscher1997,
331  author = {A. Beckmann and R. D\"{o}scher},
332  title = {A method for improved representation of dense water spreading over
333   topography in geopotential-coordinate models},
334  journal = JPO,
335  year = {1997},
336  volume = {27},
337  pages = {581--591},
338  owner = {gm},
339  timestamp = {2007.08.04}
340}
341
342@ARTICLE{Beckmann1993,
343  author = {A. Beckmann and D. B. Haidvogel},
344  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
345   I - Problem Formulation and Model Accuracy},
346  journal = JPO,
347  year = {1993},
348  volume = {23},
349  pages = {1736--1753},
350  number = {8},
351  abstract = {A sigma coordinate ocean circulation model is employed to study flow
352   trapped to a tall seamount in a periodic f-plane channel. In Part
353   I, errors arising from the pressure gradient formulation in the steep
354   topography/strong stratification limit are examined. To illustrate
355   the error properties, a linearized adiabatic version of the model
356   is considered, both with and without forcing, and starting from a
357   resting state with level isopycnals. The systematic discretization
358   errors from the horizontal pressure gradient terms are shown analytically
359   to increase with steeper topography (relative to a fixed horizontal
360   grid) and for stronger stratification (as measured by the Burger
361   number). For an initially quiescent unforced ocean, the pressure
362   gradient errors produce a spurious oscillating current that, at the
363   end of 10 days, is approximately 1 cm s−1 in amplitude. The
364   period of the spurious oscillation (about 0.5 days) is shown to be
365   a consequence of the particular form of the pressure gradient terms
366   in the sigma coordinate system. With the addition of an alongchannel
367   diurnal forcing, resonantly generated seamount-trapped waves are
368   observed to form. Error levels in these solutions are less than those
369   in the unforced cases; spurious time-mean currents are several orders
370   of magnitude less in amplitude than the resonant propagating waves.
371   However, numerical instability is encountered in a wider range of
372   parameter space. The properties of these resonantly generated waves
373   is explored in detail in Part II of this study. Several new formulations
374   of the pressure gradient terms are tested. Two of the formulations—constructed
375   to have additional conservation properties relative to the traditional
376   form of the pressure gradient terms (conservation of JEBAR and conservation
377   of energy)—are found to have error properties generally similar
378   to those of the traditional formulation. A corrected gradient algorithm,
379   based upon vertical interpolation of the pressure field, has a dramatically
380   reduced error level but a much more restrictive range of stable behavior.},
381  date = {August 01, 1993},
382  owner = {gm},
383  timestamp = {2007.08.03}
384}
385
386@ARTICLE{Bernie_al_CD08,
387  author = {D. Bernie and E. Guilyardi and G. Madec and J. M. Slingo and S. J.
388   Woolnough},
389  title = {Impact of resolving the diurnal cycle in an ocean–atmosphere GCM.
390   Part 2: A diurnally coupled CGCM},
391  journal = CD,
392  year = {2008},
393  volume = {31, 7},
394  pages = {909--925},
395  doi = {10.1007/s00382-008-0429-z},
396  owner = {gm},
397  timestamp = {2009.08.16},
398  url = {http://dx.doi.org/10.1007/s00382-008-0429-z}
399}
400
401@ARTICLE{Bernie_al_CD07,
402  author = {D. Bernie and E. Guilyardi and G. Madec and J. M. Slingo and S. J.
403   Woolnough},
404  title = {Impact of resolving the diurnal cycle in an ocean–atmosphere GCM.
405   Part 1: a diurnally forced OGCM},
406  journal = CD,
407  year = {2007},
408  volume = {29, 6},
409  pages = {575--590},
410  owner = {gm},
411  timestamp = {2009.08.16}
412}
413
414@ARTICLE{Bernie_al_JC05,
415  author = {D. J. Bernie and S. J. Woolnough and J. M. Slingo and E. Guilyardi},
416  title = {Modelling diurnal and intraseasonal variability of the ocean mixed
417   layer},
418  journal = JC,
419  year = {2005},
420  volume = {18 (8)},
421  pages = {1190--1200},
422  owner = {gm},
423  timestamp = {2010.09.26}
424}
425
426@ARTICLE{Bessiere_al_GRL08,
427  author = {L. Bessi\'{e}res and G. Madec and F. Lyard},
428  title = {Global Tidal Residual Mean Circulation: Does it Affect a Climate
429   OGCM?},
430  journal = GRL,
431  year = {2008},
432  volume = {35},
433  pages = {L03609},
434  doi = {10.1029/2007GL032644},
435  owner = {gm},
436  timestamp = {2009.08.19},
437  url = {http://dx.doi.org/10.1029/2007GL032644}
438}
439
440@ARTICLE{Biastoch_al_JC08,
441  author = {A. Biastoch and C. W. Böning and J. Getzlaff and J.-M. Molines and
442   G. Madec},
443  title = {Causes of interannual – decadal variability in the meridional overturning
444   circulation of the mid-latitude North Atlantic Ocean},
445  journal = JC,
446  year = {2008},
447  volume = {21, 24},
448  pages = {6599-6615},
449  doi = {10.1175/2008JCLI2404.1},
450  owner = {gm},
451  timestamp = {2009.08.19},
452  url = {http://dx.doi.org/10.1175/2008JCLI2404.1}
453}
454
455@ARTICLE{Blanke_al_JPO99,
456  author = {B. Blanke and M. Arhan and G. Madec and S. Roche},
457  title = {Warm Water Paths in the Equatorial Atlantic as Diagnosed with a General
458   Circulation Model},
459  journal = JPO,
460  year = {1999},
461  volume = {29, 11},
462  pages = {2753-2768},
463  owner = {gm},
464  timestamp = {2008.05.27}
465}
466
467@ARTICLE{Blanke1993,
468  author = {B. Blanke and P. Delecluse},
469  title = {Low frequency variability of the tropical Atlantic ocean simulated
470   by a general circulation model with mixed layer physics},
471  journal = JPO,
472  year = {1993},
473  volume = {23},
474  pages = {1363--1388}
475}
476
477@ARTICLE{blanketal97,
478  author = {B. Blanke and J. D. Neelin and D. Gutzler},
479  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
480  journal = JC,
481  year = {1997},
482  volume = {10},
483  pages = {1473--1486},
484  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
485   and predictability is the role of random
486   
487   forcing by atmospheric variability with short correlation times, on
488   coupled variability with interannual timescales.
489   
490   The discussion of this question requires a quantitative assessment
491   of the stochastic component of the wind stress
492   
493   forcing. Self-consistent estimates of this noise (the stochastic forcing)
494   can be made quite naturally in an empirical
495   
496   atmospheric model that uses a statistical estimate of the relationship
497   between sea surface temperature (SST) and
498   
499   wind stress anomaly patterns as the deterministic feedback between
500   the ocean and the atmosphere. The authors
501   
502   use such an empirical model as the atmospheric component of a hybrid
503   coupled model, coupled to the GFDL
504   
505   ocean general circulation model. The authors define as residual the
506   fraction of the Florida State University wind
507   
508   stress not explained by the empirical atmosphere run from observed
509   SST, and a noise product is constructed by
510   
511   random picks among monthly maps of this residual.
512   
513   The impact of included or excluded noise is assessed with several
514   ensembles of simulations. The model is
515   
516   run in coupled regimes where, in the absence of noise, it is perfectly
517   periodic: in the presence of prescribed
518   
519   seasonal variability, the model is strongly frequency locked on a
520   2-yr period; in annual average conditions it
521   
522   has a somewhat longer inherent ENSO period (30 months). Addition of
523   noise brings an irregular behavior that
524   
525   is considerably richer in spatial patterns as well as in temporal
526   structures. The broadening of the model ENSO
527   
528   spectral peak is roughly comparable to observed. The tendency to frequency
529   lock to subharmonic resonances
530   
531   of the seasonal cycle tends to increase the broadening and to emphasize
532   lower frequencies. An inclination to
533   
534   phase lock to preferred seasons persists even in the presence of noise-induced
535   irregularity. Natural uncoupled
536   
537   atmospheric variability is thus a strong candidate for explaining
538   the observed aperiodicity in ENSO time series.
539   
540   Model–model hindcast experiments also suggest the importance of atmospheric
541   noise in setting limits to ENSO
542   
543   predictability.},
544  pdf = {Blanke_etal_JC97.pdf}
545}
546
547@ARTICLE{Blanke_Raynaud_JPO97,
548  author = {B. Blanke and S. Raynaud},
549  title = {Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and
550   Lagrangian Approach from GCM Results},
551  journal = JPO,
552  year = {1997},
553  volume = {27, 6},
554  pages = {1038--1053},
555  owner = {gm},
556  timestamp = {2008.05.27}
557}
558
559@ARTICLE{Blanke_al_JPO01,
560  author = {B. Blanke and S. Speich and G. Madec and K. Döös},
561  title = {A global Diagnostic of interocean mass transfers},
562  journal = JPO,
563  year = {2001},
564  volume = {31, 6},
565  pages = {1623--1632},
566  owner = {gm},
567  timestamp = {2009.08.20}
568}
569
570@ARTICLE{Blanke_al_GRL02,
571  author = {B. Blanke and S. Speich and G. Madec and R. Maug\'{e}},
572  title = {A global diagnostic of interior ocean ventilation},
573  journal = GRL,
574  year = {2002},
575  volume = {29, 8},
576  pages = {1081--1084},
577  owner = {gm},
578  timestamp = {2009.08.20}
579}
580
581@ARTICLE{Blayo2005,
582  author = {E. Blayo and L. Debreu},
583  title = {Revisiting open boundary conditions from the point of view of characteristic
584   variables},
585  journal = OM,
586  year = {2005},
587  volume = {9},
588  pages = {231--252}
589}
590
591@ARTICLE{Bopp_al_GBC01,
592  author = {L. Bopp and P. Monfray and O. Aumont and J.-L. Dufresne and H. Le
593   Treut and G. Madec and L. Terray and J.C. Orr},
594  title = {Potential impact of climate change on marine export production},
595  journal = GBC,
596  year = {2001},
597  volume = {15, 1},
598  pages = {81--101},
599  owner = {gm},
600  timestamp = {2009.08.20}
601}
602
603@ARTICLE{Bougeault1989,
604  author = {P. Bougeault and P. Lacarrere},
605  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
606   Model},
607  journal = MWR,
608  year = {1989},
609  volume = {117},
610  pages = {1872--1890},
611  number = {8},
612  abstract = {The possibility of extending existing techniques for turbulence parameterization
613   in the planetary boundary layer to attitude, orography-induced turbulence
614   events is examined. Starting from a well-tested scheme, we show that
615   it is possible to generalize the specification method of the length
616   scales, with no deterioration of the scheme performance in the boundary
617   layer. The new scheme is implemented in a two-dimensional version
618   of a limited-area, numerical model used for the simulation of mesobeta-scale
619   atmospheric flows. Three well-known cases of orographically induced
620   turbulence are studied. The comparison with observations and former
621   studies shows a satisfactory behavior of the new scheme.},
622  date = {August 01, 1989},
623  owner = {gm},
624  timestamp = {2007.08.06}
625}
626
627@ARTICLE{Boulanger_al_GRL01,
628  author = {J.-P. Boulanger and E. Durand and J.-P. Duvel and C. Menkes and P.
629   Delecluse and M. Imbard and M. Lengaigne and G.Madec and S. Masson},
630  title = {Role of non-linear oceanic processes in the response to westerly
631   wind events: new implications for the 1997 El Niño onset},
632  journal = GRL,
633  year = {2001},
634  volume = {28, 8},
635  pages = {1603--1606},
636  owner = {gm},
637  timestamp = {2009.08.20}
638}
639
640@ARTICLE{de_Boyer_Montegut_al_JGR04,
641  author = {C. de Boyer Mont\'{e}gut and G. Madec and A.S. Fischer and A. Lazar
642   and D. Iudicone},
643  title = {Mixed layer depth over the global ocean: An examination of profile
644   data and a profile-based climatology},
645  journal = JGR,
646  year = {2004},
647  volume = {109},
648  pages = {C12003},
649  doi = {10.1029/2004JC002378},
650  owner = {gm},
651  timestamp = {2009.08.19},
652  url = {http://dx.doi.org/10.1029/2004JC002378}
653}
654
655@ARTICLE{de_Boyer_Montegut_al_JC07,
656  author = {C. de Boyer Mont\'{e}gut and J. Vialard and F. Durand and G. Madec},
657  title = {Simulated seasonal and interannual variability of mixed layer heat
658   budget in the northern Indian Ocean},
659  journal = JC,
660  year = {2007},
661  volume = {20 (13)},
662  pages = {3249--3268},
663  owner = {gm},
664  timestamp = {2009.08.19}
665}
666
667@ARTICLE{Brown_Campana_MWR78,
668  author = {J. A. Brown and K. A. Campana},
669  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
670  journal = MWR,
671  year = {1978},
672  volume = {106},
673  pages = {1125--1136},
674  number = {8},
675  month = aug,
676  abstract = {A simple method for integrating the primitive equations is presented
677   which allows for a timestep increment up to twice that of the conventional
678   leapfrog scheme. It consists of a time-averaging operator, which
679   incorporates three consecutive time levels, on the pressure gradient
680   terms in the equations of motion. An attractive feature of the method
681   is its case in programming, since the resulting finite-difference
682   equations can he solved explicitly.Presented here are linear analyses
683   of the method applied to the barotropic and two-layer baroclinic
684   gravity waves. Also presented is an analysis of the method with a
685   time-damping device incorporated, which is an alternative in controlling
686   linearly amplifying computational modes.},
687  owner = {gm},
688  timestamp = {2007.08.05}
689}
690
691@ARTICLE{Bryan1997,
692  author = {K. Bryan},
693  title = {A Numerical Method for the Study of the Circulation of the World
694   Ocean},
695  journal = JCP,
696  year = {1997},
697  volume = {135, 2},
698  owner = {gm},
699  timestamp = {2007.08.10}
700}
701
702@ARTICLE{Bryan1984,
703  author = {K. Bryan},
704  title = {Accelerating the convergence to equilibrium of ocean-climate models},
705  journal = JPO,
706  year = {1984},
707  volume = {14},
708  owner = {gm},
709  timestamp = {2007.08.10}
710}
711
712@ARTICLE{Bryden1973,
713  author = {H. L. Bryden},
714  title = {New polynomials for thermal expansion, adiabatic temperature gradient
715   
716   and potential temperature of sea water},
717  journal = DSR,
718  year = {1973},
719  volume = {20},
720  pages = {401--408},
721  owner = {gm},
722  timestamp = {2007.08.04}
723}
724
725@ARTICLE{Burchard_OM02,
726  author = {Hans Burchard},
727  title = {Energy-conserving discretisation of turbulent shear and buoyancy
728   production},
729  journal = OM,
730  year = {2002},
731  volume = {4},
732  pages = {347--361},
733  number = {3-4},
734  doi = {10.1016/S1463-5003(02)00009-4},
735  owner = {gm},
736  timestamp = {2008.11.28},
737  url = {http://dx.doi.org/10.1016/S1463-5003(02)00009-4}
738}
739
740@ARTICLE{Campin2004,
741  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
742  title = {Conservation of properties in a free-surface model},
743  journal = OM,
744  year = {2004},
745  volume = {6, 3-4},
746  pages = {221--244},
747  owner = {gm},
748  timestamp = {2007.08.04}
749}
750
751@ARTICLE{Campin_al_OM08,
752  author = {Jean-Michel Campin and John Marshall and David Ferreira},
753  title = {Sea ice-ocean coupling using a rescaled vertical coordinate z*},
754  journal = {Ocean Modelling},
755  year = {2008},
756  volume = {24},
757  pages = {1 - 14},
758  number = {1-2},
759  doi = {10.1016/j.ocemod.2008.05.005},
760  issn = {1463-5003},
761  timestamp = {2010.01.20},
762  url = {http://dx.doi.org/10.1016/j.ocemod.2008.05.005}
763}
764
765@ARTICLE{Campin_Goosse_Tel99,
766  author = {J. M. Campin and H. Goosse},
767  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
768   ocean model in z-coordinate},
769  journal = {Tellus},
770  year = {1999},
771  volume = {51},
772  pages = {412--430},
773  owner = {gm},
774  timestamp = {2008.01.20}
775}
776
777@ARTICLE{Carrere_Lyard_GRL03,
778  author = {L. Carr\`{e}re and F. Lyard},
779  title = {Modelling the barotropic response of the global ocean to atmospheric
780   wind and pressure forcing - comparisons with observations},
781  journal = GRL,
782  year = {2003},
783  volume = {30, (6)},
784  doi = {10.1029/2002GL016473},
785  owner = {gm},
786  timestamp = {2010.05.21},
787  url = {http://dx.doi.org/10.1029/2002GL016473}
788}
789
790@ARTICLE{Chassignet_al_JPO03,
791  author = {Eric P. Chassignet and Linda T. Smith and George R. Halliwell},
792  title = {North Atlantic Simulations with the Hybrid Coordinate Ocean Model
793   (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure,
794   and Thermobaricity},
795  journal = {Journal of Physical Oceanography},
796  year = {2003},
797  volume = {33},
798  pages = {2504-2526},
799  file = {:Users/mlelod/Documents/Biblio/vertical_coordinates/Chassignet_et_al_JPO_2003.pdf:PDF},
800  timestamp = {2010.02.01}
801}
802
803@ARTICLE{Covey_al_CD00,
804  author = {C. Covey and A. Abe-Ouchi and G.J. Boer and B.A. Boville and U. Cubasch
805   and L. Fairhead and G.M. Flato and H. Gordon and E. Guilyardi and
806   X. Jiang and T.C. Johns and H. Le Treut and G. Madec and G.A. Meehl
807   and R. Miller and A. Noda and S. B. Power and E. Roeckner and G.
