New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_E.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Annex_E.tex @ 2366

Last change on this file since 2366 was 2282, checked in by gm, 14 years ago

ticket:#658 merge DOC of all the branches that form the v3.3 beta

  • Property svn:executable set to *
File size: 39.8 KB
Line 
1% ================================================================
2% Appendix E : Note on some algorithms
3% ================================================================
4\chapter{Note on some algorithms}
5\label{Apdx_E}
6\minitoc
7
8\newpage
9$\ $\newline    % force a new ligne
10 
11 This appendix some on going consideration on algorithms used or planned to be used
12in \NEMO.
13
14$\ $\newline    % force a new ligne
15
16% -------------------------------------------------------------------------------------------------------------
17%        UBS scheme 
18% -------------------------------------------------------------------------------------------------------------
19\section{Upstream Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=T)}
20\label{TRA_adv_ubs}
21
22The UBS advection scheme is an upstream biased third order scheme based on
23an upstream-biased parabolic interpolation. It is also known as Cell Averaged
24QUICK scheme (Quadratic Upstream Interpolation for Convective
25Kinematics). For example, in the $i$-direction :
26\begin{equation} \label{Eq_tra_adv_ubs2}
27\tau _u^{ubs} = \left\{  \begin{aligned}
28  & \tau _u^{cen4} + \frac{1}{12} \,\tau"_i     & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
29  & \tau _u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2}       <       0
30                   \end{aligned}    \right.
31\end{equation}
32or equivalently, the advective flux is
33\begin{equation} \label{Eq_tra_adv_ubs2}
34U_{i+1/2} \ \tau _u^{ubs} 
35=U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2}
36- \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
37\end{equation}
38where $U_{i+1/2} = e_{1u}\,e_{3u}\,u_{i+1/2}$ and
39$\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
40By choosing this expression for $\tau "$ we consider a fourth order approximation
41of $\partial_i^2$ with a constant i-grid spacing ($\Delta i=1$).
42
43Alternative choice: introduce the scale factors: 
44$\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta _{i+1/2}[\tau] \right]$.
45
46
47This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
48error \citep{Shchepetkin_McWilliams_OM05}. The overall performance of the
49advection scheme is similar to that reported in \cite{Farrow1995}.
50It is a relatively good compromise between accuracy and smoothness. It is
51not a \emph{positive} scheme meaning false extrema are permitted but the
52amplitude of such are significantly reduced over the centred second order
53method. Nevertheless it is not recommended to apply it to a passive tracer
54that requires positivity.
55
56The intrinsic diffusion of UBS makes its use risky in the vertical direction
57where the control of artificial diapycnal fluxes is of paramount importance.
58It has therefore been preferred to evaluate the vertical flux using the TVD
59scheme when \np{ln\_traadv\_ubs}=T.
60
61For stability reasons, in \eqref{Eq_tra_adv_ubs}, the first term which corresponds
62to a second order centred scheme is evaluated using the \textit{now} velocity
63(centred in time) while the second term which is the diffusive part of the scheme,
64is evaluated using the \textit{before} velocity (forward in time. This is discussed
65by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme. UBS and QUICK
66schemes only differ by one coefficient. Substituting 1/6 with 1/8 in
67(\ref{Eq_tra_adv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}.
68This option is not available through a namelist parameter, since the 1/6
69coefficient is hard coded. Nevertheless it is quite easy to make the
70substitution in \mdl{traadv\_ubs} module and obtain a QUICK scheme
71
72NB 1: When a high vertical resolution $O(1m)$ is used, the model stability can
73be controlled by vertical advection (not vertical diffusion which is usually
74solved using an implicit scheme). Computer time can be saved by using a
75time-splitting technique on vertical advection. This possibility have been
76implemented and validated in ORCA05-L301. It is not currently offered in the
77current reference version.
