New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Annex_B.tex @ 2541

Last change on this file since 2541 was 2282, checked in by gm, 14 years ago

ticket:#658 merge DOC of all the branches that form the v3.3 beta

  • Property svn:executable set to *
File size: 18.5 KB
RevLine 
[707]1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
[2282]8
9\newpage
10$\ $\newline    % force a new ligne
11
[707]12% ================================================================
13% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
14% ================================================================
15\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
16\label{Apdx_B_1}
17
18
[1223]19In the $z$-coordinate, the horizontal/vertical second order tracer diffusion operator
20is given by:
[2282]21\begin{eqnarray} \label{Apdx_B1}
22 &D^T = \frac{1}{e_1 \, e_2}      \left[
23  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.         
24                       \left.
[817]25+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]         
26+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
[2282]27\end{eqnarray}
[707]28
[1223]29In the $s$-coordinate, we defined the slopes of $s$-surfaces, $\sigma_1$ and
[2282]30$\sigma_2$ by \eqref{Apdx_A_s_slope} and the vertical/horizontal ratio of diffusion
31coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by:
[707]32
33\begin{equation} \label{Apdx_B2}
[817]34D^T = \left. \nabla \right|_s \cdot 
35           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
36\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
[707]37 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
38 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
39 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
40^2+\sigma _2 ^2} \hfill \\
41\end{array} }} \right)
42\end{equation}
[1223]43or in expanded form:
[2282]44\begin{subequations}
45\begin{align*} {\begin{array}{*{20}l} 
46D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.
47{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right\\
48&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
49&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.
50 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]
51\end{array} }     
52\end{align*}
53\end{subequations}
[707]54
[2282]55Equation \eqref{Apdx_B2} is obtained from \eqref{Apdx_B1} without any
56additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,
57we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A} 
58and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}.
59Since no cross horizontal derivative $\partial _i \partial _j $ appears in
60\eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent.
61The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$)
62transformation without any loss of generality:
[707]63
[2282]64\begin{subequations} 
65\begin{align*} {\begin{array}{*{20}l} 
66D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
67                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\
68\\
69\allowdisplaybreaks
70&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
71                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 
72& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]   
73\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\ 
74\\
75\allowdisplaybreaks
76&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 
77&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
78&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\ 
79\end{array} }     \\
80 {\begin{array}{*{20}l}
81%
82\allowdisplaybreaks
83\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:}
84%
85& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
86& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
87& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
88\\
89&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
90& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
91& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
92& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
93%
94\allowdisplaybreaks
95\intertext{using the same remark as just above, it becomes:}
96%
97&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
98& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
99& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
100& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
101%
102\allowdisplaybreaks
103\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
[1223]104the last term of the first line and the first term of the last line cancel, while
[2282]105the second line reduces to a single vertical derivative, so it becomes:}
106%
107& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
108& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
109%
110\allowdisplaybreaks
111\intertext{in other words, the horizontal Laplacian operator in the ($i$,$s$) plane takes the following form :}
112\end{array} }     \\
113%
[707]114D^T = {\frac{1}{e_1\,e_2\,e_3}}
[817]115\left( {{\begin{array}{*{30}c}
[707]116{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
117{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
118\end{array}}}\right)
119\cdot \left[ {A^{lT}
[817]120\left( {{\begin{array}{*{30}c}
[707]121 {1} \hfill & {-\sigma_1 } \hfill \\
122 {-\sigma_1} \hfill & {\varepsilon_1^2} \hfill \\
123\end{array} }} \right)
124\cdot 
[817]125\left( {{\begin{array}{*{30}c}
[707]126{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
127{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
[2282]128\end{array}}}       \right) \left( T \right)} \right]
129\end{align*}
130\end{subequations}
[817]131 
[707]132
133% ================================================================
[817]134% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
[707]135% ================================================================
[817]136\section{Iso/diapycnal 2nd Order Tracer Diffusive Operators}
[707]137\label{Apdx_B_2}
138
139
[1223]140The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the ($i$,$j$,$k$)
141curvilinear coordinate system in which the equations of the ocean circulation model are
142formulated, takes the following form \citep{Redi_JPO82}:
[707]143
144\begin{equation*}
145\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
146\left[ {{\begin{array}{*{20}c}
147 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
148 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
149 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
150\end{array} }} \right]