808   Russell and E.K. Schneider and R.J. Stouffer and L. Terray and J.-S.
809   von Storch},
810  title = {The seasonal cycle in coupled ocean-atmosphere general circulation
811   models},
812  journal = CD,
813  year = {2000},
814  volume = {16},
815  pages = {775--787},
816  owner = {gm},
817  timestamp = {2009.08.20}
818}
819
820@ARTICLE{Cox1987,
821  author = {M. Cox},
822  title = {Isopycnal diffusion in a z-coordinate ocean model},
823  journal = OM,
824  year = {1987},
825  volume = {74},
826  pages = {1--9},
827  owner = {gm},
828  timestamp = {2007.08.03}
829}
830
831@ARTICLE{Cravatte_al_OM07,
832  author = {Cravatte, S. and G. Madec and T. Izumo and C. Menkes and A. Bozec},
833  title = {Progress in the 3-D circulation of the eastern equatorial Pacific
834   in a climate ocean model},
835  journal = OM,
836  year = {2007},
837  volume = {17, 1},
838  pages = {28--48},
839  owner = {gm},
840  timestamp = {2009.08.19}
841}
842
843@ARTICLE{Dorscher_Beckmann_JAOT00,
844  author = {R. D\"{o}scher and A. Beckmann},
845  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
846   Model of the North Atlantic Ocean},
847  journal = JAOT,
848  year = {2000},
849  volume = {17},
850  pages = {698--707},
851  owner = {gm},
852  timestamp = {2008.01.23}
853}
854
855@ARTICLE{Dandonneau_al_S04,
856  author = {Y. Dandonneau and C. Menkes and T. Gorgues and G. Madec},
857  title = {Reply to Peter Killworth, 2004 : « Comment on the Oceanic Rossby
858   Waves acting as a “Hay Rake” for ecosystem by-products »},
859  journal = {Science},
860  year = {2004},
861  volume = {304},
862  pages = {390},
863  owner = {gm},
864  timestamp = {2009.08.19}
865}
866
867@ARTICLE{Debreu_al_CG2008,
868  author = {L. Debreu and C. Vouland and E. Blayo},
869  title = {AGRIF: Adaptive Grid Refinement In Fortran},
870  journal = {Computers and Geosciences},
871  year = {2008},
872  volume = {34},
873  pages = {8--13},
874  owner = {gm},
875  timestamp = {2008.02.03}
876}
877
878@ARTICLE{Delecluse_Madec_Bk00,
879  author = {P. Delecluse and G. Madec},
880  title = {Ocean modelling and the role of the ocean in the climate system},
881  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
882   Houches, Session, LXVII 1997,
883   
884   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science},
885  year = {2000},
886  pages = {237--313},
887  owner = {gm},
888  timestamp = {2008.02.03}
889}
890
891@ARTICLE{Doney_al_GBC04,
892  author = {S.C. Doney and K. Lindsay and K. Caldeira and J.−M. Campin and H.
893   Drange and J.−C. Dutay and M. Follows and Y. Gao and A. Gnanadesikan
894   and N. Gruber and A. Ishida and F. Joos and G. Madec and E. Maier−Reimer
895   and J.C. Marshall and R.J. Matear and P. Monfray and A. Mouchet and
896   R. Najjar and J.C. Orr and G.−K. Plattner and J. Sarmiento and R.
897   Schlitzer and R. Slater and I.J. Totterdell and M.−F. Weirig and
898   Y. Yamanaka and A. Yoo},
899  title = {Evaluating global ocean carbon models: the importance of realistic
900   physics},
901  journal = GBC,
902  year = {2004},
903  volume = {18},
904  pages = {GB3017},
905  doi = {10.1029/2003GB002150},
906  owner = {gm},
907  timestamp = {2009.08.19},
908  url = {http://dx.doi.org/10.1029/2003GB002150}
909}
910
911@ARTICLE{Dukowicz1994,
912  author = {J. K. Dukowicz and R. D. Smith},
913  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
914  journal = JGR,
915  year = {1994},
916  volume = {99},
917  pages = {7991--8014},
918  owner = {gm},
919  timestamp = {2007.08.03}
920}
921
922@ARTICLE{Durand_al_JC07,
923  author = {F. Durand and D. Shankar and C. de Boyer Mont\'{e}gut and S.S.C.
924   Shenoi and B. Blanke and G. Madec},
925  title = {Modeling the barrier-layer formation in the South-Eastern Arabian
926   Sea},
927  journal = JC,
928  year = {2007},
929  volume = {20 (10)},
930  pages = {2109--2120},
931  owner = {gm},
932  timestamp = {2009.08.19}
933}
934
935@ARTICLE{Durand_al_GRL04,
936  author = {F. Durand and S. R. Shetye and J. Vialard and D. Shankar and S.S.C.
937   Shenoi and C. Eth\'{e} and G. Madec},
938  title = {Impact of temperature inversions on SST evolution in the South−Eastern
939   Arabian Sea during the pre−summer monsoon season},
940  journal = GRL,
941  year = {2004},
942  volume = {31},
943  pages = {L01305},
944  doi = {10.1029/2003GL018906},
945  owner = {gm},
946  timestamp = {2009.08.19},
947  url = {http://dx.doi.org/10.1029/2003GL018906}
948}
949
950@INCOLLECTION{Durran2001,
951  author = {D.R. Durran },
952  title = {Open boundary conditions: fact and fiction},
953  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
954  publisher = {Kluwer Academic Publishers},
955  year = {2001},
956  editor = {P.F. Hodnett}
957}
958
959@ARTICLE{Dutay_al_OM02,
960  author = {J.-C. Dutay and J.L. Bullister and S.C. Doney and J.C. Orr and R.
961   Najjar and K. Caldeira and J.-M. Campin and H. Drange and M. Follows
962   and Y. Gao and N. Gruber and M. W. Hecht and A. Ishida and F. Joos
963   and K. Lindsay and G. Madec and E. Maier-Reimer and J.C. Mashall
964   and R. J. Matear and P. Monfray and G.-K. Plattner and J. Sarmiento
965   and R. Schlitzer and R. Slater and I.J. Totterdell and M.-F. Weirig
966   and Y. Yamanaka and A. Tool},
967  title = {Evaluation of ocean model ventilation with CFC-11: comparison of
968   13 global ocean models},
969  journal = OM,
970  year = {2002},
971  volume = {4},
972  pages = {89--120},
973  owner = {gm},
974  timestamp = {2009.08.20}
975}
976
977@ARTICLE{Dutay_al_EFM09,
978  author = {J.-C. Dutay and J. Emile-Geay and D. Iudicone and P. Jean-Baptiste
979   and G. Madec and C. Carouge},
980  title = {Helium Isotopic Constraints on Simulated Ocean Circulations - Implications
981   for abyssal theories},
982  journal = {Environmental Fluid Mechanics},
983  year = {2009},
984  volume = {in revision},
985  owner = {gm},
986  timestamp = {2009.08.19}
987}
988
989@ARTICLE{Dutay.J.C2004,
990  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
991   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
992   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
993  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
994   
995   with mantle helium-3},
996  journal = JMS,
997  year = {2004},
998  pages = {1--22},
999  abstract = {We compare simulations of the injection of mantle helium-3 into the
1000   deep ocean from six global coarse resolution models which participated
1001   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
1002   discuss the results of a study carried out with one of the models,
1003   which examines the effect of the subgrid-scale mixing parameterization.
1004   These sensitivity tests provide useful information to interpret the
1005   differences among the OCMIP models and between model simulations
1006   and the data.
1007   
1008   We find that the OCMIP models, which parameterize subgrid-scale mixing
1009   using an eddy-induced velocity, tend to
1010   
1011   underestimate the ventilation of the deep ocean, based on diagnostics
1012   with d3He. In these models, this parameterization is implemented
1013   with a constant thickness diffusivity coefficient. In future simulations,
1014   we recommend using such a parameterization with spatially and temporally
1015   varying coefficients in order to moderate its effect on stratification.
1016   
1017   The performance of the models with regard to the formation of AABW
1018   confirms the conclusion from a previous evaluation with CFC-11. Models
1019   coupled with a sea-ice model produce a substantial bottom water formation
1020   in the Southern Ocean that tends to overestimate AABW ventilation,
1021   while models that are not coupled with a sea-ice model systematically
1022   underestimate the formation of AABW.
1023   
1024   We also analyze specific features of the deep 3He distribution (3He
1025   plumes) that are particularly well depicted in the data and which
1026   put severe constraints on the deep circulation. We show that all
1027   the models fail to reproduce a correct propagation of these plumes
1028   in the deep ocean. The resolution of the models may be too coarse
1029   to reproduce the strong and narrow currents in the deep ocean, and
1030   the models do not incorporate the geothermal heating that may also
1031   contribute to the generation of these currents. We also use the context
1032   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
1033   to compare and evaluate modeled deep-ocean circulations. Although
1034   the source function of mantle helium is known with a rather large
1035   uncertainty, we find that the parameterization used for the injection
1036   of mantle helium-3 is sufficient to generate realistic results, even
1037   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
1038   Res. 100 (1995) 3829] claimed this parameterization generates
1039   
1040   inadequate results. These results are supported by a multi-tracer
1041   evaluation performed by considering the simulated distributions of
1042   both helium-3 and natural 14C, and comparing the simulated tracer
1043   fields with available data.},
1044  owner = {sandra},
1045  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
1046  timestamp = {2006.10.17}
1047}
1048
1049@ARTICLE{D'Ortenzio_al_GRL05,
1050  author = {F. D’Ortenzio and D. Iudicone and C. de Boyer Mont\'{e}gut and P.
1051   Testor and D. Antoine and S. Marullo and R. Santoleri and G. Madec},
1052  title = {Seasonal variability of the mixed layer depth in the Mediterranean
1053   Sea : a new climatology based on analysis of individual profiles},
1054  journal = GRL,
1055  year = {2005},
1056  volume = {32},
1057  pages = {L12605},
1058  doi = {10.1029/2005GL022463},
1059  owner = {gm},
1060  timestamp = {2009.08.19},
1061  url = {http://dx.doi.org/10.1029/2005GL022463}
1062}
1063
1064@ARTICLE{Egbert_Ray_JGR01,
1065  author = {G.B. Egbert and R.D. Ray},
1066  title = {Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter
1067   data},
1068  journal = JGR,
1069  year = {2001},
1070  volume = {106},
1071  pages = {22475--22502},
1072  owner = {gm},
1073  timestamp = {2010.05.20}
1074}
1075
1076@ARTICLE{Egbert_Ray_Nat00,
1077  author = {G.B. Egbert and R.D Ray},
1078  title = {Significant dissipation of tidal energy in the deep ocean inferred
1079   from satellite altimeter data},
1080  journal = {Nature},
1081  year = {2000},
1082  volume = {405},
1083  pages = {775--778},
1084  owner = {gm},
1085  timestamp = {2010.05.20}
1086}
1087
1088@ARTICLE{Eiseman1980,
1089  author = {P. R. Eiseman and A. P. Stone},
1090  title = {Conservation lows of fluid dynamics -- A survey},
1091  journal = {SIAM Review},
1092  year = {1980},
1093  volume = {22},
1094  pages = {12--27},
1095  owner = {gm},
1096  timestamp = {2007.08.03}
1097}
1098
1099@ARTICLE{Emile-Geay_Madec_OS09,
1100  author = {J. Emile-Geay and G. Madec},
1101  title = {Geothermal heating, diapycnal mixing and the abyssal circulation},
1102  journal = OS,
1103  year = {2009},
1104  volume = {5},
1105  pages = {281--325},
1106  owner = {gm},
1107  timestamp = {2008.07.16}
1108}
1109
1110@ARTICLE{EUROMODEL_OA95,
1111  author = {EUROMODEL Group (P.M. Lehucher, L. Beautier, M. Chartier, F. Martel,
1112   L. Mortier, P. Brehmer, C. Millot, C. Alberola, M. Benzhora, I. Taupier-Letage,
1113   G. Chabert d'Hieres, H. Didelle, P. Gleizon, D. Obaton, M. Crépon,
1114   C. Herbaut, G. Madec, S. Speich, J. Nihoul, J. M. Beckers, P. Brasseur,
1115   E. Deleersnijder, S. Djenidi, J. Font, A. Castellon, E. Garcia-Ladona,
1116   M. J. Lopez-Garcia, M. Manriquez, M. Maso, J. Salat, J. Tintore,
1117   S. Alonso, D. Gomis, A. Viudez, M. Astraldi, D. Bacciola, M. Borghini,
1118   F. Dell'amico, C. Galli, E. Lazzoni, G. P. Gasparini, S. Sparnocchia,
1119   and A. Harzallah, 1995 : Progress from 1989 to 1992 in understanding
1120   the circulation of the Western Mediterranean Sea. Oceanologica Acta,
1121   18, 2, 255-271.},
1122  title = {EUROMODEL Group (P.M. Lehucher, L. Beautier, M. Chartier, F. Martel,
1123   L. Mortier, P. Brehmer, C. Millot, C. Alberola, M. Benzhora, I. Taupier-Letage,
1124   G. Chabert d'Hieres, H. Didelle, P. Gleizon, D. Obaton, M. Crépon,
1125   C. Herbaut, G. Madec, S. Speich, J. Nihoul, J. M. Beckers, P. Brasseur,
1126   E. Deleersnijder, S. Djenidi, J. Font, A. Castellon, E. Garcia-Ladona,
1127   M. J. Lopez-Garcia, M. Manriquez, M. Maso, J. Salat, J. Tintore,
1128   S. Alonso, D. Gomis, A. Viudez, M. Astraldi, D. Bacciola, M. Borghini,
1129   F. Dell'amico, C. Galli, E. Lazzoni, G. P. Gasparini, S. Sparnocchia,
1130   and A. Harzallah, 1995 : Progress from 1989 to 1992 in understanding
1131   the circulation of the Western Mediterranean Sea.},
1132  journal = {Oceanologica Acta},
1133  year = {1995},
1134  volume = {18, 2},
1135  pages = {255--271},
1136  owner = {gm},
1137  timestamp = {2009.08.20}
1138}
1139
1140@PHDTHESIS{Farge1987,
1141  author = {M. Farge},
1142  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
1143   de Saint Venant},
1144  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
1145  year = {1987},
1146  owner = {gm},
1147  timestamp = {2007.08.03}
1148}
1149
1150@ARTICLE{Farrow1995,
1151  author = {D. E. Farrow and D. P. Stevens},
1152  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
1153   models},
1154  journal = JPO,
1155  year = {1995},
1156  volume = {25},
1157  pages = {1731--1741.},
1158  owner = {gm},
1159  timestamp = {2007.08.04}
1160}
1161
1162@ARTICLE{Fujio1991,
1163  author = {S. Fujio and N. Imasato},
1164  title = {Diagnostic calculation for circulation and water mass movement in
1165   the deep Pacific},
1166  journal = JGR,
1167  year = {1991},
1168  volume = {96},
1169  pages = {759--774},
1170  month = jan,
1171  owner = {gm},
1172  timestamp = {2007.08.04}
1173}
1174
1175@ARTICLE{Gargett1984,
1176  author = {A. E. Gargett},
1177  title = {Vertical eddy diffusivity in the ocean interior},
1178  journal = JMR,
1179  year = {1984},
1180  volume = {42},
1181  owner = {gm},
1182  timestamp = {2007.08.06}
1183}
1184
1185@ARTICLE{Gaspar1990,
1186  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
1187  title = {A simple eddy kinetic energy model for simulations of the oceanic
1188   vertical mixing\: Tests at Station Papa and long-term upper ocean
1189   study site},
1190  journal = JGR,
1191  year = {1990},
1192  volume = {95(C9)},
1193  owner = {gm},
1194  timestamp = {2007.08.06}
1195}
1196
1197@ARTICLE{Gent1990,
1198  author = {P. R. Gent and J. C. Mcwilliams},
1199  title = {Isopycnal Mixing in Ocean Circulation Models},
1200  journal = JPO,
1201  year = {1990},
1202  volume = {20},
1203  pages = {150--155},
1204  number = {1},
1205  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
1206   is proposed for use in non-eddy-resolving ocean circulation models.