78
79NB 2 : In a forthcoming release four options will be proposed for the
80vertical component used in the UBS scheme. $\tau _w^{ubs}$ will be
81evaluated using either \textit{(a)} a centred $2^{nd}$ order scheme ,
82or  \textit{(b)} a TVD scheme, or  \textit{(c)} an interpolation based on conservative
83parabolic splines following \citet{Shchepetkin_McWilliams_OM05} implementation of UBS in ROMS,
84or  \textit{(d)} an UBS. The $3^{rd}$ case has dispersion properties similar to an
85eight-order accurate conventional scheme.
86
87NB 3 : It is straight forward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
88\begin{equation} \label{Eq_tra_adv_ubs2}
89\tau _u^{ubs} = \left\{  \begin{aligned}
90   & \tau _u^{cen4} + \frac{1}{12} \tau"_i      & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
91   & \tau _u^{cen4} - \frac{1}{12} \tau"_{i+1}  & \quad \text{if }\ u_{i+1/2}       <       0
92                   \end{aligned}    \right.
93\end{equation}
94or equivalently
95\begin{equation} \label{Eq_tra_adv_ubs2}
96\begin{split}
97e_{2u} e_{3u}\,u_{i+1/2} \ \tau _u^{ubs} 
98&= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\
99& - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
100\end{split}
101\end{equation}
102\eqref{Eq_tra_adv_ubs2} has several advantages. First it clearly evidence that
103the UBS scheme is based on the fourth order scheme to which is added an
104upstream biased diffusive term. Second, this emphasises that the $4^{th}$ order
105part have to be evaluated at \emph{now} time step, not only the $2^{th}$ order
106part as stated above using \eqref{Eq_tra_adv_ubs}. Third, the diffusive term is
107in fact a biharmonic operator with a eddy coefficient with is simply proportional
108to the velocity.
109
110laplacian diffusion:
111\begin{equation} \label{Eq_tra_ldf_lap}
112\begin{split}
113D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\;  e_{3T} } &\left[ {\quad \delta _i
114\left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 
115\left[ T \right]} \right]} \right.
116\\
117&\ \left. {+\; \delta _j \left[
118{A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta _{j+1/2} \left[ T
119\right]} \right)} \right]\quad } \right]
120\end{split}
121\end{equation}
122
123bilaplacian:
124\begin{equation} \label{Eq_tra_ldf_lap}
125\begin{split}
126D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
127& \delta _i \left\sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
128        \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}}
129    \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
130           [T] \right] \right] \right]
131\end{split}
132\end{equation}
133with ${A_u^{lT}}^2 = \frac{1}{12} {e_{1u}}^3\ |u|$,
134$i.e.$ $A_u^{lT} = \frac{1}{\sqrt{12}} \,e_{1u}\ \sqrt{ e_{1u}\,|u|\,}$
135it comes :
136\begin{equation} \label{Eq_tra_ldf_lap}
137\begin{split}
138D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
139& \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
140       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
141    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
142         [T] \right] \right] \right]
143\end{split}
144\end{equation}
145if the velocity is uniform ($i.e.$ $|u|=cst$) then the diffusive flux is
146\begin{equation} \label{Eq_tra_ldf_lap}
147\begin{split}
148F_u^{lT} = - \frac{1}{12}
149 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta _{i+1/2} 
150       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
151    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta _{i+1/2} 
152         [T] \right] \right]
153\end{split}
154\end{equation}
155beurk....  reverte the logic: starting from the diffusive part of the advective flux it comes:
156
157\begin{equation} \label{Eq_tra_adv_ubs2}
158\begin{split}
159F_u^{lT}
160&= - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
161\end{split}
162\end{equation}
163if the velocity is uniform ($i.e.$ $|u|=cst$) and choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right]$
164
165sol 1 coefficient at T-point ( add $e_{1u}$ and $e_{1T}$ on both side of first $\delta$):
166\begin{equation} \label{Eq_tra_adv_ubs2}
167\begin{split}
168F_u^{lT}
