New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_TRA.tex in branches/dev_1784_doc/DOC/TexFiles/Chapters – NEMO

source: branches/dev_1784_doc/DOC/TexFiles/Chapters/Chap_TRA.tex @ 2284

Last change on this file since 2284 was 2274, checked in by gm, 14 years ago

ticket:#658 add the Griffies operator documentation from DEV_r1924_nocs_latphys branche

  • Property svn:executable set to *
File size: 80.6 KB
Line 
1% ================================================================
2% Chapter 1 Ñ Ocean Tracers (TRA)
3% ================================================================
4\chapter{Ocean Tracers (TRA)}
5\label{TRA}
6\minitoc
7
8% missing/update
9% traqsr: need to coordinate with SBC module
10
11%STEVEN :  is the use of the word "positive" to describe a scheme enough, or should it be "positive definite"? I added a comment to this effect on some instances of this below
12
13%\newpage
14\vspace{2.cm}
15%$\ $\newline    % force a new ligne
16
17Using the representation described in Chap.~\ref{DOM}, several semi-discrete
18space forms of the tracer equations are available depending on the vertical
19coordinate used and on the physics used. In all the equations presented
20here, the masking has been omitted for simplicity. One must be aware that
21all the quantities are masked fields and that each time a mean or difference
22operator is used, the resulting field is multiplied by a mask.
23
24The two active tracers are potential temperature and salinity. Their prognostic
25equations can be summarized as follows:
26\begin{equation*}
27\text{NXT} = \text{ADV}+\text{LDF}+\text{ZDF}+\text{SBC}
28                   \ (+\text{QSR})\ (+\text{BBC})\ (+\text{BBL})\ (+\text{DMP})
29\end{equation*}
30
31NXT stands for next, referring to the time-stepping. From left to right, the terms
32on the rhs of the tracer equations are the advection (ADV), the lateral diffusion
33(LDF), the vertical diffusion (ZDF), the contributions from the external forcings
34(SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC:
35Bottom Boundary Condition), the contribution from the bottom boundary Layer
36(BBL) parametrisation, and an internal damping (DMP) term. The terms QSR,
37BBC, BBL and DMP are optional. The external forcings and parameterisations
38require complex inputs and complex calculations (e.g. bulk formulae, estimation
39of mixing coefficients) that are carried out in the SBC, LDF and ZDF modules and
40described in chapters \S\ref{SBC}, \S\ref{LDF} and  \S\ref{ZDF}, respectively.
41Note that \mdl{tranpc}, the non-penetrative convection module,  although
42(temporarily) located in the NEMO/OPA/TRA directory, is described with the
43model vertical physics (ZDF).
44%%%
45\gmcomment{change the position of eosbn2 in the reference code}
46%%%
47
48In the present chapter we also describe the diagnostic equations used to compute
49the sea-water properties (density, Brunt-Vais\"{a}l\"{a} frequency, specific heat and
50freezing point with associated modules \mdl{eosbn2}, \mdl{ocfzpt} and \mdl{phycst}).
51
52The different options available to the user are managed by namelist logicals or
53CPP keys. For each equation term \textit{ttt}, the namelist logicals are \textit{ln\_trattt\_xxx},
54where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
55The CPP key (when it exists) is \textbf{key\_trattt}. The equivalent code can be
56found in the \textit{trattt} or \textit{trattt\_xxx} module, in the NEMO/OPA/TRA directory.
57
58The user has the option of extracting each tendency term on the rhs of the tracer
59equation for output (\key{trdtra} is defined), as described in Chap.~\ref{MISC}.
60
61$\ $\newline    % force a new ligne
62% ================================================================
63% Tracer Advection
64% ================================================================
65\section  [Tracer Advection (\textit{traadv})]
66      {Tracer Advection (\mdl{traadv})}
67\label{TRA_adv}
68%------------------------------------------namtra_adv-----------------------------------------------------
69\namdisplay{namtra_adv}
70%-------------------------------------------------------------------------------------------------------------
71
72The advection tendency of a tracer in flux form is the divergence of the advective
73fluxes. Its discrete expression is given by :
74\begin{equation} \label{Eq_tra_adv}
75ADV_\tau =-\frac{1}{b_t} \left(
76\;\delta _i \left[ e_{2u}\,e_{3u} \;  u\; \tau _u  \right]
77+\delta _j \left[ e_{1v}\,e_{3v}  \;  v\; \tau _v  \right] \; \right)
78-\frac{1}{e_{3t}} \;\delta _k \left[ w\; \tau _w \right]
79\end{equation}
80where $\tau$ is either T or S, and $b_t= e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells.
81In pure $z$-coordinate (\key{zco} is defined), it reduces to :
82\begin{equation} \label{Eq_tra_adv_zco}
83ADV_\tau = - \frac{1}{e_{1t}\,e_{2t}} \left( \; \delta_i \left[ e_{2u} \;u \;\tau_u \right] 
84                                                                 + \delta_j \left[ e_{1v} \;v \;\tau_v  \right] \; \right)
85                   -  \frac{1}{e_{3t}}                      \delta_k \left[             w \;\tau_w \right]
86\end{equation}
87since the vertical scale factors are functions of $k$ only, and thus
88$e_{3u} =e_{3v} =e_{3t} $. The flux form in \eqref{Eq_tra_adv} 
89implicitly requires the use of the continuity equation. Indeed, it is obtained
90by using the following equality : $\nabla \cdot \left( \vect{U}\,T \right)=\vect{U} \cdot \nabla T$ 
91which results from the use of the continuity equation, $\nabla \cdot \vect{U}=0$ or
92$\partial _t e_3 + e_3\;\nabla \cdot \vect{U}=0$ in constant volume (default option)
93or variable volume (\key{vvl} defined) case, respectively.
94Therefore it is of paramount importance to design the discrete analogue of the
95advection tendency so that it is consistent with the continuity equation in order to
96enforce the conservation properties of the continuous equations. In other words,
97by replacing $\tau$ by the number 1 in (\ref{Eq_tra_adv}) we recover the discrete form of
98the continuity equation which is used to calculate the vertical velocity.
99%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
100\begin{figure}[!t] \label{Fig_adv_scheme}  \begin{center}
101\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Fig_adv_scheme.pdf}
102\caption{Schematic representation of some ways used to evaluate the tracer value
103at $u$-point and the amount of tracer exchanged between two neighbouring grid
104points. Upsteam biased scheme (ups): the upstream value is used and the black
105area is exchanged. Piecewise parabolic method (ppm): a parabolic interpolation
106is used and the black and dark grey areas are exchanged. Monotonic upstream
107scheme for conservative laws (muscl):  a parabolic interpolation is used and black,
108dark grey and grey areas are exchanged. Second order scheme (cen2): the mean
109value is used and black, dark grey, grey and light grey areas are exchanged. Note
110that this illustration does not include the flux limiter used in ppm and muscl schemes.}
111\end{center}   \end{figure}
112%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
113
114The key difference between the advection schemes available in \NEMO is the choice
115made in space and time interpolation to define the value of the tracer at the
116velocity points (Fig.~\ref{Fig_adv_scheme}).
117
118Along solid lateral and bottom boundaries a zero tracer flux is automatically
119specified, since the normal velocity is zero there. At the sea surface the
120boundary condition depends on the type of sea surface chosen:
121\begin{description}
122\item [linear free surface:] the first level thickness is constant in time:
123the vertical boundary condition is applied at the fixed surface $z=0$ 
124rather than on the moving surface $z=\eta$. There is a non-zero advective
125flux which is set for all advection schemes as
126$\left. {\tau _w } \right|_{k=1/2} =T_{k=1} $, $i.e.$ 
127the product of surface velocity (at $z=0$) by the first level tracer value.
128\item [non-linear free surface:] (\key{vvl} is defined)
129convergence/divergence in the first ocean level moves the free surface
130up/down. There is no tracer advection through it so that the advective
131fluxes through the surface are also zero
132\end{description}
133In all cases, this boundary condition retains local conservation of tracer.
134Global conservation is obtained in both rigid-lid and non-linear free surface
135cases, but not in the linear free surface case. Nevertheless, in the latter
136case, it is achieved to a good approximation since the non-conservative
137term is the product of the time derivative of the tracer and the free surface
138height, two quantities that are not correlated (see \S\ref{PE_free_surface},
139and also \citet{Roullet_Madec_JGR00,Griffies_al_MWR01,Campin2004}).
140
141The velocity field that appears in (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_zco})
142is the centred (\textit{now}) \textit{eulerian} ocean velocity (see Chap.~\ref{DYN}).
143When eddy induced velocity (\textit{eiv}) parameterisation is used it is the \textit{now} 
144\textit{effective} velocity ($i.e.$ the sum of the eulerian and eiv velocities) which is used.
145
146The choice of an advection scheme is made in the \textit{nam\_traadv} namelist, by
147setting to \textit{true} one and only one of the logicals \textit{ln\_traadv\_xxx}. The
148corresponding code can be found in the \textit{traadv\_xxx.F90} module, where
149\textit{xxx} is a 3 or 4 letter acronym corresponding to each scheme. Details
150of the advection schemes are given below. The choice of an advection scheme
151is a complex matter which depends on the model physics, model resolution,
152type of tracer, as well as the issue of numerical cost.
153
154Note that
155(1) cen2, cen4 and TVD schemes require an explicit diffusion
156operator while the other schemes are diffusive enough so that they do not
157require additional diffusion ;
158(2) cen2, cen4, MUSCL2, and UBS are not \textit{positive} schemes
159\footnote{negative values can appear in an initially strictly positive tracer field
160which is advected}
161, implying that false extrema are permitted. Their use is not recommended on passive tracers ;
162(3) It is highly recommended that the same advection-diffusion scheme is
163used on both active and passive tracers. Indeed, if a source or sink of a
164passive tracer depends on an active one, the difference of treatment of
165active and passive tracers can create very nice-looking frontal structures
166that are pure numerical artefacts.
167
168\sgacomment{not sure whether 3 is still relevant after TRA-TRC branch is merged in?}
169% -------------------------------------------------------------------------------------------------------------
170%        2nd order centred scheme 
171% -------------------------------------------------------------------------------------------------------------
172\subsection   [$2^{nd}$ order centred scheme (cen2) (\np{ln\_traadv\_cen2})]
173         {$2^{nd}$ order centred scheme (cen2) (\np{ln\_traadv\_cen2}=true)}
174\label{TRA_adv_cen2}
175
176In the centred second order formulation, the tracer at velocity points is
177evaluated as the mean of the two neighbouring $T$-point values.