1207   The mixing is applied in isopycnal coordinates to isopycnal layer
1208   thickness, or inverse density gradient, as well as to passive scalars,
1209   temperature and salinity. The transformation of these mixing forms
1210   to physical coordinates is also presented.},
1211  date = {January 01, 1990},
1212  owner = {gm},
1213  timestamp = {2007.08.03}
1214}
1215
1216@ARTICLE{Gerdes1993a,
1217  author = {R. Gerdes},
1218  title = {A primitive equation ocean circulation model using a general vertical
1219   coordinate transformation 1. Description and testing of the model},
1220  journal = JGR,
1221  year = {1993},
1222  volume = {98},
1223  owner = {gm},
1224  timestamp = {2007.08.03}
1225}
1226
1227@ARTICLE{Gerdes1993b,
1228  author = {R. Gerdes},
1229  title = {A primitive equation ocean circulation model using a general vertical
1230   coordinate transformation 2. Application to an overflow problem},
1231  journal = JGR,
1232  year = {1993},
1233  volume = {98},
1234  pages = {14703--14726},
1235  owner = {gm},
1236  timestamp = {2007.08.03}
1237}
1238
1239@TECHREPORT{Gibson_TR86,
1240  author = {J. K. Gibson},
1241  title = {Standard software development and maintenance},
1242  institution = {Operational Dep., ECMWF, Reading, UK.},
1243  year = {1986},
1244  owner = {gm},
1245  timestamp = {2008.02.03}
1246}
1247
1248@BOOK{Gill1982,
1249  title = {Atmosphere-Ocean Dynamics},
1250  publisher = {International Geophysics Series, Academic Press, New-York},
1251  year = {1982},
1252  author = {A. E. Gill}
1253}
1254
1255@ARTICLE{Goosse_al_JGR99,
1256  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England},
1257  title = {Sensitivity of a global coupled ocean-sea ice model to the parameterization
1258   of vertical mixing},
1259  journal = JGR,
1260  year = {1999},
1261  volume = {104},
1262  pages = {13,681--13,695},
1263  owner = {gm},
1264  timestamp = {2008.05.27}
1265}
1266
1267@ARTICLE{Gorgues_al_GRL07,
1268  author = {T. Gorgues and C. Menkes and O. Aumont and K. Rodgers and G. Madec
1269   and Y. Dandonneau},
1270  title = {Indonesian Throughflow control of the eastern equatorial Pacific
1271   biogeochemistry},
1272  journal = GRL,
1273  year = {2007},
1274  volume = {34},
1275  pages = {L05609},
1276  doi = {10.1029/2006GL028210},
1277  owner = {gm},
1278  timestamp = {2009.08.19},
1279  url = {http://dx.doi.org/10.1029/2006GL028210}
1280}
1281
1282@ARTICLE{Greatbatch_JGR94,
1283  author = {R. J. Greatbatch},
1284  title = {A note on the representation of steric sea level in models that conserve
1285   volume rather than mass},
1286  journal = JGR,
1287  year = {1994},
1288  volume = {99, C6},
1289  pages = {12,767--12,771},
1290  owner = {gm},
1291  timestamp = {2009.10.01}
1292}
1293
1294@BOOK{Griffies_Bk04,
1295  title = {Fundamentals of ocean climate models},
1296  publisher = {Princeton University Press, 434pp},
1297  year = {2004},
1298  author = {S.M. Griffies},
1299  owner = {gm},
1300  timestamp = {2007.08.05}
1301}
1302
1303@ARTICLE{Griffies_JPO98,
1304  author = {S.M. Griffies},
1305  title = {The Gent-McWilliams skew-flux},
1306  journal = JPO,
1307  year = {1998},
1308  volume = {28},
1309  pages = {831--841},
1310  owner = {gm},
1311  timestamp = {2008.06.28}
1312}
1313
1314@ARTICLE{Griffies_al_OM09,
1315  author = {S.M. Griffies and A. Biastoch and C. Boning and F. Bryan and G. Danabasoglu
1316   and E. P. Chassignet and M. H. England and R. Gerdes and H. Haak
1317   and R. W. Hallberg and W. Hazeleger and J. Jungclaus and W. G. Large
1318   and G. Madec and A. Pirani and B. L. Samuels and M. Scheinert and
1319   A. Sen Gupta and C. A. Severijns and H. L. Simmons and A.-M. Treguier
1320   and M. Winton and S. Yeager and J. Yin},
1321  title = {Coordinated Ocean-ice Reference Experiments (COREs)},
1322  journal = OM,
1323  year = {2009},
1324  volume = {26, 1-2},
1325  pages = {1--46},
1326  doi = {10.1016/j.ocemod.2008.08.007},
1327  owner = {gm},
1328  timestamp = {2009.08.15},
1329  url = {http://dx.doi.org/}
1330}
1331
1332@ARTICLE{Griffies_al_OS05,
1333  author = {S.M. Griffies and A. Gnanadesikan and K.W. Dixon and J.P. Dunne and
1334   R. Gerdes and M.J. Harrison and A. Rosati and J.L. Russell and B.L.
1335   Samuels and M.J. Spelman and M. Winton and R. Zhang},
1336  title = {Formulation of an ocean model for global climate simulations},
1337  journal = OS,
1338  year = {2005},
1339  volume = {1},
1340  pages = {45--79},
1341  abstract = {This paper summarizes the formulation of the ocean component to the
1342   Geophysical
1343   
1344   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
1345   the 4th IPCC As- Assessment
1346   
1347   (AR4) of global climate change. In particular, it reviews elements
1348   of ocean
1349   
1350   sessment climate models and how they are pieced together for use in
1351   a state-of-the-art coupled 5
1352   
1353   model. Novel issues are also highlighted, with particular attention
1354   given to sensitivity of
1355   
1356   the coupled simulation to physical parameterizations and numerical
1357   methods. Features
1358   
1359   of the model described here include the following: (1) tripolar grid
1360   to resolve the Arctic
1361   
1362   Ocean without polar filtering, (2) partial bottom step representation
1363   of topography to
1364   
1365   better represent topographically influenced advective and wave processes,
1366   (3) more 10
1367   
1368   accurate equation of state, (4) three-dimensional flux limited tracer
1369   advection to reduce
1370   
1371   overshoots and undershoots, (5) incorporation of regional climatological
1372   variability in
1373   
1374   shortwave penetration, (6) neutral physics parameterization for representation
1375   of the
1376   
1377   pathways of tracer transport, (7) staggered time stepping for tracer
1378   conservation and
1379   
1380   numerical eciency, (8) anisotropic horizontal viscosities for representation
1381   of equato- 15
1382   
1383   rial currents, (9) parameterization of exchange with marginal seas,
1384   (10) incorporation
1385   
1386   of a free surface that accomodates a dynamic ice model and wave propagation,
1387   (11)
1388   
1389   transport of water across the ocean free surface to eliminate unphysical
1390   “virtual tracer
1391   
1392   flux” methods, (12) parameterization of tidal mixing on continental
1393   shelves.},
1394  owner = {sandra},
1395  pdf = {Griffies_al_OSD05.pdf},
1396  timestamp = {2007.01.25}
1397}
1398
1399@ARTICLE{Griffies_al_JPO98,
1400  author = {S.M. Griffies and A. Gnanadesikan and R.C. Pacanowski and V.D. Larichev
1401   and J.K. Dukowicz and R.D. Smith},
1402  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
1403  journal = JPO,
1404  year = {1998},
1405  volume = {28},
1406  pages = {805--830},
1407  number = {5},
1408  abstract = {This paper considers the requirements that must be satisfied in order
1409   to provide a stable and physically based isoneutral tracer diffusion
1410   scheme in a z-coordinate ocean model. Two properties are emphasized:
1411   1) downgradient orientation of the diffusive fluxes along the neutral
1412   directions and 2) zero isoneutral diffusive flux of locally referenced
1413   potential density. It is shown that the Cox diffusion scheme does
1414   not respect either of these properties, which provides an explanation
1415   for the necessity to add a nontrivial background horizontal diffusion
1416   to that scheme. A new isoneutral diffusion scheme is proposed that
1417   aims to satisfy the stated properties and is found to require no
1418   horizontal background diffusion.},
1419  date = {May 01, 1998},
1420  owner = {gm},
1421  timestamp = {2007.08.05}
1422}
1423
1424@ARTICLE{Griffies_al_MWR01,
1425  author = {S.M. Griffies and R.C. Pacanowski and M. Schmidt and V. Balaji},
1426  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
1427   Ocean Models},
1428  journal = MWR,
1429  year = {2001},
1430  volume = {129},
1431  pages = {1081--1098},
1432  number = {5},
1433  abstract = {This paper details a free surface method using an explicit time stepping
1434   scheme for use in z-coordinate ocean models. One key property that
1435   makes the method especially suitable for climate simulations is its
1436   very stable numerical time stepping scheme, which allows for the
1437   use of a long density time step, as commonly employed with coarse-resolution
1438   rigid-lid models. Additionally, the effects of the undulating free
1439   surface height are directly incorporated into the baroclinic momentum
1440   and tracer equations. The novel issues related to local and global
1441   tracer conservation when allowing for the top cell to undulate are
1442   the focus of this work. The method presented here is quasi-conservative
1443   locally and globally of tracer when the baroclinic and tracer time
1444   steps are equal. Important issues relevant for using this method
1445   in regional as well as large-scale climate models are discussed and
1446   illustrated, and examples of scaling achieved on parallel computers
1447   provided.},
1448  date = {May 01, 2001},
1449  owner = {gm},
1450  timestamp = {2007.08.04}
1451}
1452
1453@ARTICLE{Guilyardi_al_JC04,
1454  author = {E. Guilyardi and S. Gualdi and J. M. Slingo and A. Navarra and P.
1455   Delecluse and J. Cole and G. Madec and M. Roberts and M. Latif and
1456   L. Terray},
1457  title = {Representing El Ni\~{n}o in coupled ocean-atmosphere GCMs: the dominant
1458   role of the atmospheric component},
1459  journal = JC,
1460  year = {2004},
1461  volume = {17},
1462  pages = {4623--4629},
1463  owner = {gm},
1464  timestamp = {2009.08.19}
1465}
1466
1467@ARTICLE{Guilyardi_Madec_CD98,
1468  author = {E. Guilyardi and G. Madec},
1469  title = {Performance of the OPA-ARPEGE-T21 global ocean-atmosphere coupled
1470   model},
1471  journal = CD,
1472  year = {1997},
1473  volume = {13},
1474  pages = {149--165},
1475  owner = {gm},
1476  timestamp = {2009.08.20}
1477}
1478
1479@ARTICLE{Guilyardi_al_CD01,
1480  author = {E. Guilyardi and G. Madec and L. Terray},
1481  title = {The role of lateral ocean physics in the upper ocean thermal balance
1482   of a coupled ocean-atmosphere GCM},
1483  journal = CD,
1484  year = {2001},
1485  volume = {17},
1486  pages = {589--599},
1487  number = {8},
1488  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
1489}
1490
1491@ARTICLE{Guilyardi_al_CRAS95,
1492  author = {E. Guilyardi and G. Madec and L. Terray and M. D\'{e}qu\'{e} and
1493   M. Pontaud and M. Imbard and D. Stephenson and M.-A. Filiberti and
1494   D. Cariolle and P. Delecluse and O. Thual},
1495  title = {Simulation couplée océan-atmosphère de la variabilité du climat},
1496  journal = {C. R. Acad. Sci Paris},
1497  year = {1995},
1498  volume = {320, s\'{e}rie IIa},
1499  pages = {683--690},
1500  owner = {gm},
1501  timestamp = {2009.08.20}
1502}
1503
1504@ARTICLE{Guyon_al_EP99,
1505  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard},
1506  title = {A Parallel ocean model for high resolution studies},
1507  journal = {Lecture Notes in Computer Science},
1508  year = {1999},
1509  volume = {Euro-Par'99},
1510  pages = {603--607},
1511  owner = {gm},
1512  timestamp = {2008.05.27}
1513}
1514
1515@ARTICLE{Guyon_al_CalPar99,
1516  author = {M. Guyon and G. Madec and F.-X. Roux and M. Imbard and C. Herbaut
1517   and P. Fronier},
1518  title = {Parallelization of the OPA ocean model},
1519  journal = {Calculateurs Paralleles},
1520  year = {1999},
1521  volume = {11, 4},
1522  pages = {499--517},
1523  owner = {gm},
1524  timestamp = {2008.05.27}
1525}
1526
1527@BOOK{Haltiner1980,
1528  title = {Numerical prediction and dynamic meteorology},
1529  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
1530  year = {1980},
1531  author = {G. J. Haltiner and R. T. Williams},
1532  owner = {gm},
1533  timestamp = {2007.08.03}
1534}
1535
1536@ARTICLE{Haney1991,
1537  author = {R. L. Haney},
1538  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
1539   Ocean Models},
1540  journal = JPO,
1541  year = {1991},
1542  volume = {21},
1543  pages = {610--619},
1544  number = {4},
1545  abstract = {The error in computing the pressure gradient force near steep topography
1546   using terms following (σ) coordinates is investigated in an
1547   ocean model using the family of vertical differencing schemes proposed
1548   by Arakawa and Suarez. The truncation error is estimated by substituting
1549   known buoyancy profiles into the finite difference hydrostatic and
1550   pressure gradient terms. The error due to “hydrostatic inconsistency,”
1551   which is not simply a space truncation error, is also documented.