151\end{equation*}
[817]152where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions:
[707]153\begin{equation*}
154a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
[817]155\qquad , \qquad
[707]156a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 
157\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
158\end{equation*}
[817]159
[1223]160In practice, the isopycnal slopes are generally less than $10^{-2}$ in the ocean, so
161$\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
[707]162\begin{equation*}
[817]163{\textbf{A}_{\textbf{I}}} \approx A^{lT}
[707]164\left[ {{\begin{array}{*{20}c}
165 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
166 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
167 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
168\end{array} }} \right]
169\end{equation*}
[817]170
[1223]171The resulting isopycnal operator conserves the quantity and dissipates its square.
172The demonstration of the first property is trivial as \eqref{Apdx_B2} is the divergence
173of fluxes. Let us demonstrate the second one:
[707]174\begin{equation*}
[2282]175\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
176          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
[707]177\end{equation*}
178since
[2282]179\begin{subequations} 
180\begin{align*} {\begin{array}{*{20}l} 
181\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 
[817]182\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
[707]183\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
184{\frac{\partial T}{\partial j}} \right)^2} \right. \\ 
[2282]185&\qquad \qquad \qquad
186{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
187&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]      \\
188& \geq 0
189\end{array} }     
[817]190\end{align*}
[2282]191\end{subequations}
[817]192the property becomes obvious.
[707]193
[1223]194The resulting diffusion operator in $z$-coordinate has the following form :
[817]195\begin{multline*} \label{Apdx_B_ldfiso}
[2282]196 D^T=\frac{1}{e_1 e_2 }\left\{ 
197 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
198 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
[707]199\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\ 
200\end{multline*}
201
[1223]202It has to be emphasised that the simplification introduced, leads to a decoupling
203between ($i$,$z$) and ($j$,$z$) planes. The operator has therefore the same
204expression as \eqref{Apdx_B3}, the diffusion operator obtained for geopotential
205diffusion in the $s$-coordinate.
[707]206
207% ================================================================
208% Lateral/Vertical Momentum Diffusive Operators
209% ================================================================
210\section{Lateral/Vertical Momentum Diffusive Operators}
211\label{Apdx_B_3}
212
[1223]213The second order momentum diffusion operator (Laplacian) in the $z$-coordinate
214is found by applying \eqref{Eq_PE_lap_vector}, the expression for the Laplacian
215of a vector,  to the horizontal velocity vector :
[817]216\begin{align*}
217\Delta {\textbf{U}}_h
218&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
219\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
220\\
221&=\left( {{\begin{array}{*{20}c}
[707]222 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
223 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
224 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
225\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
226 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
227}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 
228u}{\partial k}} \right)} \hfill \\
229 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
230}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 
231}{\partial i}} \hfill \\
232 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
233}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 
234j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 
235\hfill \\
236\end{array} }} \right)
[817]237\\
238\\
239&=\left( {{\begin{array}{*{20}c}
[707]240{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
241{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
2420 \\
243\end{array} }} \right)
244+\frac{1}{e_3 }
245\left( {{\begin{array}{*{20}c}
246{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
247{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
248{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
249\end{array} }} \right)
[817]250\end{align*}
[1223]251Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third
252componant of the second vector is obviously zero and thus :
[707]253\begin{equation*}
254\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
255\end{equation*}
256
[1223]257Note that this operator ensures a full separation between the vorticity and horizontal
258divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian
259applied to each component in Cartesian coordinates, not on the sphere.
[707]260
[817]261The horizontal/vertical second order (Laplacian type) operator used to diffuse
[1223]262horizontal momentum in the $z$-coordinate therefore takes the following form :
[817]263\begin{equation} \label{Apdx_B_Lap_U}
264 {\textbf{D}}^{\textbf{U}} =
265     \nabla _h \left( {A^{lm}\;\chi } \right)
266   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
267   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
268            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 
269\end{equation}
[1223]270that is, in expanded form:
[817]271\begin{align*}
272D^{\textbf{U}}_u
273& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
274     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
275     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
276D^{\textbf{U}}_v   
277& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
278     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
279     +\frac{1}{e_3} \frac{\partial v}{\partial k}
280\end{align*}
[707]281
[1223]282Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to a
283useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
284Similarly, we did not found an expression of practical use for the geopotential
285horizontal/vertical Laplacian operator in the $s$-coordinate. Generally,
286\eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate systems, that is
287a Laplacian diffusion is applied on momentum along the coordinate directions.
Note: See TracBrowser for help on using the repository browser.