178For example, in the $i$-direction :
179\begin{equation} \label{Eq_tra_adv_cen2}
180\tau _u^{cen2} =\overline T ^{i+1/2}
181\end{equation}
182
183The scheme is non diffusive ($i.e.$ it conserves the tracer variance, $\tau^2)$ 
184but dispersive ($i.e.$ it may create false extrema). It is therefore notoriously
185noisy and must be used in conjunction with an explicit diffusion operator to
186produce a sensible solution. The associated time-stepping is performed using
187a leapfrog scheme in conjunction with an Asselin time-filter, so $T$ in
188(\ref{Eq_tra_adv_cen2}) is the \textit{now} tracer value. The centered second
189order advection is computed in the \mdl{traadv\_cen2} module. In this module,
190it is advantageous to combine the \textit{cen2} scheme with an upstream scheme
191in specific areas which require a strong diffusion in order to avoid the generation
192of false extrema. These areas are the vicinity of large river mouths, some straits
193with coarse resolution, and the vicinity of ice cover area ($i.e.$ when the ocean
194temperature is close to the freezing point).
195This combined scheme has been included for specific grid points in the ORCA2 and ORCA4 configurations only.
196
197Note that using the cen2 scheme, the overall tracer advection is of second
198order accuracy since both (\ref{Eq_tra_adv}) and (\ref{Eq_tra_adv_cen2})
199have this order of accuracy. \gmcomment{Note also that ... blah, blah}
200
201% -------------------------------------------------------------------------------------------------------------
202%        4nd order centred scheme 
203% -------------------------------------------------------------------------------------------------------------
204\subsection   [$4^{nd}$ order centred scheme (cen4) (\np{ln\_traadv\_cen4})]
205           {$4^{nd}$ order centred scheme (cen4) (\np{ln\_traadv\_cen4}=true)}
206\label{TRA_adv_cen4}
207
208In the $4^{th}$ order formulation (to be implemented), tracer values are
209evaluated at velocity points as a $4^{th}$ order interpolation, and thus depend on
210the four neighbouring $T$-points. For example, in the $i$-direction:
211\begin{equation} \label{Eq_tra_adv_cen4}
212\tau _u^{cen4} 
213=\overline{   T - \frac{1}{6}\,\delta _i \left[ \delta_{i+1/2}[T] \,\right]   }^{\,i+1/2}
214\end{equation}
215
216Strictly speaking, the cen4 scheme is not a $4^{th}$ order advection scheme
217but a $4^{th}$ order evaluation of advective fluxes, since the divergence of
218advective fluxes \eqref{Eq_tra_adv} is kept at $2^{nd}$ order. The phrase ``$4^{th}$ 
219order scheme'' used in oceanographic literature is usually associated
220with the scheme presented here. Introducing a \textit{true} $4^{th}$ order advection
221scheme is feasible but, for consistency reasons, it requires changes in the
222discretisation of the tracer advection together with changes in both the
223continuity equation and the momentum advection terms. 
224
225A direct consequence of the pseudo-fourth order nature of the scheme is that
226it is not non-diffusive, i.e. the global variance of a tracer is not preserved using
227\textit{cen4}. Furthermore, it must be used in conjunction with an explicit
228diffusion operator to produce a sensible solution. The time-stepping is also
229performed using a leapfrog scheme in conjunction with an Asselin time-filter,
230so $T$ in (\ref{Eq_tra_adv_cen4}) is the \textit{now} tracer.
231
232At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface), an
233additional hypothesis must be made to evaluate $\tau _u^{cen4}$. This
234hypothesis usually reduces the order of the scheme. Here we choose to set
235the gradient of $T$ across the boundary to zero. Alternative conditions can be
236specified, such as a reduction to a second order scheme for these near boundary
237grid points.
238
239% -------------------------------------------------------------------------------------------------------------
240%        TVD scheme 
241% -------------------------------------------------------------------------------------------------------------
242\subsection   [Total Variance Dissipation scheme (TVD) (\np{ln\_traadv\_tvd})]
243         {Total Variance Dissipation scheme (TVD) (\np{ln\_traadv\_tvd}=true)}
244\label{TRA_adv_tvd}
245
246In the Total Variance Dissipation (TVD) formulation, the tracer at velocity
247points is evaluated using a combination of an upstream and a centred scheme.
248For example, in the $i$-direction :
249\begin{equation} \label{Eq_tra_adv_tvd}
250\begin{split}
251\tau _u^{ups}&= \begin{cases}
252               T_{i+1}  & \text{if $\ u_{i+1/2} <     0$} \hfill \\
253               T_i         & \text{if $\ u_{i+1/2} \geq 0$} \hfill \\
254              \end{cases}     \\
255\\
256\tau _u^{tvd}&=\tau _u^{ups} +c_u \;\left( {\tau _u^{cen2} -\tau _u^{ups} } \right)
257\end{split}
258\end{equation}
259where $c_u$ is a flux limiter function taking values between 0 and 1.
260There exist many ways to define $c_u$, each corresponding to a different
261total variance decreasing scheme. The one chosen in \NEMO is described in
262\citet{Zalesak_JCP79}. $c_u$ only departs from $1$ when the advective term
263produces a local extremum in the tracer field. The resulting scheme is quite
264expensive but \emph{positive}. It can be used on both active and passive tracers.
265This scheme is tested and compared with MUSCL and the MPDATA scheme in
266\citet{Levy_al_GRL01}; note that in this paper it is referred to as "FCT" (Flux corrected
267transport) rather than TVD. The TVD scheme is implemented in the \mdl{traadv\_tvd} module.
268
269For stability reasons (see \S\ref{DOM_nxt}),
270$\tau _u^{cen2}$ is evaluated  in (\ref{Eq_tra_adv_tvd}) using the \textit{now} tracer while $\tau _u^{ups}$ 
271is evaluated using the \textit{before} tracer. In other words, the advective part of
272the scheme is time stepped with a leap-frog scheme while a forward scheme is
273used for the diffusive part.
274
275% -------------------------------------------------------------------------------------------------------------
276%        MUSCL scheme 
277% -------------------------------------------------------------------------------------------------------------
278\subsection[MUSCL scheme  (\np{ln\_traadv\_muscl})]
279   {Monotone Upstream Scheme for Conservative Laws (MUSCL) (\np{ln\_traadv\_muscl}=T)}
280\label{TRA_adv_muscl}
281
282The Monotone Upstream Scheme for Conservative Laws (MUSCL) has been
283implemented by \citet{Levy_al_GRL01}. In its formulation, the tracer at velocity points
284is evaluated assuming a linear tracer variation between two $T$-points
285(Fig.\ref{Fig_adv_scheme}). For example, in the $i$-direction :
286\begin{equation} \label{Eq_tra_adv_muscl}
287   \tau _u^{mus} = \left\{      \begin{aligned}
288         &\tau _&+ \frac{1}{2} \;\left( 1-\frac{u_{i+1/2} \;\rdt}{e_{1u}} \right)
289         &\ \widetilde{\partial _i \tau}  & \quad \text{if }\;u_{i+1/2} \geqslant 0      \\
290         &\tau _{i+1/2} &+\frac{1}{2}\;\left( 1+\frac{u_{i+1/2} \;\rdt}{e_{1u} } \right)
291         &\ \widetilde{\partial_{i+1/2} \tau } & \text{if }\;u_{i+1/2} <0
292   \end{aligned}    \right.
293\end{equation}
294where $\widetilde{\partial _i \tau}$ is the slope of the tracer on which a limitation
295is imposed to ensure the \textit{positive} character of the scheme.
296
297The time stepping is performed using a forward scheme, that is the \textit{before} 
298tracer field is used to evaluate $\tau _u^{mus}$.
299
300For an ocean grid point adjacent to land and where the ocean velocity is
301directed toward land, two choices are available: an upstream flux
302(\np{ln\_traadv\_muscl}=true) or a second order flux
303(\np{ln\_traadv\_muscl2}=true). Note that the latter choice does not ensure
304the \textit{positive} character of the scheme. Only the former can be used
305on both active and passive tracers. The two MUSCL schemes are implemented
306in the \mdl{traadv\_tvd} and \mdl{traadv\_tvd2} modules.
307
308% -------------------------------------------------------------------------------------------------------------
309%        UBS scheme 
310% -------------------------------------------------------------------------------------------------------------
311\subsection   [Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs})]
312         {Upstream-Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=true)}
313\label{TRA_adv_ubs}
314
315The UBS advection scheme is an upstream-biased third order scheme based on
316an upstream-biased parabolic interpolation. It is also known as the Cell
317Averaged QUICK scheme (Quadratic Upstream Interpolation for Convective
318Kinematics). For example, in the $i$-direction :
319\begin{equation} \label{Eq_tra_adv_ubs}
320   \tau _u^{ubs} =\overline T ^{i+1/2}-\;\frac{1}{6} \left\{     
321   \begin{aligned}
322         &\tau"_i          & \quad \text{if }\ u_{i+1/2} \geqslant 0      \\
323         &\tau"_{i+1}   & \quad \text{if }\ u_{i+1/2}       <       0
324   \end{aligned}    \right.
325\end{equation}
326where $\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
327
328This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
329error \citep{Shchepetkin_McWilliams_OM05}. The overall performance of the advection
330scheme is similar to that reported in \cite{Farrow1995}.
331It is a relatively good compromise between accuracy and smoothness.
332It is not a \emph{positive} scheme, meaning that false extrema are permitted,
333but the amplitude of such are significantly reduced over the centred second
334order method. Nevertheless it is not recommended that it should be applied
335to a passive tracer that requires positivity.
336
337The intrinsic diffusion of UBS makes its use risky in the vertical direction
338where the control of artificial diapycnal fluxes is of paramount importance.
339Therefore the vertical flux is evaluated using the TVD scheme when
340\np{ln\_traadv\_ubs}=true.
341
342For stability reasons  (see \S\ref{DOM_nxt}),
343the first term  in \eqref{Eq_tra_adv_ubs} (which corresponds to a second order centred scheme)
344is evaluated using the \textit{now} tracer (centred in time) while the
345second term (which is the diffusive part of the scheme), is
346evaluated using the \textit{before} tracer (forward in time).