1552   The results show that the pressure gradient error is spread throughout
1553   the water column, and it is sensitive to the vertical resolution
1554   and to the placement of the grid points relative to the vertical
1555   structure of the buoyancy field being modeled. Removing a reference
1556   state, as suggested for the atmosphere by Gary, reduces the truncation
1557   error associated with the two lowest vertical modes by a factor of
1558   2 to 3. As an example, the error in computing the pressure gradient
1559   using a standard 10-level primitive equation model applied to buoyancy
1560   profiles and topographic slopes typical of the California Current
1561   region corresponds to a false geostrophic current of the order of
1562   10–12 cm s−1. The analogous error in a hydrostatically
1563   consistent 30-level model with the reference state removed is about
1564   an order of magnitude smaller.},
1565  date = {April 01, 1991},
1566  owner = {gm},
1567  timestamp = {2007.08.03}
1568}
1569
1570@ARTICLE{Hirt_al_JCP74,
1571  author = {C. W. Hirt and A. A. Amsden and J. L. Cook},
1572  title = {An Arbitrary Lagrangian--Eulerian Computing Method for All Flow Speeds},
1573  journal = JCP,
1574  year = {1974},
1575  volume = {14},
1576  pages = {227-253},
1577  owner = {gm},
1578  timestamp = {2010.04.14}
1579}
1580
1581@ARTICLE{Hofmeister_al_OM09,
1582  author = {Richard Hofmeister and Hans Burchard and Jean-Marie Beckers},
1583  title = {Non-uniform adaptive vertical grids for 3D numerical ocean models},
1584  journal = {Ocean Modelling},
1585  year = {2009},
1586  volume = {33},
1587  pages = {70 - 86},
1588  doi = {10.1016/j.ocemod.2009.12.003},
1589  file = {:Users/mlelod/Documents/Biblio/vertical_coordinates/Hofmeister_et_al_OM_2010.pdf:PDF},
1590  issn = {1463-5003},
1591  keywords = {Adaptive non-uniform grid},
1592  owner = {mlelod},
1593  timestamp = {2010.01.21},
1594  url = {http://dx.doi.org/10.1016/j.ocemod.2009.12.003}
1595}
1596
1597@ARTICLE{Hordoir_al_CD08,
1598  author = {R. Hordoir and J. Polcher and J.-C. Brun-Cottan and G. Madec},
1599  title = {Towards a parametrization of river discharges into ocean general
1600   circulation models: a closure through energy conservation},
1601  journal = CD,
1602  year = {2008},
1603  volume = {31, 7--8},
1604  pages = {891--908},
1605  doi = {10.1007/s00382-008-0416-4},
1606  owner = {gm},
1607  timestamp = {2009.08.19},
1608  url = {http://dx.doi.org/10.1007/s00382-008-0416-4}
1609}
1610
1611@ARTICLE{Hsu1990,
1612  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
1613  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
1614   Coordinate},
1615  journal = MWR,
1616  year = {1990},
1617  volume = {118},
1618  pages = {1933--1959},
1619  number = {10},
1620  abstract = {In constructing a numerical model of the atmosphere, we must choose
1621   an appropriate vertical coordinate. Among the various possibilities,
1622   isentropic vertical coordinates such as the θ-coordinate seem
1623   to have the greatest potential, in spite of the technical difficulties
1624   in treating the intersections of coordinate surfaces with the lower
1625   boundary. The purpose of this paper is to describe the θ-coordinate
1626   model we have developed and to demonstrate its potential through
1627   simulating the nonlinear evolution of a baroclinic wave.In the model
1628   we have developed, vertical discretization maintains important integral
1629   constraints, such as conservation of the angular momentum and total
1630   energy. In treating the intersections of coordinate surfaces with
1631   the lower boundary, we have followed the massless-layer approach
1632   in which the intersecting coordinate surfaces are extended along
1633   the boundary by introducing massless layers. Although this approach
1634   formally eliminates the intersection problem, it raises other computational
1635   problems. Horizontal discretization of the continuity and momentum
1636   equations in the model has been carefully designed to overcome these
1637   problems.Selected results from a 10-day integration with the 25-layer,
1638   β-plane version of the model are presented. It seems that the
1639   model can simulate the nonlinear evolution of a baroclinic wave and
1640   associated dynamical processes without major computational difficulties.},
1641  date = {October 01, 1990},
1642  owner = {gm},
1643  timestamp = {2007.08.05}
1644}
1645
1646@ARTICLE{Huang_JPO93,
1647  author = {R.X. Huang},
1648  title = {Real freshwater flux as a natural boundary condition for the salinity
1649   balance and thermohaline circulation forced by evaporation and precipitation},
1650  journal = JPO,
1651  year = {1993},
1652  volume = {23},
1653  pages = {2428--2446},
1654  owner = {gm},
1655  timestamp = {2009.05.01}
1656}
1657
1658@ARTICLE{Iudicone_al_JPO08b,
1659  author = {D. Iudicone and G. Madec and B. Blanke and S. Speich},
1660  title = {The role of Southern Ocean surface forcings and mixing in the global
1661   conveyor},
1662  journal = JPO,
1663  year = {2008},
1664  volume = {38},
1665  pages = {1377--1400},
1666  owner = {gm},
1667  timestamp = {2009.08.19}
1668}
1669
1670@ARTICLE{Iudicone_al_JPO08a,
1671  author = {D. Iudicone and G. Madec and T. J. McDougall},
1672  title = {Diagnosing water transformations and the key role of light penetration},
1673  journal = JPO,
1674  year = {2008},
1675  volume = {38},
1676  pages = {1357--1376},
1677  owner = {gm},
1678  timestamp = {2009.08.19}
1679}
1680
1681@ARTICLE{Iudicone_al_JPO07,
1682  author = {D. Iudicone and K. Rodgers and R. Schopp and G. Madec},
1683  title = {An Exchange window for the Antarctic Intermediate Water Injection
1684   into the South Pacific},
1685  journal = JPO,
1686  year = {2007},
1687  volume = {37},
1688  pages = {31--49},
1689  owner = {gm},
1690  timestamp = {2009.08.19}
1691}
1692
1693@ARTICLE{Iudicone_al_JPO08c,
1694  author = {D. Iudicone and S. Speich and G. Madec and B. Blanke},
1695  title = {The global Conveyor Belt in a Southern Ocean perspective},
1696  journal = JPO,
1697  year = {2008},
1698  volume = {38},
1699  pages = {1401--1425},
1700  owner = {gm},
1701  timestamp = {2009.08.19}
1702}
1703
1704@ARTICLE{Izumo_al_CD09,
1705  author = {T. Izumo and S.Masson and J. Vialard and C. de Boyer Montegut and
1706   S. K. Behera and G. Madec and K. Takahashi and T. Yamagata},
1707  title = {Interannual variations of low-frequency Madden-Julian Oscillation
1708   in autral summer: Observations},
1709  journal = CD,
1710  year = {2009},
1711  volume = {in press},
1712  owner = {gm},
1713  timestamp = {2009.08.19}
1714}
1715
1716@ARTICLE{JackMcD1995,
1717  author = {D. R. Jackett and T. J. McDougall},
1718  title = {Minimal adjustment of hydrographic data to achieve static stability},
1719  journal = JAOT,
1720  year = {1995},
1721  volume = {12},
1722  pages = {381--389},
1723  owner = {gm},
1724  timestamp = {2007.08.04}
1725}
1726
1727@ARTICLE{Jayne_St_Laurent_GRL01,
1728  author = {S.R. Jayne and L.C. {St. Laurent}},
1729  title = {Parameterizing tidal disspiation over rough topography
1730   
1731   .},
1732  journal = GRL,
1733  pages = {811--814},
1734  owner = {gm},
1735  timestamp = {2010.05.20}
1736}
1737
1738@BOOK{Jerlov_Bk68,
1739  title = {Optical Oceanography},
1740  publisher = {Elsevier},
1741  year = {1968},
1742  author = {N. G. Jerlov},
1743  pages = {194pp},
1744  owner = {gm},
1745  timestamp = {2008.08.31}
1746}
1747
1748@ARTICLE{Kasahara_MWR74,
1749  author = {A. Kasahara},
1750  title = {Various vertical coordinate systems used for numerical weather prediction},
1751  journal = MWR,
1752  year = {1974},
1753  volume = {102},
1754  pages = {509--522},
1755  owner = {gm},
1756  timestamp = {2010.04.14}
1757}
1758
1759@ARTICLE{Killworth_al_JPO91,
1760  author = {P.D. Killworth and D. Stainforth and D.J. Webb and S.M. Paterson},
1761  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1762  journal = JPO,
1763  year = {1991},
1764  volume = {21},
1765  pages = {1333--1348},
1766  number = {9},
1767  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1768   circulation model, adapted to include a free surface, is described.
1769   The model is designed for the following uses: tidal studies
1770   (a tidal option is explicitly included); assimilation of altimetric
1771   data (since the surface elevation is now a prognostic variable);
1772   and in situations where accurate relaxation to obtain the streamfunction
1773   in the original model is too time consuming. Comparison is made between
1774   a 300-year run of the original model and the free-surface version,
1775   using a very coarse North Atlantic calculation as the basis. The
1776   results are very similar, differing only in the streamfunction over
1777   topography; this is to be expected, since the treatment of topographic
1778   torques on the barotropic flow differs because of the nature of the
1779   modifications.},
1780  date = {September 01, 1991},
1781  owner = {gm},
1782  timestamp = {2007.08.03}
1783}
1784
1785@INPROCEEDINGS{Killworth1989,
1786  author = {P. D. Killworth},
1787  title = {On the parameterization of deep convection in ocean models},
1788  booktitle = {Parameterization of small-scale processes},
1789  year = {1989},
1790  editor = {Hawaiian winter workshop},
1791  month = {January 17-20},
1792  organization = {University of Hawaii at Manoa},
1793  owner = {gm},
1794  timestamp = {2007.08.06}
1795}
1796
1797@ARTICLE{Killworth1992,
1798  author = {P. D. Killworth},
1799  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1800  journal = JPO,
1801  year = {1992},
1802  volume = {22},
1803  pages = {1379--1387}
1804}
1805
1806@ARTICLE{Koch-Larrouy_al_CD10,
1807  author = {A. Koch-Larrouy and M. Lengaigne and P. Terray and G. Madec and S.
1808   Masson},
1809  title = {Tidal mixing in the Indonesian Seas and its effect on the tropical
1810   climate system},
1811  journal = CD,
1812  year = {2010},
1813  volume = {34,6},
1814  pages = {891--904},
1815  doi = {10.1007/s00382-009-0642-4},
1816  owner = {gm},
1817  timestamp = {2009.08.16},
1818  url = {http://dx.doi.org/10.1007/s00382-009-0642-4}
1819}
1820
1821@ARTICLE{Koch-Larrouy_al_OD08b,
1822  author = {A. Koch-Larrouy and G. Madec and B. Blanke and R. Molcard},
1823  title = {Water mass transformation along the Indonesian throughflow in an
1824   OGCM},
1825  journal = OD,
1826  year = {2008},
1827  volume = {58, 3-4},
1828  pages = {289--309},
1829  doi = {10.1007/s10236-008-0155-4},
1830  owner = {gm},
1831  timestamp = {2009.08.16},
1832  url = {http://dx.doi.org/10.1007/s10236-008-0155-4}
1833}
1834
1835@ARTICLE{Koch-Larrouy_al_GRL07,
1836  author = {A. Koch-Larrouy and G. Madec and P. Bouruet-Aubertot and T. Gerkema
1837   and L. Bessieres and R. Molcard},
1838  title = {Tidal mixing in the Indonesian Seas and its effect on the tropical
1839   climate system},
1840  journal = GRL,
1841  year = {2007},
1842  volume = {34},
1843  pages = {L04604},
1844  doi = {10.1029/2006GL028405},
1845  owner = {gm},
1846  timestamp = {2009.08.16},
1847  url = {http://dx.doi.org/10.1029/2006GL028405}
1848}
1849
1850@ARTICLE{Koch-Larrouy_al_OD08a,
1851  author = {A. Koch-Larrouy and G. Madec and D. Iudicone and A. Atmadipoera and
1852   R. Molcard},
1853  title = {Physical processes contributing to the water mass transformation
1854   of the Indonesian Throughflow},
1855  journal = OD,
1856  year = {2008},
1857  volume = {58, 3-4},
1858  pages = {275--288},
1859  doi = {10.1007/s10236-008-0154-5},
1860  owner = {gm},
1861  timestamp = {2009.08.16},
1862  url = {http://dx.doi.org/10.1007/s10236-008-0154-5}
1863}
1864
1865@ARTICLE{Kolmogorov1942,
1866  author = {A. N. Kolmogorov},
1867  title = {The equation of turbulent motion in an incompressible fluid},
1868  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1869  year = {1942},
1870  volume = {6},
1871  pages = {56--58},
1872  owner = {gm},
1873  timestamp = {2007.08.06}
1874}
1875
1876@PHDTHESIS{Levy_PhD96,
1877  author = {M. L\'{e}vy},
1878  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1879   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1880  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1881  year = {1996},
1882  owner = {gm},
1883  timestamp = {2007.08.04}
1884}
1885
1886@ARTICLE{Levy_al_GRL01,
1887  author = {M. L\'{e}vy and A. Estubier and G Madec},
1888  title = {Choice of an advection scheme for biogeochemical models},
1889  journal = GRL,
1890  year = {2001},
1891  volume = {28},
1892  owner = {gm},
1893  timestamp = {2007.08.04}
1894}
1895
1896@ARTICLE{Levy_al_JGR09,
1897  author = {M. L\'{e}vy and P. Klein and A.-M. Tr\'{e}guier and D. Iovino and
1898   G. Madec and S. Masson and T. Takahashi},
1899  title = {Impacts of sub-mesoscale physics on idealized gyres},
1900  journal = JGR,
1901  year = {2009},
1902  volume = {in revision},
1903  owner = {gm},
1904  timestamp = {2009.08.19}
1905}
1906
1907@ARTICLE{Levy_al_JMS99,
1908  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1909  title = {The onset of a bloom after deep winter convection in the Northwestern
1910   Mediterranean Sea: mesoscale process study with a primitive equation
1911   model},
1912  journal = JMS,
1913  year = {1999},
1914  volume = {16/1-2},
1915  pages = {7--21},
1916  owner = {gm},
1917  timestamp = {2007.08.10}
1918}
1919
1920@ARTICLE{Levy_al_DSR98,
1921  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1922  title = {The onset of the spring bloom in the MEDOC area: mesoscale spatial
1923   variability},
1924  journal = DSR,
1925  year = {1998},
1926  volume = {I, 46},
1927  pages = {1137--1160},
1928  owner = {gm},
1929  timestamp = {2007.08.10}
1930}
1931
1932@ARTICLE{Levy_al_DSR00,
1933  author = {M. L\'{e}vy and L. Mémery and G. Madec},
1934  title = {Combined effects of mesoscale processes and atmospheric high-frequency
1935   variability on the spring bloom in the MEDOC area},
1936  journal = DSR,
1937  year = {2000},
1938  volume = {47},
1939  pages = {527--531},
1940  owner = {gm},
1941  timestamp = {2009.08.20}
1942}
1943
1944@BOOK{Large_Yeager_Rep04,
1945  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1946   data sets and flux climatologies},
1947  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1948   Center for Atmospheric Research},
1949  year = {2004},
1950  author = {W. Large and S. Yeager},
1951  owner = {gm},
1952  timestamp = {2007.08.06}
1953}
1954
1955@ARTICLE{Large_al_RG94,
1956  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1957  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1958   layer parameterization},
1959  journal = {Reviews of Geophysics},
1960  year = {1994},
1961  volume = {32},
1962  pages = {363--404},
1963  doi = {10.1029/94RG01872},
1964  owner = {gm},
1965  timestamp = {2007.08.03},
1966  url = {http://dx.doi.org/10.1029/94RG01872}
1967}
1968
1969@ARTICLE{Latif_al_JC06,
1970  author = {M. Latif and C. Böning and J. Willebrand and A. Biastoch and J. Dengg
1971   and N. Keenlyside and U. Schweckendiek and G. Madec},
1972  title = {Is the Thermohaline Circulation Changing?},
1973  journal = JC,
1974  year = {2006},
1975  volume = {19},
1976  pages = {4631--4637},
1977  owner = {gm},
1978  timestamp = {2009.08.19}
1979}
1980
1981@PHDTHESIS{Lazar_PhD97,
1982  author = {A. Lazar},
1983  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1984   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1985   id\'{e}alis\'{e}e},
1986  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1987  year = {1997},
1988  owner = {gm},
1989  timestamp = {2007.08.06}
1990}
1991
1992@ARTICLE{Lazar_al_JPO99,
1993  author = {A. Lazar and G. Madec and P. Delecluse},
1994  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1995   Tracer Transport Parameterizations in an OGCM},
1996  journal = JPO,
1997  year = {1999},
1998  volume = {29},
1999  pages = {2945--2961},
2000  number = {11},
2001  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
2002   a vast interior downwelling and a companion intense western boundary
2003   layer upwelling at midlatitude below the thermocline. These features,
2004   related to the so-called Veronis effect, are poorly rationalized
2005   and depart strongly from the classical vision of the deep circulation
2006   where upwelling is considered to occur in the interior. Furthermore,
2007   they significantly alter results of ocean general circulation models
2008   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
2009   showed that the parameterization for mesoscale eddy effects formulated
2010   by Gent and McWilliams allows integral quantities like the streamfunction
2011   and meridional heat transport to be free of these undesired effects.
2012   In this paper, an idealized OGCM is used to validate an analytical
2013   rationalization of the processes at work and help understand the
2014   physics. The results show that the features associated with the Veronis
2015   effect can be related quantitatively to three different width scales
2016   that characterize the baroclinic structure of the deep western boundary
2017   current. In addition, since one of these scales may be smaller than
2018   the Munk barotropic layer, usually considered to determine the minimum
2019   resolution and horizontal viscosity for numerical models, the authors
2020   recommend that it be taken into account. Regarding the introduction
2021   of the new parameterization, diagnostics in terms of heat balances
2022   underline some interesting similarities between local heat fluxes
2023   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
2024   when a common large diffusivity (here 2000 m2 s−1) is used.