347This choice is discussed by \citet{Webb_al_JAOT98} in the context of the
348QUICK advection scheme. UBS and QUICK schemes only differ
349by one coefficient. Replacing 1/6 with 1/8 in \eqref{Eq_tra_adv_ubs} 
350leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
351This option is not available through a namelist parameter, since the
3521/6 coefficient is hard coded. Nevertheless it is quite easy to make the
353substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme.
354
355Four different options are possible for the vertical
356component used in the UBS scheme. $\tau _w^{ubs}$ can be evaluated
357using either \textit{(a)} a centred $2^{nd}$ order scheme, or  \textit{(b)} 
358a TVD scheme, or  \textit{(c)} an interpolation based on conservative
359parabolic splines following the \citet{Shchepetkin_McWilliams_OM05} 
360implementation of UBS in ROMS, or  \textit{(d)} a UBS. The $3^{rd}$ case
361has dispersion properties similar to an eighth-order accurate conventional scheme.
362The current reference version uses method b)
363
364Note that :
365
366(1) When a high vertical resolution $O(1m)$ is used, the model stability can
367be controlled by vertical advection (not vertical diffusion which is usually
368solved using an implicit scheme). Computer time can be saved by using a
369time-splitting technique on vertical advection. Such a technique has been
370implemented and validated in ORCA05 with 301 levels. It is not available
371in the current reference version.
372
373(2) It is straightforward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
374\begin{equation} \label{Eq_traadv_ubs2}
375\tau _u^{ubs} = \tau _u^{cen4} + \frac{1}{12} \left\{ 
376   \begin{aligned}
377   & + \tau"_i       & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
378   &  - \tau"_{i+1}     & \quad \text{if }\ u_{i+1/2}       <       0
379   \end{aligned}    \right.
380\end{equation}
381or equivalently
382\begin{equation} \label{Eq_traadv_ubs2b}
383u_{i+1/2} \ \tau _u^{ubs} 
384=u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta _i\left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2}
385- \frac{1}{2} |u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
386\end{equation}
387
388\eqref{Eq_traadv_ubs2} has several advantages. Firstly, it clearly reveals
389that the UBS scheme is based on the fourth order scheme to which an
390upstream-biased diffusion term is added. Secondly, this emphasises that the
391$4^{th}$ order part (as well as the $2^{nd}$ order part as stated above) has
392to be evaluated at the \emph{now} time step using \eqref{Eq_tra_adv_ubs}.
393Thirdly, the diffusion term is in fact a biharmonic operator with an eddy
394coefficient which is simply proportional to the velocity:
395 $A_u^{lm}= - \frac{1}{12}\,{e_{1u}}^3\,|u|$. Note that NEMO v3.3 still uses
396 \eqref{Eq_tra_adv_ubs}, not \eqref{Eq_traadv_ubs2}.
397 %%%
398 \gmcomment{the change in UBS scheme has to be done}
399 %%%
400
401% -------------------------------------------------------------------------------------------------------------
402%        QCK scheme 
403% -------------------------------------------------------------------------------------------------------------
404\subsection   [QUICKEST scheme (QCK) (\np{ln\_traadv\_qck})]
405         {QUICKEST scheme (QCK) (\np{ln\_traadv\_qck}=true)}
406\label{TRA_adv_qck}
407
408The Quadratic Upstream Interpolation for Convective Kinematics with
409Estimated Streaming Terms (QUICKEST) scheme proposed by \citet{Leonard1979} 
410is the third order Godunov scheme. It is associated with the ULTIMATE QUICKEST
411limiter \citep{Leonard1991}. It has been implemented in NEMO by G. Reffray
412(MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module.
413The resulting scheme is quite expensive but \emph{positive}.
414It can be used on both active and passive tracers.
415However, the intrinsic diffusion of QCK makes its use risky in the vertical
416direction where the control of artificial diapycnal fluxes is of paramount importance.
417Therefore the vertical flux is evaluated using the CEN2 scheme.
418This no longer guarantees the positivity of the scheme. The use of TVD in the vertical
419direction (as for the UBS case) should be implemented to restore this property.
420
421
422% -------------------------------------------------------------------------------------------------------------
423%        PPM scheme 
424% -------------------------------------------------------------------------------------------------------------
425\subsection   [Piecewise Parabolic Method (PPM) (\np{ln\_traadv\_ppm})]
426         {Piecewise Parabolic Method (PPM) (\np{ln\_traadv\_ppm}=true)}
427\label{TRA_adv_ppm}
428
429The Piecewise Parabolic Method (PPM) proposed by Colella and Woodward (1984)
430\sgacomment{reference?}
431is based on a quadradic piecewise construction. Like the QCK scheme, it is associated
432with the ULTIMATE QUICKEST limiter \citep{Leonard1991}. It has been implemented
433in \NEMO by G. Reffray (MERCATOR-ocean) but is not yet offered in the reference
434version 3.3.
435
436% ================================================================
437% Tracer Lateral Diffusion
438% ================================================================
439\section  [Tracer Lateral Diffusion (\textit{traldf})]
440      {Tracer Lateral Diffusion (\mdl{traldf})}
441\label{TRA_ldf}
442%-----------------------------------------nam_traldf------------------------------------------------------
443\namdisplay{namtra_ldf}
444%-------------------------------------------------------------------------------------------------------------
445 
446The options available for lateral diffusion are a laplacian (rotated or not)
447or a biharmonic operator, the latter being more scale-selective (more
448diffusive at small scales). The specification of eddy diffusivity
449coefficients (either constant or variable in space and time) as well as the
450computation of the slope along which the operators act, are performed in the
451\mdl{ldftra} and \mdl{ldfslp} modules, respectively. This is described in Chap.~\ref{LDF}.
452The lateral diffusion of tracers is evaluated using a forward scheme,
453$i.e.$ the tracers appearing in its expression are the \textit{before} tracers in time,
454except for the pure vertical component that appears when a rotation tensor
455is used. This latter term is solved implicitly together with the
456vertical diffusion term (see \S\ref{DOM_nxt}).
457
458% -------------------------------------------------------------------------------------------------------------
459%        Iso-level laplacian operator
460% -------------------------------------------------------------------------------------------------------------
461\subsection   [Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap})]
462         {Iso-level laplacian operator (lap) (\np{ln\_traldf\_lap}=true) }
463\label{TRA_ldf_lap}
464
465A laplacian diffusion operator ($i.e.$ a harmonic operator) acting along the model
466surfaces is given by:
467\begin{equation} \label{Eq_tra_ldf_lap}
468D_T^{lT} =\frac{1}{b_tT} \left( \;
469   \delta _{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta _{i+1/2} [T] \right]
470+ \delta _{j}\left[ A_v^{lT} \;  \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta _{j+1/2} [T] \right\;\right)
471\end{equation}
472where  $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells.
473It is implemented in the \mdl{traadv\_lap} module.
474
475This lateral operator is computed in \mdl{traldf\_lap}. It is a \emph{horizontal} 
476operator ($i.e.$ acting along geopotential surfaces) in the $z$-coordinate with
477or without partial steps, but is simply an iso-level operator in the $s$-coordinate.
478It is thus used when, in addition to \np{ln\_traldf\_lap}=true, we have
479\np{ln\_traldf\_level}=true or \np{ln\_traldf\_hor}=\np{ln\_zco}=true.
480In both cases, it significantly contributes to diapycnal mixing.
481It is therefore not recommended.
482
483Note that
484(a) In the pure $z$-coordinate (\key{zco} is defined), $e_{3u}$=$e_{3v}$=$e_{3t}$,
485so that the vertical scale factors disappear from (\ref{Eq_tra_ldf_lap}) ;
486(b) In the partial step $z$-coordinate (\np{ln\_zps}=true), tracers in horizontally
487adjacent cells are located at different depths in the vicinity of the bottom.
488In this case, horizontal derivatives in (\ref{Eq_tra_ldf_lap}) at the bottom level
489require a specific treatment. They are calculated in the \mdl{zpshde} module,
490described in \S\ref{TRA_zpshde}.
491
492% -------------------------------------------------------------------------------------------------------------
493%        Rotated laplacian operator
494% -------------------------------------------------------------------------------------------------------------
495\subsection   [Rotated laplacian operator (iso) (\np{ln\_traldf\_lap})]
496         {Rotated laplacian operator (iso) (\np{ln\_traldf\_lap}=true)}
497\label{TRA_ldf_iso}
498
499The general form of the second order lateral tracer subgrid scale physics
500(\ref{Eq_PE_zdf}) takes the following semi-discrete space form in $z$- and
501$s$-coordinates:
502\begin{equation} \label{Eq_tra_ldf_iso}
503\begin{split}
504 D_T^{lT} = \frac{1}{b_t}   & \left\{   \,\;\delta_i \left[   A_u^{lT}  \left(
505     \frac{e_{2u}\,e_{3u}}{e_{1u}} \,\delta_{i+1/2}[T]
506   - e_{2u}\;r_{1u} \,\overline{\overline{ \delta_{k+1/2}[T] }}^{\,i+1/2,k}
507                                                     \right)   \right]   \right.    \\ 
508&             +\delta_j \left[ A_v^{lT} \left(
509          \frac{e_{1v}\,e_{3v}}{e_{2v}}  \,\delta_{j+1/2} [T]
510        - e_{1v}\,r_{2v} \,\overline{\overline{ \delta_{k+1/2} [T] }}^{\,j+1/2,k} 
511                                                    \right)   \right]                 \\ 
512& +\delta_k \left[ A_w^{lT} \left(
513       -\;e_{2w}\,r_{1w} \,\overline{\overline{ \delta_{i+1/2} [T] }}^{\,i,k+1/2}
514                                                    \right.   \right.                 \\ 
515& \qquad \qquad \quad 
516        - e_{1w}\,r_{2w} \,\overline{\overline{ \delta_{j+1/2} [T] }}^{\,j,k+1/2}     \\
517& \left. {\left. {   \qquad \qquad \ \ \ \left. {
518        +\;\frac{e_{1w}\,e_{2w}}{e_{3w}} \,\left( r_{1w}^2 + r_{2w}^2 \right)
519           \,\delta_{k+1/2} [T] } \right) } \right] \quad } \right\} 
520 \end{split}
521 \end{equation}
522where $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$  is the volume of $T$-cells,
523$r_1$ and $r_2$ are the slopes between the surface of computation
524($z$- or $s$-surfaces) and the surface along which the diffusion operator
525acts ($i.e.$ horizontal or iso-neutral surfaces).  It is thus used when,
526in addition to \np{ln\_traldf\_lap}= true, we have \np{ln\_traldf\_iso}=true,
527or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true. The way these
528slopes are evaluated is given in \S\ref{LDF_slp}. At the surface, bottom
529and lateral boundaries, the turbulent fluxes of heat and salt are set to zero
530using the mask technique (see \S\ref{LBC_coast}).
531
532The operator in \eqref{Eq_tra_ldf_iso} involves both lateral and vertical
533derivatives. For numerical stability, the vertical second derivative must
534be solved using the same implicit time scheme as that used in the vertical
535physics (see \S\ref{TRA_zdf}). For computer efficiency reasons, this term
536is not computed in the \mdl{traldf\_iso} module, but in the \mdl{trazdf} module
537where, if iso-neutral mixing is used, the vertical mixing coefficient is simply
538increased by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$.
539
540This formulation conserves the tracer but does not ensure the decrease
541of the tracer variance. Nevertheless the treatment performed on the slopes
542(see \S\ref{LDF}) allows the model to run safely without any additional
543background horizontal diffusion \citep{Guilyardi_al_CD01}. An alternative scheme
544developed by \cite{Griffies_al_JPO98} which preserves both tracer and its variance
545is also available in \NEMO (\np{ln\_traldf\_grif}=true). A complete description of
546the algorithm is given in App.\ref{Apdx_Griffies}.
547
548Note that in the partial step $z$-coordinate (\np{ln\_zps}=true), the horizontal
549derivatives at the bottom level in \eqref{Eq_tra_ldf_iso} require a specific
550treatment. They are calculated in module zpshde, described in \S\ref{TRA_zpshde}.
551
552% -------------------------------------------------------------------------------------------------------------
553%        Iso-level bilaplacian operator
554% -------------------------------------------------------------------------------------------------------------
555\subsection   [Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap})]
556         {Iso-level bilaplacian operator (bilap) (\np{ln\_traldf\_bilap}=true)}
557\label{TRA_ldf_bilap}
558
559The lateral fourth order bilaplacian operator on tracers is obtained by
560applying (\ref{Eq_tra_ldf_lap}) twice. The operator requires an additional assumption
561on boundary conditions: both first and third derivative terms normal to the
562coast are set to zero. It is used when, in addition to \np{ln\_traldf\_bilap}=true,
563we have \np{ln\_traldf\_level}=true, or both \np{ln\_traldf\_hor}=true and
564\np{ln\_zco}=false. In both cases, it can contribute diapycnal mixing,
565although less than in the laplacian case. It is therefore not recommended.
566
567Note that in the code, the bilaplacian routine does not call the laplacian
568routine twice but is rather a separate routine that can be found in the
569\mdl{traldf\_bilap} module. This is due to the fact that we introduce the
570eddy diffusivity coefficient, A, in the operator as:
571$\nabla \cdot \nabla \left( {A\nabla \cdot \nabla T} \right)$,
572instead of
573$-\nabla \cdot a\nabla \left( {\nabla \cdot a\nabla T} \right)$ 
574where $a=\sqrt{|A|}$ and $A<0$. This was a mistake: both formulations
575ensure the total variance decrease, but the former requires a larger
576number of code-lines.
577
578% -------------------------------------------------------------------------------------------------------------
579%        Rotated bilaplacian operator
580% -------------------------------------------------------------------------------------------------------------
581\subsection   [Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap})]
582         {Rotated bilaplacian operator (bilapg) (\np{ln\_traldf\_bilap}=true)}
583\label{TRA_ldf_bilapg}
584
585The lateral fourth order operator formulation on tracers is obtained by
586applying (\ref{Eq_tra_ldf_iso}) twice. It requires an additional assumption
587on boundary conditions: first and third derivative terms normal to the
588coast, normal to the bottom and normal to the surface are set to zero. It can be found in the
589\mdl{traldf\_bilapg}.
590
591It is used when, in addition to \np{ln\_traldf\_bilap}=true, we have
592\np{ln\_traldf\_iso}= .true, or both \np{ln\_traldf\_hor}=true and \np{ln\_zco}=true.
593This rotated bilaplacian operator has never been seriously
594tested. There are no guarantees that it is either free of bugs or correctly formulated.
595Moreover, the stability range of such an operator will be probably quite
596narrow, requiring a significantly smaller time-step than the one used with an
597unrotated operator.
598
599% ================================================================
600% Tracer Vertical Diffusion
601% ================================================================
602\section  [Tracer Vertical Diffusion (\textit{trazdf})]
603      {Tracer Vertical Diffusion (\mdl{trazdf})}
604\label{TRA_zdf}
605%--------------------------------------------namzdf---------------------------------------------------------
606\namdisplay{namzdf}
607%--------------------------------------------------------------------------------------------------------------
608
609The formulation of the vertical subgrid scale tracer physics is the same
610for all the vertical coordinates, and is based on a laplacian operator.
611The vertical diffusion operator given by (\ref{Eq_PE_zdf}) takes the
612following semi-discrete space form:
613\begin{equation} \label{Eq_tra_zdf}
614\begin{split}
615D^{vT}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vT}_w}{e_{3w}}  \delta_{k+1/2}[T] \;\right]
616\\
617D^{vS}_T &= \frac{1}{e_{3t}} \; \delta_k \left[ \;\frac{A^{vS}_w}{e_{3w}}  \delta_{k+1/2}[S] \;\right]
618\end{split}
619\end{equation}
620where $A_w^{vT}$ and $A_w^{vS}$ are the vertical eddy diffusivity
621coefficients on temperature and salinity, respectively. Generally,
622$A_w^{vT}=A_w^{vS}$ except when double diffusive mixing is
623parameterised ($i.e.$ \key{zdfddm} is defined). The way these coefficients
624are evaluated is given in \S\ref{ZDF} (ZDF). Furthermore, when
625iso-neutral mixing is used, both mixing coefficients are increased
626by $\frac{e_{1w}\,e_{2w} }{e_{3w} }\ \left( {r_{1w} ^2+r_{2w} ^2} \right)$ 
627to account for the vertical second derivative of \eqref{Eq_tra_ldf_iso}.
628
629At the surface and bottom boundaries, the turbulent fluxes of
630heat and salt must be specified. At the surface they are prescribed
631from the surface forcing and added in a dedicated routine (see \S\ref{TRA_sbc}),
632whilst at the bottom they are set to zero for heat and salt unless
633a geothermal flux forcing is prescribed as a bottom boundary
634condition (see \S\ref{TRA_bbc}).
635
636The large eddy coefficient found in the mixed layer together with high
637vertical resolution implies that in the case of explicit time stepping
638(\np{ln\_zdfexp}=true) there would be too restrictive a constraint on
639the time step. Therefore, the default implicit time stepping is preferred
640for the vertical diffusion since it overcomes the stability constraint.
641A forward time differencing scheme (\np{ln\_zdfexp}=true) using a time
642splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative.
643Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both
644tracers and dynamics.
645
646% ================================================================
647% External Forcing
648% ================================================================
649\section{External Forcing}
650\label{TRA_sbc_qsr_bbc}
651
652% -------------------------------------------------------------------------------------------------------------
653%        surface boundary condition
654% -------------------------------------------------------------------------------------------------------------
655\subsection   [Surface boundary condition (\textit{trasbc})]
656         {Surface boundary condition (\mdl{trasbc})}
657\label{TRA_sbc}
658
659The surface boundary condition for tracers is implemented in a separate
660module (\mdl{trasbc}) instead of entering as a boundary condition on the vertical
661diffusion operator (as in the case of momentum). This has been found to
662enhance readability of the code. The two formulations are completely
663equivalent; the forcing terms in trasbc are the surface fluxes divided by
664the thickness of the top model layer.
665
666Due to interactions and mass exchange of water ($F_{mass}$) with other Earth system components ($i.e.$ atmosphere, sea-ice, land),
667the change in the heat and salt content of the surface layer of the ocean is due both
668to the heat and salt fluxes crossing the sea surface (not linked with $F_{mass}$)
669 and to the heat and salt content of the mass exchange.
670\sgacomment{ the following does not apply to the release to which this documentation is
671attached and so should not be included ....
672In a forthcoming release, these two parts, computed in the surface module (SBC), will be included directly
673in $Q_{ns}$, the surface heat flux and $F_{salt}$, the surface salt flux.
674The specification of these fluxes is further detailed in the SBC chapter (see \S\ref{SBC}).
675This change will provide a forcing formulation which is the same for any tracer (including temperature and salinity).
676 
677In the current version, the situation is a little bit more complicated. }
678The surface module (\mdl{sbcmod}, see \S\ref{SBC}) provides the following
679forcing fields (used on tracers):
680
681$\bullet$ $Q_{ns}$, the non-solar part of the net surface heat flux that crosses the sea surface
682(i.e. the difference between the total surface heat flux and the fraction of the short wave flux that
683penetrates into the water column, see \S\ref{TRA_qsr})
684
685$\bullet$ \textit{emp}, the mass flux exchanged with the atmosphere (evaporation minus precipitation)
686
687$\bullet$ $\textit{emp}_S$, an equivalent mass flux taking into account the effect of ice-ocean mass exchange
688
689$\bullet$ \textit{rnf}, the mass flux associated with runoff (see \S\ref{SBC_rnf} for further detail of how it acts on temperature and salinity tendencies)
690
691The $\textit{emp}_S$ field is not simply the budget of evaporation-precipitation+freezing-melting because
692the sea-ice is not currently embedded in the ocean but levitates above it. There is no mass
693exchanged between the sea-ice and the ocean. Instead we only take into account the salt
694flux associated with the non-zero salinity of sea-ice, and the concentration/dilution effect
695due to the freezing/melting (F/M) process. These two parts of the forcing are then converted into
696an equivalent mass flux given by $\textit{emp}_S - \textit{emp}$. As a result of this mess,
697the surface boundary condition on temperature and salinity is applied as follows:
698
699In the nonlinear free surface case (\key{vvl} is defined):
700\begin{equation} \label{Eq_tra_sbc}
701\begin{aligned}
702 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }   
703           &\overline{ \left( Q_{ns} - \textit{emp}\;C_p\,\left. T \right|_{k=1} \right) }^& \\ 
704%
705& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
706           &\overline{ \left( (\textit{emp}_S - \textit{emp})\;\left. S \right|_{k=1}  \right) }^t   & \\   
707 \end{aligned}
708\end{equation} 
709
710In the linear free surface case (\key{vvl} not defined):
711\begin{equation} \label{Eq_tra_sbc_lin}
712\begin{aligned}
713 &F^T = \frac{ 1 }{\rho _o \;C_p \,\left. e_{3t} \right|_{k=1} }  &\overline{ Q_{ns} }^& \\ 
714%
715& F^S =\frac{ 1 }{\rho _o \,\left. e_{3t} \right|_{k=1} } 
716           &\overline{ \left( \textit{emp}_S\;\left. S \right|_{k=1}  \right) }^t   & \\   
717 \end{aligned}
718\end{equation} 
719where $\overline{x }^t$ means that $x$ is averaged over two consecutive time steps
720($t-\rdt/2$ and $t+\rdt/2$). Such time averaging prevents the
721divergence of odd and even time step (see \S\ref{STP}).