2025   The near-quasigeostrophic character of the flow explains these results.
2026   As a consequence, the response of the Eulerian-mean circulation is
2027   locally similar for runs using either of the two parameterizations.
2028   However, it is shown that the advective nature of the eddy-induced
2029   heat fluxes results in a very different effective circulation, which
2030   is the one felt by tracers.},
2031  date = {November 01, 1999},
2032  owner = {gm},
2033  timestamp = {2007.08.06}
2034}
2035
2036@ARTICLE{Le_Sommer_al_OM09,
2037  author = {J. {Le Sommer} and T. Penduff and S. Theetten and G. Madec and B.
2038   Barnier},
2039  title = {How momentum advection schemes influence current-topography interactions
2040   at eddy permitting resolution},
2041  journal = OM,
2042  year = {2009},
2043  volume = {29, 1},
2044  pages = {1--14},
2045  doi = {10.1016/j.ocemod.2008.11.007},
2046  owner = {gm},
2047  timestamp = {2009.08.16},
2048  url = {http://dx.doi.org/10.1016/j.ocemod.2008.11.007}
2049}
2050
2051@PHDTHESIS{Leclair_PhD2010,
2052  author = {M. Leclair},
2053  title = {introduction d'une coordonn\'{e}e verticale arbitrairement Lagrangienne
2054   Eul\'{e}rienne dans le code NEMO, 180pp.},
2055  school = {Universit\'{e} Pierre and Marie Curie},
2056  year = {2010},
2057  owner = {gm},
2058  timestamp = {2010.09.25}
2059}
2060
2061@ARTICLE{Leclair_Madec_OM09,
2062  author = {M. Leclair and G. Madec},
2063  title = {A conservative leap-frog time stepping method},
2064  journal = OM,
2065  year = {2009},
2066  volume = {30, 2-3},
2067  pages = {88-94},
2068  doi = {10.1016/j.ocemod.2009.06.006},
2069  owner = {gm},
2070  timestamp = {2009.08.15},
2071  url = {http://dx.doi.org/}
2072}
2073
2074@ARTICLE{Lengaigne_al_JC03,
2075  author = {M. Lengaigne and J.-P. Boulanger and C. Menkes and G. Madec and P.
2076   Delecluse and E. Guilyardi, and J. Slingo},
2077  title = {The March 1997 Westerly Wind Event and the onset of the 1997/98 El
2078   Niño: Understanding the role of the atmospheric},
2079  journal = JC,
2080  year = {2003},
2081  volume = {16, 20},
2082  pages = {3330--3343},
2083  owner = {gm},
2084  timestamp = {2009.08.20}
2085}
2086
2087@ARTICLE{Lengaigne_al_JGR02,
2088  author = {M. Lengaigne and J.-P. Boulanger and C. Menkes and S. Masson and
2089   G. Madec and P. Delecluse},
2090  title = {Ocean response to the March 1997 Westerly Wind Event},
2091  journal = JGR,
2092  year = {2002},
2093  doi = {10.1029/2001JC000841},
2094  owner = {gm},
2095  timestamp = {2009.08.20},
2096  url = {http://dx.doi.org/10.1029/2001JC000841}
2097}
2098
2099@ARTICLE{Lengaigne_al_JGR03,
2100  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
2101  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
2102   on tracer and dynamics},
2103  journal = JGR,
2104  year = {2003},
2105  volume = {108 (C11)},
2106  pages = {3345},
2107  doi = {10.1029/2002JC001704},
2108  owner = {gm},
2109  timestamp = {2008.01.26},
2110  url = {http://dx.doi.org/10.1029/2002JC001704}
2111}
2112
2113@ARTICLE{Lengaigne_al_GRL09,
2114  author = {M. Lengaigne and G. Madec and L. Bopp and C. Menkes and O. Aumont
2115   and P. Cadule},
2116  title = {Bio-physical feedbacks in the Arctic Ocean using an Earth System
2117   model},
2118  journal = GRL,
2119  year = {2009},
2120  volume = {submitted},
2121  owner = {gm},
2122  timestamp = {2009.08.19}
2123}
2124
2125@ARTICLE{Lengaigne_al_CD07,
2126  author = {M. Lengaigne and C. Menkes and O. Aumont and T. Gorgues and L. Bopp
2127   and J.-M. Andr\'{e} G. Madec},
2128  title = {Bio-physical feedbacks on the tropical Pacific climate in a Coupled
2129   General Circulation Model},
2130  journal = CD,
2131  year = {2007},
2132  volume = {28},
2133  pages = {503--516},
2134  owner = {gm},
2135  timestamp = {2009.08.19}
2136}
2137
2138@ARTICLE{Leonard1991,
2139  author = {B. P. Leonard},
2140  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
2141   advection},
2142  journal = {Computer Methods in Applied Mechanics and Engineering},
2143  year = {1991},
2144  pages = {17--74},
2145  owner = {gm},
2146  timestamp = {2007.08.04}
2147}
2148
2149@TECHREPORT{Leonard_Rep88,
2150  author = {B. P. Leonard},
2151  title = {Universal limiter for transient interpolation modelling of the advective
2152   transport equations},
2153  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
2154  year = {1988},
2155  owner = {gm},
2156  timestamp = {2007.08.04}
2157}
2158
2159@ARTICLE{Leonard1979,
2160  author = {B. P. Leonard},
2161  title = {A stable and accurate convective modelling procedure based on quadratic
2162   upstream interpolation},
2163  journal = {Computer Methods in Applied Mechanics and Engineering},
2164  year = {1979},
2165  volume = {19},
2166  pages = {59--98},
2167  month = jun,
2168  owner = {gm},
2169  timestamp = {2007.08.04}
2170}
2171
2172@TECHREPORT{Levier2007,
2173  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
2174  title = {Free surface and variable volume in the NEMO code},
2175  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
2176   NEMO web site},
2177  year = {2007},
2178  owner = {gm},
2179  timestamp = {2007.08.03}
2180}
2181
2182@BOOK{levitus82,
2183  title = {Climatological Atlas of the world ocean},
2184  publisher = {NOAA professional paper No. 13, 174pp},
2185  year = {1982},
2186  author = {S Levitus },
2187  note = {173 p.}
2188}
2189
2190@TECHREPORT{Lott1989,
2191  author = {F. Lott and G. Madec},
2192  title = {Implementation of bottom topography in the Ocean General Circulation
2193   Model OPA of the LODYC: formalism and experiments.},
2194  institution = {LODYC, France, 36pp.},
2195  year = {1989},
2196  number = {3},
2197  owner = {gm},
2198  timestamp = {2007.08.03}
2199}
2200
2201@ARTICLE{Lott_al_OM90,
2202  author = {F. Lott and G. Madec and J. Verron},
2203  title = {Topographic experiments in an Ocean General Circulation Model},
2204  journal = OM,
2205  year = {1990},
2206  volume = {88},
2207  pages = {1--4},
2208  owner = {gm},
2209  timestamp = {2007.08.03}
2210}
2211
2212@ARTICLE{Luo_al_JC05,
2213  author = {J.-J. Luo and S. Masson and E. Roeckner and G. Madec and T. Yamagata},
2214  title = {Reducing climatology bias in an ocean-atmosphere CGCM with improved
2215   coupling physics},
2216  journal = JC,
2217  year = {2005},
2218  volume = {18 (13)},
2219  pages = {2344--2360},
2220  owner = {gm},
2221  timestamp = {2009.08.19}
2222}
2223
2224@BOOK{Madec_Bk08,
2225  title = {NEMO ocean engine},
2226  publisher = {Note du P\^ole de mod\'{e}lisation, Institut Pierre-Simon Laplace
2227   (IPSL), France, No 27, ISSN No 1288-1619},
2228  year = {2008},
2229  author = {G. Madec},
2230  owner = {gm},
2231  timestamp = {2008.07.05}
2232}
2233
2234@BOOK{Madec_HDR01,
2235  title = {Le Cycle des Masses d'Eau Oc\'{e}aniqueset sa variabilit\'{e} dans
2236   le Syst\'{e}me Climatique},
2237  year = {2001},
2238  author = {G. Madec},
2239  pages = {63pp.},
2240  series = {Habilitation \'{a} Diriger des Recherches, Universit\'{e} Pierre
2241   et Marie Curie},
2242  owner = {gm},
2243  timestamp = {2009.08.20}
2244}
2245
2246@PHDTHESIS{Madec_PhD90,
2247  author = {G. Madec},
2248  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
2249   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
2250  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 194pp.},
2251  year = {1990},
2252  month = {2 mai},
2253  owner = {gm},
2254  timestamp = {2007.08.10}
2255}
2256
2257@ARTICLE{Madec_al_DAO91,
2258  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
2259  title = {Effect of thermohaline forcing variability on deep water formation
2260   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
2261   study},
2262  journal = DAO,
2263  year = {1991},
2264  volume = {15},
2265  pages = {301--332},
2266  owner = {gm},
2267  timestamp = {2007.08.06}
2268}
2269
2270@ARTICLE{Madec_al_JPO91,
2271  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
2272  title = {A three-dimensional numerical study of deep water formation in the
2273   
2274   
2275   Northwestern Mediterranean Sea .},
2276  journal = JPO,
2277  year = {1991},
2278  volume = {21},
2279  pages = {1349--1371},
2280  owner = {gm},
2281  timestamp = {2007.08.06}
2282}
2283
2284@INBOOK{Madec_Crepon_Bk91,
2285  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
2286   Sea},
2287  pages = {241--265},
2288  title = {Deep convection and deep water formation in the oceans},
2289  publisher = {Elsevier Oceanographic Series, P.C. Chu and J.C. Gascard (Eds.)},
2290  year = {1991},
2291  author = {G. Madec and M. Cr\'{e}pon},
2292  owner = {gm},
2293  timestamp = {2007.08.06}
2294}
2295
2296@ARTICLE{Madec1997,
2297  author = {G. Madec and P. Delecluse},
2298  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
2299  journal = {Int. WOCE Newsletter},
2300  year = {1997},
2301  volume = {26},
2302  pages = {12--15},
2303  owner = {gm},
2304  timestamp = {2007.08.06}
2305}
2306
2307@TECHREPORT{Madec1998,
2308  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
2309  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
2310  institution = {LODYC/IPSL Note 11},
2311  year = {1998}
2312}
2313
2314@ARTICLE{Madec_Imbard_CD96,
2315  author = {G Madec and M Imbard},
2316  title = {A global ocean mesh to overcome the north pole singularity},
2317  journal = CD,
2318  year = {1996},
2319  volume = {12},
2320  pages = {381--388}
2321}
2322
2323@ARTICLE{Madec_al_JPO96,
2324  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
2325  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
2326   Mediterranean Sea},
2327  journal = JPO,
2328  year = {1996},
2329  volume = {26},
2330  pages = {1393--1408},
2331  number = {8},
2332  month = aug,
2333  abstract = {The large-scale processes preconditioning the winter deep-water formation
2334   in the northwestern Mediterranean Sea are investigated with a primitive
2335   equation numerical model where convection is parameterized by a non-penetrative
2336   convective adjustment algorithm. The ocean is forced by momentum
2337   and buoyancy fluxes that have the gross features of mean winter forcing
2338   found in the MEDOC area. The wind-driven barotropic circulation appears
2339   to be a major ingredient of the preconditioning phase of deep-water
2340   formation. After three months, the ocean response is dominated by
2341   a strong barotropic cyclonic vortex located under the forcing area,
2342   which fits the Sverdrup balance away from the northern coast. In
2343   the vortex center, the whole water column remains trapped under the
2344   forcing area all winter. This trapping enables the thermohaline forcing
2345   to drive deep-water formation efficiently. Sensitivity studies show
2346   that, β effect and bottom topography play a paramount role and
2347   confirm that deep convection occurs only in areas that combine a
2348   strong surface thermohaline forcing and a weak barotropic advection
2349   so that water masses are submitted to the negative buoyancy fluxes
2350   for a much longer time. In particular, the impact of the Rhône
2351   Deep Sea Fan on the barotropic circulation dominates the β effect:
2352   the barotropic flow is constrained to follow the bathymetric contours
2353   and the cyclonic vortex is shifted southward so that the fluid above
2354   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
2355   above the fan in agreement with observations. The selection of the
2356   area of deep-water formation through the defection of the barotropic
2357   circulation by the topography seems a more efficient mechanism than
2358   those associated with the wind- driven barotropic vortex. This is
2359   due to its permanency, while the latter may be too sensitive to time
2360   and space variations of the forcing.},
2361  owner = {gm},
2362  timestamp = {2007.08.03}
2363}
2364
2365@ARTICLE{Madec_al_OM88,
2366  author = {G. Madec and C. Rahier and M. Chartier},
2367  title = {A comparison of two-dimensional elliptic solvers for the streamfunction
2368   in a multilevel OGCM},
2369  journal = OM,
2370  year = {1988},
2371  volume = {78},
2372  pages = {1-6},
2373  owner = {gm},
2374  timestamp = {2009.08.20}
2375}
2376
2377@ARTICLE{Maes_al_CD98,
2378  author = {C. Maes and P. Delecluse and G. Madec},
2379  title = {Impact of westerly wind bursts on the warm pool of the TOGA-COARE
2380   domain in an OGCM},
2381  journal = CD,
2382  year = {1998},
2383  volume = {14},
2384  pages = {55--70},
2385  owner = {gm},
2386  timestamp = {2009.08.20}
2387}
2388
2389@ARTICLE{Maes_al_MWR97,
2390  author = {C. Maes and G. Madec and P. Delecluse},
2391  title = {Sensitivity of an Equatorial Pacific OGCM to the lateral diffusion},
2392  journal = MWR,
2393  year = {1997},
2394  volume = {125, 5},
2395  pages = {958--971},
2396  owner = {gm},
2397  timestamp = {2009.08.20}
2398}
2399
2400@ARTICLE{Maltrud1998,
2401  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
2402  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
2403   winds},
2404  journal = JGR,
2405  year = {1998},
2406  volume = {103(C13)},
2407  pages = {30,825--30,854},
2408  owner = {gm},
2409  timestamp = {2007.08.05}
2410}
2411
2412@ARTICLE{Marchesiello2001,
2413  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
2414  title = {Open boundary conditions for long-term integrations of Regional Oceanic
2415   Models},
2416  journal = OM,
2417  year = {2001},
2418  volume = {3},
2419  pages = {1--20}
2420}
2421
2422@ARTICLE{Marsaleix_al_OM08,
2423  author = {P. Marsaleix and F. Auclair and J. W. Floor and M. J. Herrmann and
2424   C. Estournel and I. Pairaud and C. Ulses},
2425  title = {Energy conservation issues in sigma-coordinate free-surface ocean
2426   models},
2427  journal = OM,
2428  year = {2008},
2429  volume = {20},
2430  pages = {61--89},
2431  number = {1},
2432  doi = {10.1016/j.ocemod.2007.07.005},
2433  owner = {gm},
2434  timestamp = {2008.11.28},
2435  url = {http://dx.doi.org/10.1016/j.ocemod.2007.07.005}
2436}
2437
2438@BOOK{MIT-GCM_2004,
2439  title = {MIT-gcm User Manual},
2440  year = {2004},
2441  editor = {MIT Department of EAPS},
2442  author = {J. Marshall and A. Adcroft and J.-M. Campin and P. Heimbach and A.
2443   Molod and S. Dutkiewicz and H. Hill and M. Losch and B. Fox-Kemper
2444   and D. Menemenlis and D. Ferreira and E. Hill and M. Follows and
2445   C. Hill and C. Evangelinos and G. Forget},
2446  owner = {gm},
2447  timestamp = {2008.07.04}
2448}
2449
2450@PHDTHESIS{Marti_PhD92,
2451  author = {O. Marti},
2452  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
2453   et du transport de traceurs anthropog\'{e}niques},
2454  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
2455  year = {1992},
2456  owner = {gm},
2457  timestamp = {2007.08.04}
2458}
2459
2460@ARTICLE{Marti_al_CD09,
2461  author = {O. Marti and P. Braconnot and J.-L. Dufresne and J. Bellier and R.