722
723The two set of equations, \eqref{Eq_tra_sbc} and \eqref{Eq_tra_sbc_lin}, are obtained
724by assuming that the temperature of precipitation and evaporation are equal to
725the ocean surface temperature and that their salinity is zero. Therefore, the heat content
726of the \textit{emp} budget must be added to the temperature equation in the variable volume case,
727while it does not appear in the constant volume case. Similarly, the \textit{emp} budget affects
728the ocean surface salinity in the constant volume case (through the concentration dilution effect)
729while it does not appears explicitly in the variable volume case since salinity change will be
730induced by volume change. In both constant and variable volume cases, surface salinity
731will change with ice-ocean salt flux and F/M flux (both contained in $\textit{emp}_S - \textit{emp}$) without mass exchanges.
732
733Note that the concentration/dilution effect due to F/M is computed using
734a constant ice salinity as well as a constant ocean salinity.
735This approximation suppresses the correlation between \textit{SSS} 
736and F/M flux, allowing the ice-ocean salt exchanges to be conservative.
737Indeed, if this approximation is not made, even if the F/M budget is zero
738on average over the whole ocean domain and over the seasonal cycle,
739the associated salt flux is not zero, since sea-surface salinity and F/M flux are
740intrinsically correlated (high \textit{SSS} are found where freezing is
741strong whilst low \textit{SSS} is usually associated with high melting areas).
742
743Even using this approximation, an exact conservation of heat and salt content
744is only achieved in the variable volume case. In the constant volume case,
745there is a small imbalance associated with the product $(\partial_t\eta - \textit{emp}) * \textit{SSS}$.
746Nevertheless, the salt content variation is quite small and will not induce
747a long term drift as there is no physical reason for $(\partial_t\eta - \textit{emp})$ 
748and \textit{SSS} to be correlated \citep{Roullet_Madec_JGR00}.
749Note that, while quite small, the imbalance in the constant volume case is larger
750than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}.
751This is the reason why the modified filter is not applied in the constant volume case.
752
753% -------------------------------------------------------------------------------------------------------------
754%        Solar Radiation Penetration
755% -------------------------------------------------------------------------------------------------------------
756\subsection   [Solar Radiation Penetration (\textit{traqsr})]
757         {Solar Radiation Penetration (\mdl{traqsr})}
758\label{TRA_qsr}
759%--------------------------------------------namqsr--------------------------------------------------------
760\namdisplay{namtra_qsr}
761%--------------------------------------------------------------------------------------------------------------
762
763When the penetrative solar radiation option is used (\np{ln\_flxqsr}=true),
764the solar radiation penetrates the top few tens of meters of the ocean. If it is not used
765(\np{ln\_flxqsr}=false) all the heat flux is absorbed in the first ocean level.
766Thus, in the former case a term is added to the time evolution equation of
767temperature \eqref{Eq_PE_tra_T} and the surface boundary condition is
768modified to take into account only the non-penetrative part of the surface
769heat flux:
770\begin{equation} \label{Eq_PE_qsr}
771\begin{split}
772\frac{\partial T}{\partial t} &= {\ldots} + \frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k}   \\
773Q_{ns} &= Q_\text{Total} - Q_{sr}
774\end{split}
775\end{equation}
776where $Q_{sr}$ is the penetrative part of the surface heat flux ($i.e.$ the shortwave radiation)
777and $I$ is the downward irradiance ($\left. I \right|_{z=\eta}=Q_{sr}$).
778The additional term in \eqref{Eq_PE_qsr} is discretized as follows:
779\begin{equation} \label{Eq_tra_qsr}
780\frac{1}{\rho_o\, C_p \,e_3} \; \frac{\partial I}{\partial k} \equiv \frac{1}{\rho_o\, C_p\, e_{3t}} \delta_k \left[ I_w \right]
781\end{equation}
782
783The shortwave radiation,  $Q_{sr}$, consists of energy distributed across a wide spectral range.
784The ocean is strongly absorbing for wavelengths longer than 700~nm and these
785wavelengths contribute to heating the upper few tens of centimetres. The fraction of $Q_{sr}$ 
786that resides in these almost non-penetrative wavebands, $R$, is $\sim 58\%$ (specified
787through namelist parameter \np{rn\_abs}).  It is assumed to penetrate the ocean
788with a decreasing exponential profile, with an e-folding depth scale, $\xi_0$,
789of a few tens of centimetres (typically $\xi_0=0.35~m$ set as \np{rn\_si0} in the namtra\_qsr namelist).
790For shorter wavelengths (400-700~nm), the ocean is more transparent, and solar energy
791propagates to larger depths where it contributes to
792local heating.
793The way this second part of the solar energy penetrates into the ocean depends on
794which formulation is chosen. In the simple 2-waveband light penetration scheme  (\np{ln\_qsr\_2bd}=true)
795a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths,
796leading to the following expression  \citep{Paulson1977}:
797\begin{equation} \label{Eq_traqsr_iradiance}
798I(z) = Q_{sr} \left[Re^{-z / \xi_0} + \left( 1-R\right) e^{-z / \xi_1} \right]
799\end{equation}
800where $\xi_1$ is the second extinction length scale associated with the shorter wavelengths. 
801It is usually chosen to be 23~m by setting the \np{rn\_si0} namelist parameter.
802The set of default values ($\xi_0$, $\xi_1$, $R$) corresponds to a Type I water in
803Jerlov's (1968) classification (oligotrophic waters).
804
805Such assumptions have been shown to provide a very crude and simplistic
806representation of observed light penetration profiles (\cite{Morel_JGR88}, see also
807Fig.\ref{Fig_traqsr_irradiance}). Light absorption in the ocean depends on
808particle concentration and is spectrally selective. \cite{Morel_JGR88} has shown
809that an accurate representation of light penetration can be provided by a 61 waveband
810formulation. Unfortunately, such a model is very computationally expensive.
811Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this
812formulation in which visible light is split into three wavebands: blue (400-500 nm),
813green (500-600 nm) and red (600-700nm). For each wave-band, the chlorophyll-dependent
814attenuation coefficient is fitted to the coefficients computed from the full spectral model
815of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), assuming
816the same power-law relationship. As shown in Fig.\ref{Fig_traqsr_irradiance},
817this formulation, called RGB (Red-Green-Blue), reproduces quite closely
818the light penetration profiles predicted by the full spectal model, but with much greater
819computational efficiency. The 2-bands formulation does not reproduce the full model very well.
820
821The RGB formulation is used when \np{ln\_qsr\_rgb}=true. The RGB attenuation coefficients
822($i.e.$ the inverses of the extinction length scales) are tabulated over 61 nonuniform
823chlorophyll classes ranging from 0.01 to 10 g.Chl/L (see the routine \rou{trc\_oce\_rgb} 
824in \mdl{trc\_oce} module). Three types of chlorophyll can be chosen in the RGB formulation:
825(1) a constant 0.05 g.Chl/L value everywhere (\np{nn\_chdta}=0) ; (2) an observed
826time varying chlorophyll (\np{nn\_chdta}=1) ; (3) simulated time varying chlorophyll
827by TOP biogeochemical model (\np{ln\_qsr\_bio}=true). In the latter case, the RGB
828formulation is used to calculate both the phytoplankton light limitation in PISCES
829or LOBSTER and the oceanic heating rate.
830
831The trend in \eqref{Eq_tra_qsr} associated with the penetration of the solar radiation
832is added to the temperature trend, and the surface heat flux is modified in routine \mdl{traqsr}.
833
834When the $z$-coordinate is preferred to the $s$-coordinate, the depth of $w-$levels does
835not significantly vary with location. The level at which the light has been totally
836absorbed ($i.e.$ it is less than the computer precision) is computed once,
837and the trend associated with the penetration of the solar radiation is only added down to that level.
838Finally, note that when the ocean is shallow ($<$ 200~m), part of the
839solar radiation can reach the ocean floor. In this case, we have
840chosen that all remaining radiation is absorbed in the last ocean
841level ($i.e.$ $I$ is masked).
842
843%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
844\begin{figure}[!t] \label{Fig_traqsr_irradiance}  \begin{center}
845\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_Irradiance.pdf}
846\caption{Penetration profile of the downward solar irradiance
847calculated by four models. Two waveband chlorophyll-independent formulation (blue),
848a chlorophyll-dependent monochromatic formulation (green), 4 waveband RGB formulation (red),
84961 waveband Morel (1988) formulation (black) for a chlorophyll concentration of
850(a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. From \citet{Lengaigne_al_CD07}.}
851\end{center}   \end{figure}
852%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
853
854% -------------------------------------------------------------------------------------------------------------
855%        Bottom Boundary Condition
856% -------------------------------------------------------------------------------------------------------------
857\subsection   [Bottom Boundary Condition (\textit{trabbc} - \key{bbc})]
858         {Bottom Boundary Condition (\mdl{trabbc} - \key{bbc})}
859\label{TRA_bbc}
860%--------------------------------------------nambbc--------------------------------------------------------
861\namdisplay{namtra_bbc}
862%--------------------------------------------------------------------------------------------------------------
863%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
864\begin{figure}[!t] \label{Fig_geothermal}  \begin{center}
865\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_TRA_geoth.pdf}
866\caption{Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}.