2462   Benshila and S. Bony and P. Brockmann and P. Cadule and A. Caubel
2463   and F Codron and S. Denvil and L. Fairhead and T. Fichefet and M.-A.
2464   Filiberti and M.-A. Foujols and P. Friedlingstein and H. Goosse and
2465   J.-Y. Grandpeix and E. Guilyardi and F. Hourdin and G. Krinner and
2466   C. L\'{e}vy and G. Madec and J. Mignot and I. Musat and D. Swingedouw
2467   and C. Talandier},
2468  title = {Key features of the IPSL ocean atmosphere model and its sensitivity
2469   to atmospheric resolution},
2470  journal = CD,
2471  year = {2009},
2472  volume = {in press},
2473  owner = {gm},
2474  timestamp = {2009.08.19}
2475}
2476
2477@ARTICLE{Marti_al_JGR92,
2478  author = {O. Marti and G. Madec and P. Delecluse},
2479  title = {Comment on "Net diffusivity in ocean general circulation models with
2480   nonuniform grids" by F. L. Yin and I. Y. Fung},
2481  journal = JGR,
2482  year = {1992},
2483  volume = {97},
2484  pages = {12,763--12,766},
2485  month = aug,
2486  owner = {gm},
2487  timestamp = {2007.08.03}
2488}
2489
2490@INBOOK{Masson_al_Bk08,
2491  chapter = {OPA9 - French experiments on the Earth Simulator and Teraflop Workbench
2492   tunings},
2493  pages = {25-34},
2494  title = {In High Performance computing on Vector System 2007, Stuttgart, Germany},
2495  publisher = {Springer-Verlag},
2496  year = {2008},
2497  editor = {Resch M, Roller S, Lammers P, Furui T, Galle M, Bez W},
2498  author = {S. Masson and M.-A. Foujols and P. Klein and G. Madec and L. Hua
2499   and M. Levy and H. Sasaki and K. Takahashi and F. Svensson},
2500  doi = {10.1007/978-3-540-74384-2},
2501  owner = {gm},
2502  timestamp = {2009.08.19},
2503  url = {http://dx.doi.org/10.1007/978-3-540-74384-2}
2504}
2505
2506@ARTICLE{Masson_al_GRL05,
2507  author = {S. Masson and J.-J. Luo and G. Madec and J. Vialard and F. Durand
2508   and S. Gualdi and E. Guilyardi and S. Behera and P. Delecluse and
2509   A. Navarra and T. Yamagata},
2510  title = {Impact of barrier layer on winter-spring variability of the South-Eastern
2511   Arabian Sea},
2512  journal = GRL,
2513  year = {2005},
2514  volume = {32},
2515  pages = {L07703},
2516  doi = {10.1029/2004GL021980},
2517  owner = {gm},
2518  timestamp = {2009.08.19},
2519  url = {http://dx.doi.org/10.1029/2004GL021980}
2520}
2521
2522@ARTICLE{McDougall1987,
2523  author = {T. J. McDougall},
2524  title = {Neutral Surfaces},
2525  journal = JPO,
2526  year = {1987},
2527  volume = {17},
2528  pages = {1950--1964},
2529  number = {11},
2530  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
2531   rather efficiently by mesoscale eddies and two-dimensional turbulence
2532   along “neutral surfaces”, defined such that when water
2533   parcels are moved small distances in the neutral surface, they experience
2534   no buoyant restoring forces. By contrast, work would have to be done
2535   on a moving fluid parcel in order to keep it on a potential density
2536   surface. The differences between neutral surfaces and potential density
2537   surfaces are due to the variation of α/β with pressure
2538   (where α is the thermal expansion coefficient and β is
2539   the saline contraction coefficient). By regarding the equation of
2540   state of seawater as a function of salinity, potential temperature,
2541   and pressure, rather than in terms of salinity, temperature, and
2542   pressure, it is possible to quantify the differences between neutral
2543   surfaces and potential density surfaces. In particular, the spatial
2544   gradients of scalar properties (e.g., S, θ, tritium or potential
2545   vorticity) on a neutral surface can be quite different to the corresponding
2546   gradients in a potential density surface. For example, at a potential
2547   temperature of 4°C and a pressure of 1000 db, the lateral gradient
2548   of potential temperature in a potential density surface (referenced
2549   to sea level) is too large by between 50% and 350% (depending
2550   on the stability ratio Rp of the water column) compared with the
2551   physically relevant gradient of potential temperature on the neutral
2552   surface. Three-examples of neutral surfaces are presented, based
2553   on the Levitus atlas of the North Atlantic.},
2554  date = {November 01, 1987},
2555  owner = {gm},
2556  timestamp = {2007.08.04}
2557}
2558
2559@ARTICLE{McDougall_Taylor_JMR84,
2560  author = {T. J. McDougall and J. R. Taylor},
2561  title = {Flux measurements across a finger interface at low values of the
2562   stability ratio},
2563  journal = JMR,
2564  year = {1984},
2565  volume = {42},
2566  pages = {1--14},
2567  owner = {gm},
2568  timestamp = {2008.05.20}
2569}
2570
2571@ARTICLE{Mellor_Blumberg_JPO04,
2572  author = {G. Mellor and A. Blumberg},
2573  title = {Wave Breaking and Ocean Surface Layer Thermal Response},
2574  journal = JPO,
2575  year = {2004},
2576  volume = {34},
2577  pages = {693--698},
2578  owner = {gm},
2579  timestamp = {2009.01.16}
2580}
2581
2582@ARTICLE{Menkes_al_JPO06,
2583  author = {C. Menkes and J. Vialard and S C. Kennan and J.-P. Boulanger and
2584   G. Madec},
2585  title = {A modelling study of the three-dimensional heat budget of Tropical
2586   Instability Waves in the Equatorial Pacific},
2587  journal = JPO,
2588  year = {2006},
2589  volume = {36, 5},
2590  pages = {847--865},
2591  owner = {gm},
2592  timestamp = {2009.08.19}
2593}
2594
2595@ARTICLE{Merryfield1999,
2596  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
2597  title = {A Global Ocean Model with Double-Diffusive Mixing},
2598  journal = JPO,
2599  year = {1999},
2600  volume = {29},
2601  pages = {1124--1142},
2602  number = {6},
2603  abstract = {A global ocean model is described in which parameterizations of diapycnal
2604   mixing by double-diffusive fingering and layering are added to a
2605   stability-dependent background turbulent diffusivity. Model runs
2606   with and without double-diffusive mixing are compared for annual-mean
2607   and seasonally varying surface forcing. Sensitivity to different
2608   double-diffusive mixing parameterizations is considered. In all cases,
2609   the locales and extent of salt fingering (as diagnosed from buoyancy
2610   ratio Rρ) are grossly comparable to climatology, although fingering
2611   in the models tends to be less intense than observed. Double-diffusive
2612   mixing leads to relatively minor changes in circulation but exerts
2613   significant regional influences on temperature and salinity.},
2614  date = {June 01, 1999},
2615  owner = {gm},
2616  timestamp = {2007.08.06}
2617}
2618
2619@BOOK{Mesinger_Arakawa_Bk76,
2620  title = {Numerical methods used in Atmospheric models},
2621  publisher = {GARP Publication Series No 17},
2622  year = {1976},
2623  author = {F. Mesinger and A. Arakawa},
2624  owner = {gm},
2625  timestamp = {2008.02.09}
2626}
2627
2628@ARTICLE{Morel_JGR88,
2629  author = {A. Morel},
2630  title = {Optical modeling of the upper ocean in relation to its biogenous
2631   matter content (Case I waters)},
2632  journal = JGR,
2633  year = {1988},
2634  volume = {93},
2635  pages = {10,749--10,768},
2636  owner = {gm},
2637  timestamp = {2010.10.07}
2638}
2639
2640@ARTICLE{Morel_Maritorena_JGR01,
2641  author = {A. Morel and S. Maritorena},
2642  title = {Bio-optical properties of oceanic waters: a reappraisal},
2643  journal = JGR,
2644  year = {2001},
2645  owner = {gm},
2646  timestamp = {2010.10.07}
2647}
2648
2649@ARTICLE{Moun_al_JPO02,
2650  author = {J.N. Moum and D.R. Caldwell and J.D. Nash and G.D. Gunderson},
2651  title = {Observations of boundary mixing over the
2652   
2653   continental slope},
2654  journal = JPO,
2655  owner = {gm},
2656  timestamp = {2010.05.20}
2657}
2658
2659@ARTICLE{Murray_JCP96,
2660  author = {R. J. Murray},
2661  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
2662  journal = JCP,
2663  year = {1996},
2664  volume = {126},
2665  pages = {251--273},
2666  number = {2},
2667  month = {July},
2668  owner = {gm},
2669  timestamp = {2007.08.03}
2670}
2671
2672@PHDTHESIS{Olivier_PhD01,
2673  author = {F. Olivier},
2674  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
2675   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
2676  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
2677  year = {2001},
2678  owner = {gm},
2679  timestamp = {2007.08.14}
2680}
2681
2682@ARTICLE{Osborn_JPO80,
2683  author = {T.R. Osborn},
2684  title = {Estimates of the local rate of vertical diffusion from dissipation
2685   measurements},
2686  journal = JPO,
2687  volume = {10},
2688  pages = {83--89},
2689  owner = {gm},
2690  timestamp = {2010.05.20}
2691}
2692
2693@ARTICLE{Pacanowski_Philander_JPO81,
2694  author = {R.C. Pacanowski and S.G.H. Philander},
2695  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
2696   Oceans},
2697  journal = JPO,
2698  year = {1981},
2699  volume = {11},
2700  pages = {1443--1451},
2701  number = {11},
2702  abstract = {Measurements indicate that mixing processes are intense in the surface
2703   layers of the ocean but weak below the thermocline, except for the
2704   region below the core of the Equatorial Undercurrent where vertical
2705   temperature gradients are small and the shear is large. Parameterization
2706   of these mixing processes by means of coefficients of eddy mixing
2707   that are Richardson-number dependent, leads to realistic simulations
2708   of the response of the equatorial oceans to different windstress
2709   patterns. In the case of eastward winds results agree well with measurements
2710   in the Indian Ocean. In the case of westward winds it is of paramount
2711   importance that the nonzero heat flux into the ocean be taken into
2712   account. This beat flux stabilizes the upper layers and reduces the
2713   intensity of the mixing, especially in the cast. With an appropriate
2714   surface boundary condition, the results are relatively insensitive
2715   to values assigned to constants in the parameterization formula.},
2716  date = {November 01, 1981},
2717  owner = {gm},
2718  timestamp = {2007.08.03}
2719}
2720
2721@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
2722  author = {R. C. Pacanowski and A. Gnanadesikan},
2723  title = {Transient response in a z-level ocean model that resolves topography
2724   
2725   
2726   with partial-cells},
2727  journal = MWR,
2728  year = {1998},
2729  volume = {126},
2730  pages = {3248-3270},
2731  owner = {gm},
2732  timestamp = {2008.01.26}
2733}
2734
2735@ARTICLE{Park_al_JC09,
2736  author = {W. Park and N. Keenlyside and M. Latif and A. Str\¨{o}h and R. Redler
2737   and E. Roeckner and G. Madec},
2738  title = {Tropical Pacific Climate and its Response to Global Warming in the
2739   Kiel Climate Model},
2740  journal = JC,
2741  year = {2009},
2742  volume = {22, 1},
2743  pages = {71--92},
2744  doi = {10.1175/2008JCLI2261.1},
2745  owner = {gm},
2746  timestamp = {2009.08.19},
2747  url = {http://dx.doi.org/10.1175/2008JCLI2261.1}
2748}
2749
2750@ARTICLE{Paulson1977,
2751  author = {C. A. Paulson and J. J. Simpson},
2752  title = {Irradiance Measurements in the Upper Ocean},
2753  journal = JPO,
2754  year = {1977},
2755  volume = {7},
2756  pages = {952--956},
2757  number = {6},
2758  abstract = {Observations were made of downward solar radiation as a function of
2759   depth during an experiment in the North Pacific (35°N, 155°W).
2760   The irradiance meter employed was sensitive to solar radiation of
2761   wavelength 400–1000 nm arriving from above at a horizontal
2762   surface. Because of selective absorption of the short and long wavelengths,
2763   the irradiance decreases much faster than exponential in the upper
2764   few meters, falling to one-third of the incident value between 2
2765   and 3 m depth. Below 10 m the decrease was exponential at a rate
2766   characteristic of moderately clear water of Type IA. Neglecting one
2767   case having low sun altitude, the observations are well represented
2768   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
2769   where I is the irradiance at depth −z, I0 is the irradiance
2770   at the surface less reflected solar radiation, R=0.62, ζ1
2771   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
2772   and z is the vertical space coordinate, positive upward with the
2773   origin at mean sea level. The depth at which the irradiance falls
2774   to 10% of its surface value is nearly the same as observations
2775   of Secchi depth when cases with high wind speed or low solar altitude
2776   are neglected. Parameters R, ζ1, and ζ2 are computed for
2777   the entire range of oceanic water types.},
2778  date = {November 01, 1977},
2779  owner = {gm},
2780  timestamp = {2007.08.04}
2781}
2782
2783@ARTICLE{Penduff_al_OM06,
2784  author = {T. Penduff and B. Barnier and J.-M. Molines and G. Madec},
2785  title = {On the use of current meter data to assess the realism of ocean model
2786   simulations},
2787  journal = OM,
2788  year = {2006},
2789  volume = {11, 3--4},
2790  pages = {399--416},
2791  owner = {gm},
2792  timestamp = {2009.08.19}
2793}
2794
2795@ARTICLE{Penduff_al_JGR00,
2796  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
2797  title = {Self-adapting open boundaries for a regional model of the eastern
2798   North Atlantic},
2799  journal = JGR,
2800  year = {2000},
2801  volume = {105},
2802  pages = {11,279--11,297}
2803}
2804
2805@ARTICLE{Penduff_al_OS07,
2806  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
2807   J. Molines and G. Madec},
2808  title = {Influence of numerical schemes on current-topography interactions
2809   in 1/4$^{\circ}$ global ocean simulations},
2810  journal = OS,
2811  year = {2007},
2812  volume = {3},
2813  pages = {509--524}
2814}
2815
2816@ARTICLE{Phillips1959,
2817  author = {R. S. Phillips},
2818  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
2819   Equations},
2820  journal = {Transactions of the American Mathematical Society},
2821  year = {1959},
2822  volume = {90 (2)},
2823  pages = {193--254},
2824  doi = {10.2307/1993202},
2825  owner = {gm},
2826  timestamp = {2007.08.10},
2827  url = {http://dx.doi.org/10.2307/1993202}
2828}
2829
2830@ARTICLE{Le_Quere_al_GBC00,
2831  author = {C. Le Qu\'{e}r\'{e} and J. C. Orr and P. Monfray and O. Aumont and
2832   G. Madec},
2833  title = {Interannual variability of the global and regional sea-air flux of
2834   C02 from 1979 to 1993},
2835  journal = GBC,
2836  year = {2000},
2837  volume = {14},
2838  pages = {1247--1266},
2839  owner = {gm},
2840  timestamp = {2009.08.20}
2841}
2842
2843@ARTICLE{Raynaud_al_GRL00,
2844  author = {S. Raynaud and S. Speich and E. Guilyardi and G. Madec},
2845  title = {Impact of the ocean lateral diffusion on the ENSO-like variability
2846   of a global coupled GCM},
2847  journal = GRL,
2848  year = {2000},
2849  volume = {27, 19},
2850  pages = {3041--3044},
2851  owner = {gm},
2852  timestamp = {2009.08.20}
2853}
2854
2855@ARTICLE{Redi_JPO82,
2856  author = {M. H. Redi},
2857  title = {Oceanic isopycnal mixing by coordinate rotation},
2858  journal = JPO,
2859  year = {1982},
2860  volume = {13},
2861  pages = {1154--1158},
2862  owner = {gm},
2863  timestamp = {2008.02.02}
2864}
2865
2866@ARTICLE{Reverdin1991,
2867  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
2868   Morli\`{e}re and J. M. Verstraete},
2869  title = {The near surface tropical Atlantic in 1982-1984 : results from a
2870   numerical simulation and a data analysis},
2871  journal = PO,
2872  year = {1991},
2873  volume = {27},
2874  pages = {273-340},
2875  owner = {gm},
2876  timestamp = {2007.08.04}
2877}
2878
2879@BOOK{Richtmyer1967,
2880  title = {Difference methods for initial-value problems},
2881  publisher = {Interscience Publisher, Second Edition, 405pp},
2882  year = {1967},
2883  author = {R. D. Richtmyer and K. W. Morton},
2884  owner = {gm},
2885  timestamp = {2007.08.04}
2886}
2887
2888@ARTICLE{Robert_JMSJ66,
2889  author = {A. J. Robert},
2890  title = {The integration of a Low order spectral form of the primitive meteorological
2891   equations},
2892  journal = JMSJ,
2893  year = {1966},
2894  volume = {44, 2},
2895  owner = {gm},
2896  timestamp = {2007.08.04}
2897}
2898
2899@ARTICLE{Rodgers_al_GRL04,
2900  author = {K. Rodgers and O. Aumont and G. Madec and C. Menkes},
2901  title = {Radiocarbon as a thermocline proxy for the eastern equatorial Pacific},
2902  journal = GRL,
2903  year = {2004},
2904  volume = {31},
2905  pages = {L14314},
2906  doi = {10.1029/2004GL019764},
2907  owner = {gm},
2908  timestamp = {2009.08.19},
2909  url = {http://dx.doi.org/10.1029/2004GL019764}
2910}
2911
2912@ARTICLE{Rodgers_al_GRL03,
2913  author = {K. Rodgers and B. Blanke and G. Madec and O. Aumont and P. Ciais
2914   and J.-C. Dutay},
2915  title = {Extratropical sources of equatorial pacific upwelling in an OGCM},
2916  journal = GRL,
2917  year = {2003},
2918  volume = {30, 2},
2919  doi = {10.1029/2002GL016003},
2920  owner = {gm},
2921  timestamp = {2009.08.20},
2922  url = {http://dx.doi.org/10.1029/2002GL016003}
2923}
2924
2925@INCOLLECTION{Roed1986,
2926  author = {L.P. Roed and C.K. Cooper},
2927  title = {Open boundary conditions in numerical ocean models},
2928  booktitle = {Advanced Physical Oceanography Numerical Modelling},
2929  publisher = { NATO ASI Series, vol. 186.},
2930  year = {1986},
2931  editor = {J.J. O'Brien}
2932}
2933
2934@ARTICLE{Roullet_Madec_JGR00,
2935  author = {G. Roullet and G. Madec},
2936  title = {salt conservation, free surface, and varying levels: a new formulation
2937   for ocean general circulation models},
2938  journal = JGR,
2939  year = {2000},
2940  volume = {105},
2941  pages = {23,927--23,942},
2942  owner = {gm},
2943  pdf = {Roullet_Madec_JGR00.pdf},
2944  timestamp = {2007.03.22}
2945}
2946
2947@ARTICLE{Sadourny1975,
2948  author = {R. Sadourny},
2949  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
2950  journal = JAS,
2951  year = {1975},
2952  volume = {32},
2953  pages = {680--689},
2954  number = {4},
2955  abstract = {Two simple numerical models of the shallow-water equations identical
2956   in all respects but for their con-servation properties have been
2957   tested regarding their internal mixing processes. The experiments
2958   show that violation of enstrophy conservation results in a spurious
2959   accumulation of rotational energy in the smaller scales, reflected
2960   by an unrealistic increase of enstrophy, which ultimately produces
2961   a finite rate of energy dissipation in the zero viscosity limit,
2962   thus violating the well-known dynamics of two-dimensional flow. Further,
2963   the experiments show a tendency to equipartition of the kinetic energy
2964   of the divergent part of the flow in the inviscid limit, suggesting
2965   the possibility of a divergent energy cascade in the physical system,
2966   as well as a possible influence of the energy mixing on the process
2967   of adjustment toward balanced flow.},
2968  date = {April 01, 1975},
2969  owner = {gm},
2970  timestamp = {2007.08.05}
2971}
2972
2973@ARTICLE{Sarmiento1982,
2974  author = {J. L. Sarmiento and K. Bryan},
2975  title = {Ocean transport model for the North Atlantic},
2976  journal = JGR,
2977  year = {1982},
2978  volume = {87},
2979  pages = {394--409},
2980  owner = {gm},
2981  timestamp = {2007.08.04}
2982}
2983
2984@ARTICLE{Shchepetkin_McWilliams_OM05,
2985  author = {A. F. Shchepetkin and J. C. McWilliams},
2986  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
2987   topography-following-coordinate oceanic modelr},
2988  journal = {Ocean Modelling},
2989  year = {2005},
2990  volume = {9, 4},
2991  pages = {347--404},
2992  owner = {gm},
2993  timestamp = {2007.08.04}
2994}
2995
2996@ARTICLE{Sacha2003,
2997  author = {A. F. Shchepetkin and J. C. McWilliams},
2998  title = {A method for computing horizontal pressure-gradient force in an oceanic
2999   model with a nonaligned
3000   
3001   vertical coordinate},
3002  journal = JGR,
3003  year = {2003},
3004  volume = {108(C3)},
3005  pages = {3090},
3006  doi = {10.1029/2001JC001047},
3007  owner = {gm},
3008  timestamp = {2007.08.05},
3009  url = {http://dx.doi.org/10.1029/2001JC001047}
3010}
3011
3012@ARTICLE{Shchepetkin1996,
3013  author = {A. F. Shchepetkin and J. J. O'Brien},
3014  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
3015   Equation Ocean Models},
3016  journal = MWR,
3017  year = {1996},
3018  volume = {124},
3019  pages = {1285--1300},
3020  number = {6},
3021  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
3022   processes in which the friction is physically relevant and to prevent
3023   numerical instability by suppressing accumulation of energy in the
3024   smallest resolved scales. This study shows that even for the latter
3025   case the form of the friction term should be chosen in a physically
3026   consistent way. Violation of fundamental physical principles reduces
3027   the fidelity of the numerical solution, even if the friction is small.
3028   Several forms of the lateral friction, commonly used in numerical
3029   ocean models, are discussed in the context of shallow-water equations
3030   with nonuniform layer thickness. It is shown that in a numerical
3031   model tuned for the minimal dissipation, the improper form of the
3032   friction term creates finite artificial vorticity sources that do
3033   not vanish with increased resolution, even if the viscous coefficient
3034   is reduced consistently with resolution. An alternative numerical
3035   implementation of the no-slip boundary conditions for an arbitrary
3036   coast line is considered. It was found that the quality of the numerical
3037   solution may be considerably improved by discretization of the viscous
3038   stress tensor in such a way that the numerical boundary scheme approximates
3039   not only the stress tensor to a certain order of accuracy but also
3040   simulates the truncation error of the numerical scheme used in the
3041   interior of the domain. This ensures error cancellation during subsequent
3042   use of the elements of the tensor in the discrete version of the
3043   momentum equations, allowing for approximation of them without decrease
3044   in the order of accuracy near the boundary.},
3045  date = {June 01, 1996},
3046  owner = {gm},
3047  timestamp = {2007.08.14}
3048}
3049
3050@ARTICLE{Simmons_al_OM04,
3051  author = {H. L. Simmons and S. R. Jayne and L. C. {St. Laurent} and A. J. Weaver},
3052  title = {Tidally driven mixing in a numerical model of the ocean general circulation},
3053  journal = OM,
3054  year = {2004},
3055  pages = {245--263},
3056  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
3057   tidal energy is dissipated in the
3058   
3059   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
3060   energy is converted from the barotropic
3061   
3062   to internal tides in the deep ocean, predominantly around regions
3063   of rough topography such as midocean
3064   
3065   ridges. Aglobal tidal model is used to compute turbulent energy levels
3066   associated with the dissipation
3067   
3068   of internal tides, and the diapycnal mixing supported by this energy
3069   ?ux is computed using a simple parameterization.
3070   
3071   The mixing parameterization has been incorporated into a coarse resolution
3072   numerical model of the
3073   
3074   global ocean. This parameterization o?ers an energetically consistent
3075   and practical means of improving the
3076   
3077   representation of ocean mixing processes in climate models. Novel
3078   features of this implementation are that
3079   
3080   the model explicitly accounts for the tidal energy source for mixing,
3081   and that the mixing evolves both
3082   
3083   spatially and temporally with the model state. At equilibrium, the
3084   globally averaged di?usivity pro?le
3085   
3086   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
3087   abyss with a depth average of 0.9
3088   
3089   cm2 s1, in close agreement with inferences from global balances.
3090   Water properties are strongly in?uenced
3091   
3092   by the combination of weak mixing in the main thermocline and enhanced
3093   mixing in the deep ocean.
3094   
3095   Climatological comparisons show that the parameterized mixing scheme
3096   results in a substantial reduction},
3097  owner = {gm},
3098  pdf = {Simmons_mixing_OM2003.pdf},
3099  timestamp = {2007.03.22}
3100}
3101
3102@ARTICLE{Song_Haidvogel_JCP94,
3103  author = {Y. Song and D. Haidvogel},
3104  title = {A semi-implicit ocean circulation model using a generalized topography-following
3105   coordinate system},
3106  journal = JCP,
3107  year = {1994},
3108  volume = {115, 1},
3109  pages = {228--244},
3110  owner = {gm},
3111  timestamp = {2007.08.04}
3112}
3113
3114@ARTICLE{Song1998,
3115  author = {Y. T. Song},
3116  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
3117   Scheme Design and Diagnostic Analysis},
3118  journal = MWR,
3119  year = {1998},
3120  volume = {126},
3121  pages = {3213--3230},
3122  number = {12},
3123  abstract = {A Jacobian formulation of the pressure gradient force for use in models
3124   with topography-following coordinates is proposed. It can be used
3125   in conjunction with any vertical coordinate system and is easily
3126   implemented. Vertical variations in the pressure gradient are expressed
3127   in terms of a vertical integral of the Jacobian of density and depth
3128   with respect to the vertical computational coordinate. Finite difference
3129   approximations are made on the density field, consistent with piecewise
3130   linear and continuous fields, and accurate pressure gradients are
3131   obtained by vertically integrating the discrete Jacobian from sea
3132   surface.Two discrete schemes are derived and examined in detail:
3133   the first using standard centered differencing in the generalized
3134   vertical coordinate and the second using a vertical weighting such
3135   that the finite differences are centered with respect to the Cartesian
3136   z coordinate. Both schemes achieve second-order accuracy for any
3137   vertical coordinate system and are significantly more accurate than
3138   conventional schemes based on estimating the pressure gradients by
3139   finite differencing a previously determined pressure field.The standard
3140   Jacobian formulation is constructed to give exact pressure gradient
3141   results, independent of the bottom topography, if the buoyancy field
3142   varies bilinearly with horizontal position, x, and the generalized
3143   vertical coordinate, s, over each grid cell. Similarly, the weighted
3144   Jacobian scheme is designed to achieve exact results, when the buoyancy
3145   field varies linearly with z and arbitrarily with x, that is, b(x,z)
3146   = b0(x) + b1(x)z.When horizontal resolution cannot be made
3147   fine enough to avoid hydrostatic inconsistency, errors can be substantially
3148   reduced by the choice of an appropriate vertical coordinate. Tests
3149   with horizontally uniform, vertically varying, and with horizontally
3150   and vertically varying buoyancy fields show that the standard Jacobian
3151   formulation achieves superior results when the condition for hydrostatic
3152   consistency is satisfied, but when coarse horizontal resolution causes
3153   this condition to be strongly violated, the weighted Jacobian may
3154   give superior results.},
3155  date = {December 01, 1998},
3156  owner = {gm},
3157  timestamp = {2007.08.05}
3158}
3159
3160@ARTICLE{SongWright1998,
3161  author = {Y. T. Song and D. G. Wright},
3162  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
3163   - Energy, Momentum, and Bottom Torque Consistency},
3164  journal = MWR,
3165  year = {1998},
3166  volume = {126},
3167  pages = {3231--3247},
3168  number = {12},
3169  abstract = {A new formulation of the pressure gradient force for use in models
3170   with topography-following coordinates is proposed and diagnostically
3171   analyzed in Part I. Here, it is shown that important properties of
3172   the continuous equations are retained by the resulting numerical
3173   schemes, and their performance in prognostic simulations is examined.
3174   Numerical consistency is investigated with respect to global energy
3175   conservation, depth-integrated momentum changes, and the representation
3176   of the bottom pressure torque. The performances of the numerical
3177   schemes are tested in prognostic integrations of an ocean model to
3178   demonstrate numerical accuracy and long-term integral stability.
3179   Two typical geometries, an isolated tall seamount and an unforced
3180   basin with sloping boundaries, are considered for the special case
3181   of no external forcing and horizontal isopycnals to test numerical
3182   accuracy. These test problems confirm that the proposed schemes yield
3183   accurate approximations to the pressure gradient force. Integral
3184   consistency conditions are verified and the energetics of the “advective
3185   elimination” of the pressure gradient error (Mellor et al)
3186   is considered.A large-scale wind-driven basin with and without topography
3187   is used to test the model’s long-term integral performance
3188   and the effects of bottom pressure torque on the transport in western
3189   boundary currents. Integrations are carried out for 10 years in each
3190   case and results show that the schemes are stable, and the steep
3191   topography causes no obvious numerical problems. A realistic meandering
3192   western boundary current is well developed with detached cold cyclonic
3193   and warm anticyclonic eddies as it extends across the basin. In addition,
3194   the results with topography show earlier separation and enhanced
3195   transport in the western boundary currents due to the bottom pressure
3196   torque.},
3197  date = {December 01, 1998},
3198  owner = {gm},
3199  timestamp = {2007.08.05}
3200}
3201
3202@ARTICLE{Speer_al_Tel00,
3203  author = {K. Speer and E. Guilyardi and G. Madec},
3204  title = {Southern Ocean transformation in a coupled model with and without
3205   eddy mass fluxes},
3206  journal = {Tellus},
3207  year = {2000},
3208  volume = {52A, 5},
3209  pages = {554--565},
3210  owner = {gm},
3211  timestamp = {2009.08.20}
3212}
3213
3214@PHDTHESIS{Speich_PhD92,
3215  author = {S. Speich},
3216  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
3217   par les d\'{e}troits - cas de la mer d'Alboran},
3218  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
3219  year = {1992},
3220  owner = {gm},
3221  timestamp = {2007.08.06}
3222}
3223
3224@ARTICLE{Speich_al_GRL01,
3225  author = {S. Speich and B. Blanke and G. Madec},
3226  title = {Warm and cold water paths of an OGCM thermohaline conveyor belt},
3227  journal = GRL,
3228  year = {2001},
3229  volume = {28, 2},
3230  pages = {311--314},
3231  owner = {gm},
3232  timestamp = {2009.08.20}
3233}
3234
3235@ARTICLE{Speich_al_JPO96,
3236  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
3237  title = {The circulation in the Alboran Sea - a sensitivity study},
3238  journal = JPO,
3239  year = {1996},
3240  volume = {26, 3},
3241  pages = {320--340},
3242  owner = {gm},
3243  timestamp = {2007.08.06}
3244}
3245
3246@ARTICLE{St_Laurent_Garrett_JPO02,
3247  author = {L.C. {St. Laurent} and C. Garrett},
3248  title = {The role of internal tides in mixing the deep ocean},
3249  journal = JPO,
3250  pages = {2882--2899},
3251  owner = {gm},
3252  timestamp = {2010.05.20}
3253}
3254
3255@ARTICLE{St_Laurent_Nash_DSR04,
3256  author = {L.C. {St. Laurent} and J. D. Nash},
3257  title = {An examination of the radiative and dissipative properties of deep
3258   ocean internal tides},
3259  journal = DSR,
3260  year = {2004},
3261  volume = {II, 51},
3262  pages = {3029--3042},
3263  doi = {10.1016/j.dsr2.2004.09.008},
3264  owner = {gm},
3265  timestamp = {2010.05.21},
3266  url = {http://dx.doi.org/10.1016/j.dsr2.2004.09.008}
3267}
3268
3269@ARTICLE{St_Laurent_al_GRL02,
3270  author = {L.C. {St. Laurent} and H.L. Simmons and S.R. Jayne},
3271  title = {Estimating tidally driven mixing in the deep ocean},
3272  journal = GRL,
3273  year = {2002},
3274  volume = {29},
3275  pages = {2106},
3276  doi = {10.1029/2002GL015633},
3277  owner = {gm},
3278  timestamp = {2010.05.20},
3279  url = {http://dx.doi.org/10.1029/2002GL015633}
3280}
3281
3282@ARTICLE{Steele2001,
3283  author = {M. Steele and R. Morley and W. Ermold},
3284  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
3285  journal = JC,
3286  year = {2001},
3287  volume = {14},
3288  pages = {2079--2087
3289   
3290   },
3291  number = {9},
3292  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
3293   Climatology (PHC), has been created that merges the 1998 version
3294   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
3295   The result is a global climatology for temperature and salinity that
3296   contains a good description of the Arctic Ocean and its environs.