867It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}.}
868\end{center}   \end{figure}
869%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
870
871Usually it is assumed that there is no exchange of heat or salt through
872the ocean bottom, $i.e.$ a no flux boundary condition is applied on active
873tracers at the bottom. This is the default option in \NEMO, and it is
874implemented using the masking technique. However, there is a
875non-zero heat flux across the seafloor that is associated with solid
876earth cooling. This flux is weak compared to surface fluxes (a mean
877global value of $\sim0.1\;W/m^2$ \citep{Stein_Stein_Nat92}), but it is
878systematically positive \sgacomment{positive definite?} and acts on the densest water masses.
879Taking this flux into account in a global ocean model increases
880the deepest overturning cell ($i.e.$ the one associated with the Antarctic
881Bottom Water) by a few Sverdrups  \citep{Emile-Geay_Madec_OS09}.
882
883The presence of geothermal heating is controlled by the namelist
884parameter  \np{nn\_geoflx}. When this parameter is set to 1, a constant
885geothermal heating is introduced whose value is given by the
886\np{nn\_geoflx\_cst}, which is also a namelist parameter. When it is set to 2,
887a spatially varying geothermal heat flux is introduced which is provided
888in the \ifile{geothermal\_heating} NetCDF file (Fig.\ref{Fig_geothermal}).
889
890% ================================================================
891% Bottom Boundary Layer
892% ================================================================
893\section  [Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})]
894      {Bottom Boundary Layer (\mdl{trabbl} - \key{trabbl})}
895\label{TRA_bbl}
896%--------------------------------------------nambbl---------------------------------------------------------
897\namdisplay{nambbl}
898%--------------------------------------------------------------------------------------------------------------
899
900In a $z$-coordinate configuration, the bottom topography is represented by a
901series of discrete steps. This is not adequate to represent gravity driven
902downslope flows. Such flows arise either downstream of sills such as the Strait of
903Gibraltar or Denmark Strait, where dense water formed in marginal seas flows
904into a basin filled with less dense water, or along the continental slope when dense
905water masses are formed on a continental shelf. The amount of entrainment
906that occurs in these gravity plumes is critical in determining the density
907and volume flux of the densest waters of the ocean, such as Antarctic Bottom Water,
908or North Atlantic Deep Water. $z$-coordinate models tend to overestimate the
909entrainment, because the gravity flow is mixed vertically by convection
910as it goes ''downstairs'' following the step topography, sometimes over a thickness
911much larger than the thickness of the observed gravity plume. A similar problem
912occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly
913downstream of a sill \citep{Willebrand_al_PO01}, and the thickness
914of the plume is not resolved.
915
916The idea of the bottom boundary layer (BBL) parameterisation, first introduced by
917\citet{Beckmann_Doscher1997}, is to allow a direct communication between
918two adjacent bottom cells at different levels, whenever the densest water is
919located above the less dense water. The communication can be by a diffusive flux
920(diffusive BBL), an advective flux (advective BBL), or both. In the current
921implementation of the BBL, only the tracers are modified, not the velocities.
922Furthermore, it only connects ocean bottom cells, and therefore does not include
923the improvements introduced by \citet{Campin_Goosse_Tel99}.
924
925% -------------------------------------------------------------------------------------------------------------
926%        Diffusive BBL
927% -------------------------------------------------------------------------------------------------------------
928\subsection{Diffusive Bottom Boundary layer (\np{nn\_bbl\_ldf}=1)}
929\label{TRA_bbl_diff}
930
931When applying sigma-diffusion (\key{trabbl} defined and \np{nn\_bbl\_ldf} set to 1),
932the diffusive flux between two adjacent cells at the ocean floor is given by
933\begin{equation} \label{Eq_tra_bbl_diff}
934{\rm {\bf F}}_\sigma=A_l^\sigma \; \nabla_\sigma T
935\end{equation} 
936with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells,
937and  $A_l^\sigma$ the lateral diffusivity in the BBL. Following \citet{Beckmann_Doscher1997},
938the latter is prescribed with a spatial dependence, $i.e.$ in the conditional form
939\begin{equation} \label{Eq_tra_bbl_coef}
940A_l^\sigma (i,j,t)=\left\{ {\begin{array}{l}
941 A_{bbl}  \quad \quad   \mbox{if}  \quad   \nabla_\sigma \rho  \cdot  \nabla H<0 \\ 
942 \\
943 0\quad \quad \;\,\mbox{otherwise} \\ 
944 \end{array}} \right.
945\end{equation} 
946where $A_{bbl}$ is the BBL diffusivity coefficient, given by the namelist
947parameter \np{rn\_ahtbbl} and usually set to a value much larger
948than the one used for lateral mixing in the open ocean. The constraint in \eqref{Eq_tra_bbl_coef} 
949implies that sigma-like diffusion only occurs when the density above the sea floor, at the top of
950the slope, is larger than in the deeper ocean (see green arrow in Fig.\ref{Fig_bbl}).
951In practice, this constraint is applied separately in the two horizontal directions,
952and the density gradient in \eqref{Eq_tra_bbl_coef} is evaluated with the log gradient formulation:
953\begin{equation} \label{Eq_tra_bbl_Drho}
954   \nabla_\sigma \rho / \rho = \alpha \,\nabla_\sigma T + \beta   \,\nabla_\sigma S
955\end{equation} 
956where $\rho$, $\alpha$ and $\beta$ are functions of $\overline{T}^\sigma$,
957$\overline{S}^\sigma$ and $\overline{H}^\sigma$, the along bottom mean temperature,
958salinity and depth, respectively.
959
960% -------------------------------------------------------------------------------------------------------------
961%        Advective BBL
962% -------------------------------------------------------------------------------------------------------------
963\subsection   {Advective Bottom Boundary Layer  (\np{nn\_bbl\_adv}= 1 or 2)}
964\label{TRA_bbl_adv}
965
966\sgacomment{"downsloping flow" has been replaced by "downslope flow" in the following
967if this is not what is meant then "downwards sloping flow" is also a possibility"}
968
969%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
970\begin{figure}[!t] \label{Fig_bbl}  \begin{center}
971\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_BBL_adv.pdf}
972\caption{Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is
973activated when $\rho^i_{kup}$ is larger than $\rho^{i+1}_{kdnw}$.
974Red arrows indicate the additional overturning circulation due to the advective BBL.
975The transport of the downslope flow is defined either as the transport of the bottom
976ocean cell (black arrow), or as a function of the along slope density gradient.
977The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$
978ocean bottom cells.
979connection}
980\end{center}   \end{figure}
981%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
982
983
984%!!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
985%!!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
986%!!        i.e. transport proportional to the along-slope density gradient
987
988%%%gmcomment   :  this section has to be really written
989
990When applying an advective BBL (\np{nn\_bbl\_adv} = 1 or 2), an overturning
991circulation is added which connects two adjacent bottom grid-points only if dense
992water overlies less dense water on the slope. The density difference causes dense
993water to move down the slope.
994
995\np{nn\_bbl\_adv} = 1 : the downslope velocity is chosen to be the Eulerian
996ocean velocity just above the topographic step (see black arrow in Fig.\ref{Fig_bbl})
997\citep{Beckmann_Doscher1997}. It is a \textit{conditional advection}, that is, advection
998is allowed only if dense water overlies less dense water on the slope ($i.e.$ 
999$\nabla_\sigma \rho  \cdot  \nabla H<0$) and if the velocity is directed towards
1000greater depth ($i.e.$ $\vect{U}  \cdot  \nabla H>0$).
1001
1002\np{nn\_bbl\_adv} = 2 : the downslope velocity is chosen to be proportional to $\Delta \rho$,
1003the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}.
1004The advection is allowed only  if dense water overlies less dense water on the slope ($i.e.$ 
1005$\nabla_\sigma \rho  \cdot  \nabla H<0$). For example, the resulting transport of the
1006downslope flow, here in the $i$-direction (Fig.\ref{Fig_bbl}), is simply given by the
1007following expression:
1008\begin{equation} \label{Eq_bbl_Utr}
1009 u^{tr}_{bbl} = \gamma \, g \frac{\Delta \rho}{\rho_o}  e_{1u} \; min \left( {e_{3u}}_{kup},{e_{3u}}_{kdwn} \right)
1010\end{equation}
1011where $\gamma$, expressed in seconds, is the coefficient of proportionality
1012provided as \np{rn\_gambbl}, a namelist parameter, and \textit{kup} and \textit{kdwn} 
1013are the vertical index of the higher and lower cells, respectively.
1014The parameter $\gamma$ should take a different value for each bathymetric
1015step, but for simplicity, and because no direct estimation of this parameter is
1016available, a uniform value has been assumed. The possible values for $\gamma$ 
1017range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}
1018
1019Scalar properties are advected by this additional transport $( u^{tr}_{bbl}, v^{tr}_{bbl} )$ 
1020using the upwind scheme. Such a diffusive advective scheme has been chosen
1021to mimic the entrainment between the downslope plume and the surrounding
1022water at intermediate depths. The entrainment is replaced by the vertical mixing
1023implicit in the advection scheme. Let us consider as an example the
1024case displayed in Fig.\ref{Fig_bbl} where the density at level $(i,kup)$ is
1025larger than the one at level $(i,kdwn)$. The advective BBL scheme
1026modifies the tracer time tendency of the ocean cells near the
1027topographic step by the downslope flow \eqref{Eq_bbl_dw},
1028the horizontal \eqref{Eq_bbl_hor}  and the upward \eqref{Eq_bbl_up} 
1029return flows as follows:
1030\begin{align} 
1031\partial_t T^{do}_{kdw} &\equiv \partial_t T^{do}_{kdw}
1032                                     +  \frac{u^{tr}_{bbl}}{{b_t}^{do}_{kdw}}  \left( T^{sh}_{kup} - T^{do}_{kdw} \right\label{Eq_bbl_dw} \\
1033%
1034\partial_t T^{sh}_{kup} &\equiv \partial_t T^{sh}_{kup} 
1035               + \frac{u^{tr}_{bbl}}{{b_t}^{sh}_{kup}}   \left( T^{do}_{kup} - T^{sh}_{kup} \right)   \label{Eq_bbl_hor} \\
1036%
1037\intertext{and for $k =kdw-1,\;..., \; kup$ :} 
1038%
1039\partial_t T^{do}_{k} &\equiv \partial_t S^{do}_{k}
1040               + \frac{u^{tr}_{bbl}}{{b_t}^{do}_{k}}   \left( T^{do}_{k+1} - T^{sh}_{k} \right)   \label{Eq_bbl_up}
1041\end{align}
1042where $b_t$ is the $T$-cell volume.