3297   Monthly, seasonal, and annual average products have been generated.
3298   How the original datasets were prepared for merging, how the optimal
3299   interpolation procedure was performed, and characteristics of the
3300   resulting dataset are discussed, followed by a summary and discussion
3301   of future plans.},
3302  date = {May 01, 2001},
3303  owner = {gm},
3304  timestamp = {2007.08.06}
3305}
3306
3307@ARTICLE{Stein_Stein_Nat92,
3308  author = {C. A. Stein and S. Stein},
3309  title = {A model for the global variation in oceanic depth and heat flow with
3310   lithospheric age},
3311  journal = {Nature},
3312  year = {1992},
3313  volume = {359},
3314  pages = {123--129},
3315  owner = {gm},
3316  timestamp = {2007.08.04}
3317}
3318
3319@ARTICLE{Thiem_Berntsen_OM06,
3320  author = {O. Thiem and J. Berntsen},
3321  title = {Internal pressure errors in sigma-coordinate ocean models due to
3322   anisotropy},
3323  journal = OM,
3324  year = {2006},
3325  volume = {12, 1-2},
3326  owner = {gm},
3327  timestamp = {2007.08.05}
3328}
3329
3330@ARTICLE{Timmermann_al_OM05,
3331  author = {R. Timmermann and H. Goosse and G. Madec and T. Fichefet, and C.
3332   Ethe and V. Duli\`{e}re},
3333  title = {On the representation of high latitude processes in the ORCA-LIM
3334   global coupled
3335   
3336   sea ice-ocean model.},
3337  journal = OM,
3338  year = {2005},
3339  volume = {8},
3340  pages = {175–201},
3341  owner = {gm},
3342  timestamp = {2008.07.05}
3343}
3344
3345@ARTICLE{Treguier_JGR92,
3346  author = {A.M. Tr\'{e}guier},
3347  title = {Kinetic energy analysis of an eddy resolving, primitive equation
3348   North Atlantic model},
3349  journal = JGR,
3350  year = {1992},
3351  volume = {97},
3352  pages = {687-701}
3353}
3354
3355@ARTICLE{Treguier_al_JGR01,
3356  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
3357   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
3358   and S. Michel},
3359  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
3360   open boundary conditions},
3361  journal = JGR,
3362  year = {2001},
3363  volume = {106},
3364  pages = {22,115--22,129}
3365}
3366
3367@ARTICLE{Treguier_al_DSR03,
3368  author = {A.-M. Tr\'{e}guier and O. Boedel and B. Barnier and G. Madec},
3369  title = {Agulhas eddy fluxes in a 1/6^o Atlantic model},
3370  journal = DSR,
3371  year = {2003},
3372  pages = {251--280},
3373  owner = {gm},
3374  timestamp = {2009.08.20}
3375}
3376
3377@ARTICLE{Treguier1996,
3378  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
3379  title = {Properties of nonuniform grids used in ocean general circulation
3380   models},
3381  journal = JGR,
3382  year = {1996},
3383  volume = {101},
3384  pages = {20,877--20,881},
3385  owner = {gm},
3386  timestamp = {2007.08.03}
3387}
3388
3389@ARTICLE{Treguier_al_OS07,
3390  author = {A.-M. Tr\'{e}guier and M. H. England and S. R. Rintoul and G. Madec
3391   and J. Le Sommer and J.-M. Molines},
3392  title = {Southern Ocean overturning across streamlines in an eddying simulation
3393   of the Antarctic Circumpolar Current},
3394  journal = OS,
3395  year = {2007},
3396  volume = {4},
3397  pages = {653--698},
3398  owner = {gm},
3399  timestamp = {2009.08.19}
3400}
3401
3402@ARTICLE{Treguier_al_OD06,
3403  author = {A.-M. Tr\'{e}guier and C. Gourcuff and P. Lherminier and H. Mercier
3404   and B. Barnier and G. Madec and J.-M. Molines and T. Penduff and
3405   L. Czeschel and C. Böning},
3406  title = {Internal and forced variability along a section between Greenland
3407   and Portugal in the CLIPPER Atlantic model},
3408  journal = OD,
3409  year = {2006},
3410  volume = {56},
3411  pages = {568--580},
3412  doi = {10.1007/s10236-006-0069-y},
3413  owner = {gm},
3414  timestamp = {2009.08.19},
3415  url = {http://dx.doi.org/10.1007/s10236-006-0069-y}
3416}
3417
3418@ARTICLE{Treguier1997,
3419  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
3420  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
3421   Ocean Models},
3422  journal = JPO,
3423  year = {1997},
3424  volume = {27},
3425  pages = {567--580},
3426  number = {4},
3427  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
3428   consistent with the fact that the ocean interior is nearly adiabatic.
3429   Gent and McWilliams have described a framework in which this can
3430   be approximated in z-coordinate primitive equation models by incorporating
3431   the effects of eddies on the buoyancy field through an eddy-induced
3432   velocity. It is also natural to base a parameterization on the simple
3433   picture of the mixing of potential vorticity in the interior and
3434   the mixing of buoyancy at the surface. The authors discuss the various
3435   constraints imposed by these two requirements and attempt to clarify
3436   the appropriate boundary conditions on the eddy-induced velocities
3437   at the surface. Quasigeostrophic theory is used as a guide to the
3438   simplest way of satisfying these constraints.},
3439  date = {April 01, 1997},
3440  owner = {gm},
3441  timestamp = {2007.08.03}
3442}
3443
3444@BOOK{UNESCO1983,
3445  title = {Algorithms for computation of fundamental property of sea water},
3446  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
3447  year = {1983},
3448  author = {UNESCO},
3449  owner = {gm},
3450  timestamp = {2007.08.04}
3451}
3452
3453@TECHREPORT{OASIS2006,
3454  author = {S. Valcke},
3455  title = {OASIS3 User Guide (prism\_2-5)},
3456  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
3457   64 pp},
3458  year = {2006},
3459  owner = {gm},
3460  timestamp = {2007.08.05}
3461}
3462
3463@TECHREPORT{Valcke_al_Rep00,
3464  author = {S. Valcke and L. Terray and A. Piacentini },
3465  title = {The OASIS Coupled User Guide Version 2.4},
3466  institution = {CERFACS},
3467  year = {2000},
3468  number = {TR/CMGC/00-10},
3469  owner = {gm}
3470}
3471
3472@ARTICLE{Vancoppenolle_al_OM09b,
3473  author = {M. Vancoppenolle and T. Fichefet and H. Goosse},
3474  title = {Simulating the mass balance and salinity of Arctic and Antarctic
3475   sea ice. 2. Importance of sea ice salinity variations},
3476  journal = {0M},
3477  year = {2009},
3478  volume = {27},
3479  pages = {54--69},
3480  owner = {gm},
3481  timestamp = {2009.08.20}
3482}
3483
3484@ARTICLE{Vancoppenolle_al_OM09a,
3485  author = {M. Vancoppenolle and T. Fichefet and H. Goosse and S. Bouillon and
3486   G. Madec and M. A. Morales Maqueda},
3487  title = {Simulating the mass balance and salinity of Arctic and Antarctic
3488   sea ice. 1. Model description and validation},
3489  journal = OM,
3490  year = {2009},
3491  volume = {27},
3492  pages = {33--53},
3493  doi = {10.1016/j.ocemod.2008.10.005},
3494  owner = {gm},
3495  timestamp = {2008.07.05},
3496  url = {http://dx.doi.org/10.1016/j.ocemod.2008.10.005}
3497}
3498
3499@ARTICLE{Vialard_al_JPO01,
3500  author = {J. Vialard and C. Menkes and J.-P. Boulanger and P. Delecluse and
3501   E. Guilyardi and M.J. McPhaden and G. Madec},
3502  title = {A Model Study of Oceanic Mechanisms Affecting Equatorial Pacific
3503   Sea Surface Temperature During the 1997-98 El Niño},
3504  journal = JPO,
3505  year = {2001},
3506  volume = {31, 7},
3507  pages = {1649--1675},
3508  owner = {gm},
3509  timestamp = {2009.08.20}
3510}
3511
3512@ARTICLE{Weatherly_JMR84,
3513  author = {G. L. Weatherly},
3514  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
3515  journal = JMR,
3516  year = {1984},
3517  volume = {42, 2},
3518  pages = {289-301},
3519  owner = {gm},
3520  timestamp = {2007.08.06}
3521}
3522
3523@ARTICLE{Weaver_Eby_JPO97,
3524  author = {A. J. Weaver and M. Eby},
3525  title = {On the numerical implementation of advection schemes for use in conjuction
3526   with various mixing
3527   
3528   parameterizations in the GFDL ocean model},
3529  journal = JPO,
3530  year = {1997},
3531  volume = {27},
3532  owner = {gm},
3533  timestamp = {2007.08.06}
3534}
3535
3536@ARTICLE{Webb_al_JAOT98,
3537  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
3538  title = {Improved Advection Schemes for Ocean Models},
3539  journal = JAOT,
3540  year = {1998},
3541  volume = {15},
3542  pages = {1171-1187},
3543  number = {5},
3544  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
3545   ocean model, based on a control volume form of the advection equation.
3546   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
3547   forward time-stepping schemes used by the ocean model. Farrow and
3548   Stevens overcame the problem by implementing a predictor–corrector
3549   time-stepping scheme, but this is computationally expensive to run.
3550   The present paper shows that the problem can be overcome by splitting
3551   the QUICK operator into an O(δx2) advective term and a velocity
3552   dependent biharmonic diffusion term. These can then be time-stepped
3553   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
3554   ocean model, leading to a significant increase in model efficiency.
3555   A small change in the advection operator coefficients may also be
3556   made leading to O(δx4) accuracy. Tests of the improved schemes
3557   are carried out making use of a global eddy-permitting ocean model.
3558   Results are presented from cases where the schemes were applied to
3559   only the tracer fields and also from cases where they were applied
3560   to both the tracer and velocity fields. It is found that the new
3561   schemes have the most effect in the western boundary current regions,
3562   where, for example, the warm core of the Agulhas Current is no longer
3563   broken up by numerical noise.},
3564  date = {October 01, 1998},
3565  owner = {gm},
3566  timestamp = {2007.08.04}
3567}
3568
3569@ARTICLE{White_al_JCP09,
3570  author = {L. White and A. Adcroft and R. Hallberg},
3571  title = {High-order regridding-remapping schemes for continuous isopycnal
3572   and generalized coordinates in ocean models},
3573  journal = JC,
3574  year = {2009},
3575  volume = {228},
3576  pages = {8665--8692},
3577  owner = {gm},
3578  timestamp = {2010.04.14}
3579}
3580
3581@ARTICLE{Willebrand_al_PO01,
3582  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
3583   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
3584   L. New},
3585  title = {Circulation characteristics in three eddy-permitting models of the
3586   North Atlantic},
3587  journal = PO,
3588  year = {2001},
3589  volume = {48, 2},
3590  pages = {123--161},
3591  owner = {gm},
3592  timestamp = {2007.08.04}
3593}
3594
3595@ARTICLE{Williams_al_DAO09,
3596  author = {P.D. Williams and E. Guilyardi and G. Madec and S. Gualdi and E.
3597   Scoccimarro},
3598  title = {The role of mean ocean salinity on climate},
3599  journal = DAO,
3600  year = {2009},
3601  volume = {in press},
3602  owner = {gm},
3603  timestamp = {2009.08.19}
3604}
3605
3606@ARTICLE{Williams_al_GRL07,
3607  author = {P.D. Williams and E. Guilyardi and R. Sutton and J.M. Gregory and
3608   G. Madec},
3609  title = {A new feedback on climate change from the hydrological cycle},
3610  journal = GRL,
3611  year = {2007},
3612  volume = {34},
3613  pages = {L08706},
3614  doi = {10.1029/2007GL029275},
3615  owner = {gm},
3616  timestamp = {2009.08.19},
3617  url = {http://dx.doi.org/10.1029/2007GL029275}
3618}
3619
3620@ARTICLE{Williams_al_CD06,
3621  author = {P.D. Williams and E. Guilyardi and R. Sutton and J.M. Gregory and
3622   G. Madec},
3623  title = {On the climate response of the low-latitude Pacific ocean to changes
3624   in the global freshwater cycle},
3625  journal = CD,
3626  year = {2006},
3627  volume = {27},
3628  pages = {593--611},
3629  owner = {gm},
3630  timestamp = {2009.08.19}
3631}
3632
3633@ARTICLE{Zalesak_JCP79,
3634  author = {S. T. Zalesak},
3635  title = {Fully multidimensional flux corrected transport algorithms for fluids},
3636  journal = JCP,
3637  year = {1979},
3638  volume = {31},
3639  owner = {gm},
3640  timestamp = {2007.08.04}
3641}
3642
3643@ARTICLE{Zhang_Endoh_JGR92,
3644  author = {Zhang, R.-H. and Endoh, M.},
3645  title = {A free surface general circulation model for the tropical Pacific
3646   Ocean},
3647  journal = JGR,
3648  year = {1992},
3649  volume = {97},
3650  pages = {11,237--11,255},
3651  month = jul,
3652  owner = {gm}
3653}
3654
3655@comment{jabref-meta: groupsversion:3;}
3656
3657@comment{jabref-meta: groupstree:
36580 AllEntriesGroup:;
36591 ExplicitGroup:El Nino\;2\;blanketal97\;;
36602 ExplicitGroup:97/98 event\;0\;;
36612 ExplicitGroup:Forecast\;0\;;
36622 ExplicitGroup:GHG change\;0\;;
36632 ExplicitGroup:in GCMs\;0\;;
36642 ExplicitGroup:in MIPs\;0\;;
36652 ExplicitGroup:momentum balance\;0\;;
36662 ExplicitGroup:Obs analysis\;0\;;
36672 ExplicitGroup:Paleo\;0\;;
36682 ExplicitGroup:Previous events\;0\;;
36692 ExplicitGroup:Reviews\;0\;;
36702 ExplicitGroup:Simple models\;0\;Zhang_Endoh_JGR92\;;
36712 ExplicitGroup:SPL, SC, mean\;0\;;
36722 ExplicitGroup:Teleconnections\;0\;;
36732 ExplicitGroup:Low freq\;0\;;
36742 ExplicitGroup:Theory\;0\;;
36752 ExplicitGroup:Energetics\;0\;;
36761 ExplicitGroup:Diurnal in tropics\;0\;;
36771 ExplicitGroup:Indian\;0\;;
36781 ExplicitGroup:Atlantic\;0\;;
36791 ExplicitGroup:MJO, IO, TIW\;2\;;
36802 ExplicitGroup:Obs\;0\;;
36812 ExplicitGroup:GCM\;0\;;
36822 ExplicitGroup:Mechanims\;0\;;
36832 ExplicitGroup:TIW\;0\;;
36841 ExplicitGroup:Observations\;2\;;
36852 ExplicitGroup:ERBE\;0\;;
36862 ExplicitGroup:Tropical\;0\;;
36872 ExplicitGroup:Global\;0\;;
36882 ExplicitGroup:Clouds\;0\;;
36892 ExplicitGroup:Scale interactions\;0\;;
36901 ExplicitGroup:Mechanisms\;2\;;
36912 ExplicitGroup:CRF\;0\;;
36922 ExplicitGroup:Water vapor\;0\;;
36932 ExplicitGroup:Atmos mechanisms\;0\;;
36941 ExplicitGroup:GCMs\;2\;;
36952 ExplicitGroup:Uncertainty\;0\;;
36962 ExplicitGroup:Momentum balance\;0\;;
36971 ExplicitGroup:Climate change\;0\;;
36982 ExplicitGroup:IPCC AR4\;0\;;
36991 ExplicitGroup:Analysis tools\;0\;;
37001 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
3701}
3702
Note: See TracBrowser for help on using the repository browser.