1043
1044Note that the BBL transport, $( u^{tr}_{bbl}, v^{tr}_{bbl} )$, is available in
1045the model outputs. It has to be used to compute the effective velocity
1046as well as the effective overturning circulation.
1047
1048% ================================================================
1049% Tracer damping
1050% ================================================================
1051\section  [Tracer damping (\textit{tradmp})]
1052      {Tracer damping (\mdl{tradmp})}
1053\label{TRA_dmp}
1054%--------------------------------------------namtra_dmp-------------------------------------------------
1055\namdisplay{namtra_dmp}
1056%--------------------------------------------------------------------------------------------------------------
1057
1058In some applications it can be useful to add a Newtonian damping term
1059into the temperature and salinity equations:
1060\begin{equation} \label{Eq_tra_dmp}
1061\begin{split}
1062 \frac{\partial T}{\partial t}=\;\cdots \;-\gamma \,\left( {T-T_o } \right\\
1063 \frac{\partial S}{\partial t}=\;\cdots \;-\gamma \,\left( {S-S_o } \right)
1064 \end{split}
1065 \end{equation} 
1066where $\gamma$ is the inverse of a time scale, and $T_o$ and $S_o$ 
1067are given temperature and salinity fields (usually a climatology).
1068The restoring term is added when \key{tradmp} is defined.
1069It also requires that both \key{dtatem} and \key{dtasal} are defined
1070($i.e.$ that $T_o$ and $S_o$ are read). The restoring coefficient
1071$\gamma$ is a three-dimensional array initialized by the user in routine
1072\rou{dtacof} also located in module \mdl{tradmp}.
1073
1074The two main cases in which \eqref{Eq_tra_dmp} is used are \textit{(a)} 
1075the specification of the boundary conditions along artificial walls of a
1076limited domain basin and \textit{(b)} the computation of the velocity
1077field associated with a given $T$-$S$ field (for example to build the
1078initial state of a prognostic simulation, or to use the resulting velocity
1079field for a passive tracer study). The first case applies to regional
1080models that have artificial walls instead of open boundaries.
1081In the vicinity of these walls, $\gamma$ takes large values (equivalent to
1082a time scale of a few days) whereas it is zero in the interior of the
1083model domain. The second case corresponds to the use of the robust
1084diagnostic method \citep{Sarmiento1982}. It allows us to find the velocity
1085field consistent with the model dynamics whilst having a $T$, $S$ field
1086close to a given climatological field ($T_o$, $S_o$). The time scale
1087associated with $S_o$ is generally not a constant but spatially varying
1088in order to respect other properties. For example, it is usually set to zero
1089in the mixed layer (defined either on a density or $S_o$ criterion)
1090\citep{Madec_al_JPO96} and in the equatorial region
1091\citep{Reverdin1991, Fujio1991, Marti_PhD92} since these two regions
1092have a short time scale of adjustment; while smaller $\gamma$ are used
1093in the deep ocean where the typical time scale is long \citep{Sarmiento1982}.
1094In addition the time scale is reduced (even to zero) along the western
1095boundary to allow the model to reconstruct its own western boundary
1096structure in equilibrium with its physics.
1097The choice of the shape of the Newtonian damping is controlled by two
1098namelist parameters \np{??} and \np{nn\_zdmp}. The former allows us to specify: the
1099width of the equatorial band in which no damping is applied; a decrease
1100in the vicinity of the coast; and a damping everywhere in the Red and Med Seas.
1101The latter sets whether damping should act in the mixed layer or not.
1102The time scale associated with the damping depends on the depth as
1103a hyperbolic tangent, with \np{rn\_surf} as surface value, \np{rn\_bot} as
1104bottom value and a transition depth of \np{rn\_dep}
1105
1106The robust diagnostic method is very efficient in preventing temperature
1107drift in intermediate waters but it produces artificial sources of heat and salt
1108within the ocean. It also has undesirable effects on the ocean convection.
1109It tends to prevent deep convection and subsequent deep-water formation,
1110by stabilising the water column too much.
1111
1112An example of the computation of $\gamma$ for a robust diagnostic experiment
1113with the ORCA2 model is provided in the \mdl{tradmp} module
1114(subroutines \rou{dtacof} and \rou{cofdis} which compute the coefficient
1115and the distance to the bathymetry, respectively). These routines are
1116provided as examples and can be customised by the user.
1117
1118% ================================================================
1119% Tracer time evolution
1120% ================================================================
1121\section  [Tracer time evolution (\textit{tranxt})]
1122      {Tracer time evolution (\mdl{tranxt})}
1123\label{TRA_nxt}
1124%--------------------------------------------namdom-----------------------------------------------------
1125\namdisplay{namdom}
1126%--------------------------------------------------------------------------------------------------------------
1127
1128The general framework for tracer time stepping is a modified leap-frog scheme
1129\citep{Leclair_Madec_OM09}, $i.e.$ a three level centred time scheme associated
1130with a Asselin time filter (cf. \S\ref{STP_mLF}):
1131\begin{equation} \label{Eq_tra_nxt}
1132\begin{aligned}
1133(e_{3t}T)^{t+\rdt} &= (e_{3t}T)_f^{t-\rdt} &+ 2 \, \rdt  \,e_{3t}^t\ \text{RHS}^t & \\
1134\\
1135(e_{3t}T)_f^\;\ \quad &= (e_{3t}T)^t \;\quad 
1136                                    &+\gamma \,\left[ {(e_{3t}T)_f^{t-\rdt} -2(e_{3t}T)^t+(e_{3t}T)^{t+\rdt}} \right] &  \\
1137                                 & &- \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]  &                     
1138\end{aligned}
1139\end{equation} 
1140where RHS is the right hand side of the temperature equation,
1141the subscript $f$ denotes filtered values, $\gamma$ is the Asselin coefficient,
1142and $S$ is the total forcing applied on $T$ ($i.e.$ fluxes plus content in mass exchanges).
1143$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter).
1144Its default value is \np{rn\_atfp}=$10^{-3}$. Note that the forcing correction term in the filter
1145is not applied in linear free surface (\jp{lk\_vvl}=false) (see \S\ref{TRA_sbc}.
1146Not also that in constant volume case, the time stepping is performed on $T$,
1147not on its content, $e_{3t}T$.
1148
1149When the vertical mixing is solved implicitly, the update of the \textit{next} tracer
1150fields is done in module \mdl{trazdf}. In this case only the swapping of arrays
1151and the Asselin filtering is done in the \mdl{tranxt} module.
1152
1153In order to prepare for the computation of the \textit{next} time step,
1154a swap of tracer arrays is performed: $T^{t-\rdt} = T^t$ and $T^t = T_f$.
1155
1156% ================================================================
1157% Equation of State (eosbn2)
1158% ================================================================
1159\section  [Equation of State (\textit{eosbn2}) ]
1160      {Equation of State (\mdl{eosbn2}) }
1161\label{TRA_eosbn2}
1162%--------------------------------------------nameos-----------------------------------------------------
1163\namdisplay{nameos}
1164%--------------------------------------------------------------------------------------------------------------
1165
1166% -------------------------------------------------------------------------------------------------------------
1167%        Equation of State
1168% -------------------------------------------------------------------------------------------------------------
1169\subsection{Equation of State (\np{nn\_eos} = 0, 1 or 2)}
1170\label{TRA_eos}
1171
1172It is necessary to know the equation of state for the ocean very accurately
1173to determine stability properties (especially the Brunt-Vais\"{a}l\"{a} frequency),
1174particularly in the deep ocean. The ocean seawater volumic mass, $\rho$,
1175abusively called density, is a non linear empirical function of \textit{in situ} 
1176temperature, salinity and pressure. The reference equation of state is that
1177defined by the Joint Panel on Oceanographic Tables and Standards
1178\citep{UNESCO1983}. It was the standard equation of state used in early
1179releases of OPA. However, even though this computation is fully vectorised,
1180it is quite time consuming ($15$ to $20${\%} of the total CPU time) since
1181it requires the prior computation of the \textit{in situ} temperature from the
1182model \textit{potential} temperature using the \citep{Bryden1973} polynomial
1183for adiabatic lapse rate and a $4^th$ order Runge-Kutta integration scheme.
1184Since OPA6, we have used the \citet{JackMcD1995} equation of state for
1185seawater instead. It allows the computation of the \textit{in situ} ocean density
1186directly as a function of \textit{potential} temperature relative to the surface
1187(an \NEMO variable), the practical salinity (another \NEMO variable) and the
1188pressure (assuming no pressure variation along geopotential surfaces, $i.e.$ 
1189the pressure in decibars is approximated by the depth in meters).
1190Both the \citet{UNESCO1983} and \citet{JackMcD1995} equations of state
1191have exactly the same except that the values of the various coefficients have
1192been adjusted by \citet{JackMcD1995} in order to directly use the \textit{potential} 
1193temperature instead of the \textit{in situ} one. This reduces the CPU time of the
1194\textit{in situ} density computation to about $3${\%} of the total CPU time,
1195while maintaining a quite accurate equation of state.
1196
1197In the computer code, a \textit{true} density anomaly, $d_a= \rho / \rho_o - 1$,
1198is computed, with $\rho_o$ a reference volumic mass. Called \textit{rau0} 
1199in the code, $\rho_o$ is defined in \mdl{phycst}, and a value of $1,035~Kg/m^3$.
1200This is a sensible choice for the reference density used in a Boussinesq ocean
1201climate model, as, with the exception of only a small percentage of the ocean,
1202density in the World Ocean varies by no more than 2$\%$ from $1,035~kg/m^3$ 
1203\citep{Gill1982}.
1204
1205The default option (namelist parameter \np{nn\_eos}=0) is the \citet{JackMcD1995} 
1206equation of state. Its use is highly recommended. However, for process studies,
1207it is often convenient to use a linear approximation of the density.
1208With such an equation of state there is no longer a distinction between
1209\textit{in situ} and \textit{potential} density and both cabbeling and thermobaric
1210effects are removed.
1211Two linear formulations are available: a function of $T$ only (\np{nn\_eos}=1)
1212and a function of both $T$ and $S$ (\np{nn\_eos}=2):
1213\begin{equation} \label{Eq_tra_eos_linear}
1214\begin{split}
1215  d_a(T)       &\rho (T)      /  \rho_o   - 1     =  \  0.0285         -  \alpha   \;T     \\ 
1216  d_a(T,S)    &\rho (T,S)   /  \rho_o   - 1     =  \  \beta \; S       -  \alpha   \;T   
1217\end{split}
1218\end{equation} 
1219where $\alpha$ and $\beta$ are the thermal and haline expansion
1220coefficients, and $\rho_o$, the reference volumic mass, $rau0$.
1221($\alpha$ and $\beta$ can be modified through the \np{rn\_alpha} and
1222\np{rn\_beta} namelist parameters). Note that when $d_a$ is a function
1223of $T$ only (\np{nn\_eos}=1), the salinity is a passive tracer and can be
1224used as such.
1225
1226% -------------------------------------------------------------------------------------------------------------
1227%        Brunt-Vais\"{a}l\"{a} Frequency
1228% -------------------------------------------------------------------------------------------------------------
1229\subsection{Brunt-Vais\"{a}l\"{a} Frequency (\np{nn\_eos} = 0, 1 or 2)}
1230\label{TRA_bn2}
1231
1232An accurate computation of the ocean stability (i.e. of $N$, the brunt-Vais\"{a}l\"{a}
1233 frequency) is of paramount importance as it is used in several ocean
1234 parameterisations (namely TKE, KPP, Richardson number dependent
1235 vertical diffusion, enhanced vertical diffusion, non-penetrative convection,
1236 iso-neutral diffusion). In particular, one must be aware that $N^2$ has to
1237 be computed with an \textit{in situ} reference. The expression for $N^2$ 
1238 depends on the type of equation of state used (\np{nn\_eos} namelist parameter).
1239
1240For \np{nn\_eos}=0 (\citet{JackMcD1995} equation of state), the \citet{McDougall1987} 
1241polynomial expression is used (with the pressure in decibar approximated by
1242the depth in meters):
1243\begin{equation} \label{Eq_tra_bn2}
1244N^2 = \frac{g}{e_{3w}} \; \beta   \
1245      \left\alpha / \beta \ \delta_{k+1/2}[T]     - \delta_{k+1/2}[S]   \right)
1246\end{equation} 
1247where $\alpha$ and $\beta$ are the thermal and haline expansion coefficients.
1248They are a function of  $\overline{T}^{\,k+1/2},\widetilde{S}=\overline{S}^{\,k+1/2} - 35.$,
1249and  $z_w$, with $T$ the \textit{potential} temperature and $\widetilde{S}$ a salinity anomaly.
1250Note that both $\alpha$ and $\beta$ depend on \textit{potential} 
1251temperature and salinity which are averaged at $w$-points prior
1252to the computation instead of being computed at $T$-points and
1253then averaged to $w$-points.
1254
1255When a linear equation of state is used (\np{nn\_eos}=1 or 2,
1256\eqref{Eq_tra_bn2} reduces to:
1257\begin{equation} \label{Eq_tra_bn2_linear}
1258N^2 = \frac{g}{e_{3w}} \left(   \beta \;\delta_{k+1/2}[S] - \alpha \;\delta_{k+1/2}[T]   \right)
1259\end{equation} 
1260where $\alpha$ and $\beta $ are the constant coefficients used to
1261defined the linear equation of state \eqref{Eq_tra_eos_linear}.
1262
1263% -------------------------------------------------------------------------------------------------------------
1264%        Specific Heat
1265% -------------------------------------------------------------------------------------------------------------
1266\subsection    [Specific Heat (\textit{phycst})]
1267         {Specific Heat (\mdl{phycst})}
1268\label{TRA_adv_ldf}
1269
1270The specific heat of sea water, $C_p$, is a function of temperature, salinity
1271and pressure \citep{UNESCO1983}. It is only used in the model to convert
1272surface heat fluxes into surface temperature increase and so the pressure
1273dependence is neglected. The dependence on $T$ and $S$ is weak.
1274For example, with $S=35~psu$, $C_p$ increases from $3989$ to $4002$ 
1275when $T$ varies from -2~\degres C to 31~\degres C. Therefore, $C_p$ has
1276been chosen as a constant: $C_p=4.10^3~J\,Kg^{-1}\,\degres K^{-1}$.
1277Its value is set in \mdl{phycst} module.
1278
1279
1280% -------------------------------------------------------------------------------------------------------------
1281%        Freezing Point of Seawater
1282% -------------------------------------------------------------------------------------------------------------
1283\subsection   [Freezing Point of Seawater]
1284         {Freezing Point of Seawater}
1285\label{TRA_fzp}
1286
1287The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}:
1288\begin{equation} \label{Eq_tra_eos_fzp}
1289   \begin{split}
1290T_f (S,p) = \left( -0.0575 + 1.710523 \;10^{-3} \, \sqrt{S} 
1291                       -  2.154996 \;10^{-4} \,\right) \ S    \\
1292               - 7.53\,10^{-3} \ \ p
1293   \end{split}
1294\end{equation}
1295
1296\eqref{Eq_tra_eos_fzp} is only used to compute the potential freezing point of
1297sea water ($i.e.$ referenced to the surface $p=0$), thus the pressure dependent
1298terms in \eqref{Eq_tra_eos_fzp} (last term) have been dropped. The freezing
1299point is computed through \textit{tfreez}, a \textsc{Fortran} function that can be found
1300in \mdl{eosbn2}
1301
1302% ================================================================
1303% Horizontal Derivative in zps-coordinate
1304% ================================================================
1305\section  [Horizontal Derivative in \textit{zps}-coordinate (\textit{zpshde})]
1306      {Horizontal Derivative in \textit{zps}-coordinate (\mdl{zpshde})}
1307\label{TRA_zpshde}
1308
1309\gmcomment{STEVEN: to be consistent with earlier discussion of differencing and averaging operators, I've changed "derivative" to "difference" and "mean" to "average"}
1310
1311With partial bottom cells (\np{ln\_zps}=true), in general, tracers in horizontally
1312adjacent cells live at different depths. Horizontal gradients of tracers are needed
1313for horizontal diffusion (\mdl{traldf} module) and for the hydrostatic pressure
1314gradient (\mdl{dynhpg} module) to be active.
1315\gmcomment{STEVEN from gm : question: not sure of  what -to be active- means}
1316Before taking horizontal gradients between the tracers next to the bottom, a linear
1317interpolation in the vertical is used to approximate the deeper tracer as if it actually
1318lived at the depth of the shallower tracer point (Fig.~\ref{Fig_Partial_step_scheme}).
1319For example, for temperature in the $i$-direction the needed interpolated
1320temperature, $\widetilde{T}$, is:
1321
1322%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1323\begin{figure}[!p] \label{Fig_Partial_step_scheme}  \begin{center}
1324\includegraphics[width=0.9\textwidth]{./TexFiles/Figures/Partial_step_scheme.pdf}
1325\caption{ Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate (\np{ln\_zps}=true) in the case $( e3w_k^{i+1} - e3w_k^i  )>0$. A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. The horizontal difference is then given by: $\delta _{i+1/2} T_k=  \widetilde{T}_k^{\,i+1} -T_k^{\,i}$ and the average by: $\overline{T}_k^{\,i+1/2}= ( \widetilde{T}_k^{\,i+1/2} - T_k^{\,i} ) / 2$}
1326\end{center}   \end{figure}
1327%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1328\begin{equation*}
1329\widetilde{T}= \left\{  \begin{aligned} 
1330&T^{\,i+1}      -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta _k T^{i+1} 
1331                        && \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$   }  \\
1332                              \\
1333&T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i       }\;\delta _k T^{i+1}
1334                        && \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1335            \end{aligned}   \right.
1336\end{equation*}
1337and the resulting forms for the horizontal difference and the horizontal average
1338value of $T$ at a $U$-point are:
1339\begin{equation} \label{Eq_zps_hde}
1340\begin{aligned}
1341 \delta _{i+1/2} T=  \begin{cases}
1342\ \ \ \widetilde {T}\quad\ -T^i     & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1343                              \\
1344\ \ \ T^{\,i+1}-\widetilde{T}    & \ \ \quad\quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1345                  \end{cases}     \\
1346\\
1347\overline {T}^{\,i+1/2} \ =   \begin{cases}
1348( \widetilde {T}\ \ \;\,-T^{\,i})    / 2  & \;\ \ \quad\text{if  $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\
1349                              \\
1350( T^{\,i+1}-\widetilde{T} ) / 2     & \;\ \ \quad\text{if  $\ e_{3w}^{i+1}    <   e_{3w}^i$   } 
1351            \end{cases}
1352\end{aligned}
1353\end{equation}
1354
1355The computation of horizontal derivative of tracers as well as of density is
1356performed once for all at each time step in \mdl{zpshde} module and stored
1357in shared arrays to be used when needed. It has to be emphasized that the
1358procedure used to compute the interpolated density, $\widetilde{\rho}$, is not
1359the same as that used for $T$ and $S$. Instead of forming a linear approximation
1360of density, we compute $\widetilde{\rho }$ from the interpolated values of $T$ 
1361and $S$, and the pressure at a $u$-point (in the equation of state pressure is
1362approximated by depth, see \S\ref{TRA_eos} ) :
1363\begin{equation} \label{Eq_zps_hde_rho}
1364\widetilde{\rho } = \rho ( {\widetilde{T},\widetilde {S},z_u })
1365\quad \text{where }\  z_u = \min \left( {z_T^{i+1} ,z_T^i } \right)
1366\end{equation} 
1367
1368This is a much better approximation as the variation of $\rho$ with depth (and
1369thus pressure) is highly non-linear with a true equation of state and thus is badly
1370approximated with a linear interpolation. This approximation is used to compute
1371both the horizontal pressure gradient (\S\ref{DYN_hpg}) and the slopes of neutral
1372surfaces (\S\ref{LDF_slp})
1373
1374Note that in almost all the advection schemes presented in this Chapter, both
1375averaging and differencing operators appear. Yet \eqref{Eq_zps_hde} has not
1376been used in these schemes: in contrast to diffusion and pressure gradient
1377computations, no correction for partial steps is applied for advection. The main
1378motivation is to preserve the domain averaged mean variance of the advected
1379field when using the $2^{nd}$ order centred scheme. Sensitivity of the advection
1380schemes to the way horizontal averages are performed in the vicinity of partial
1381cells should be further investigated in the near future.
1382%%%
1383\gmcomment{gm :   this last remark has to be done}
1384%%%
Note: See TracBrowser for help on using the repository browser.