169&= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right]
170\end{split}
171\end{equation}
172which leads to ${A_T^{lT}}^2 = \frac{1}{12} {e_{1T}}^3\ \overline{|u|}^{\,i+1/2}$
173
174sol 2 coefficient at u-point: split $|u|$ into $\sqrt{|u|}$ and $e_{1T}$ into $\sqrt{e_{1u}}$
175\begin{equation} \label{Eq_tra_adv_ubs2}
176\begin{split}
177F_u^{lT}
178&= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta _i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right] \\
179&= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta _i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta _{i+1/2}[\tau] \right] \right]
180\end{split}
181\end{equation}
182which leads to ${A_u^{lT}} = \frac{1}{12} {e_{1u}}^3\ |u|$
183
184
185% -------------------------------------------------------------------------------------------------------------
186%        Leap-Frog energetic 
187% -------------------------------------------------------------------------------------------------------------
188\section{Leap-Frog energetic }
189\label{LF}
190
191We adopt the following semi-discrete notation for time derivative. Given the values of a variable $q$ at successive time step, the time derivation and averaging operators at the mid time step are:
192\begin{subequations} \label{dt_mt}
193\begin{align}
194 \delta _{t+\rdt/2} [q]     &\  \ \,   q^{t+\rdt}  - q^{t}     \\
195 \overline q^{\,t+\rdt/2} &= \left\{ q^{t+\rdt} + q^{t} \right\} \; / \; 2
196\end{align}
197\end{subequations}
198As for space operator, the adjoint of the derivation and averaging time operators are
199$\delta_t^*=\delta_{t+\rdt/2}$ and $\overline{\cdot}^{\,t\,*}= \overline{\cdot}^{\,t+\Delta/2}$
200, respectively.
201
202The Leap-frog time stepping given by \eqref{Eq_DOM_nxt} can be defined as:
203\begin{equation} \label{LF}
204   \frac{\partial q}{\partial t} 
205         \equiv \frac{1}{\rdt} \overline{ \delta _{t+\rdt/2}[q]}^{\,t} 
206      =         \frac{q^{t+\rdt}-q^{t-\rdt}}{2\rdt}
207\end{equation} 
208Note that \eqref{LF} shows that the leapfrog time step is $\rdt$, not $2\rdt$ 
209as it can be found sometime in literature.
210The leap-Frog time stepping is a second order centered scheme. As such it respects
211the quadratic invariant in integral forms, $i.e.$ the following continuous property,
212\begin{equation} \label{Energy}
213\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
214   =\int_{t_0}^{t_1} {\frac{1}{2}\, \frac{\partial q^2}{\partial t} \;dt} 
215   =  \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) ,
216\end{equation}
217is satisfied in discrete form. Indeed,
218\begin{equation} \begin{split}
219\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
220   &\equiv \sum\limits_{0}^{N} 
221         {\frac{1}{\rdt} q^t \ \overline{ \delta _{t+\rdt/2}[q]}^{\,t} \ \rdt} 
222      \equiv \sum\limits_{0}^{N}  { q^t \ \overline{ \delta _{t+\rdt/2}[q]}^{\,t} } \\
223   &\equiv \sum\limits_{0}^{N}  { \overline{q}^{\,t+\Delta/2}{ \delta _{t+\rdt/2}[q]}}
224      \equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\rdt/2}[q^2] }\\
225   &\equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\rdt/2}[q^2] }
226      \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right)
227\end{split} \end{equation}
228NB here pb of boundary condition when applying the adjoin! In space, setting to 0
229the quantity in land area is sufficient to get rid of the boundary condition
230(equivalently of the boundary value of the integration by part). In time this boundary
231condition is not physical and \textbf{add something here!!!}
232
233
234
235
236
237
238% ================================================================
239% Iso-neutral diffusion :
240% ================================================================
241
242\section{Lateral diffusion operator}
243
244% ================================================================
245% Griffies' iso-neutral diffusion operator :
246% ================================================================
247\subsection{Griffies' iso-neutral diffusion operator}
248
249Let try to define a scheme that get its inspiration from the \citet{Griffies_al_JPO98}
250scheme, but is formulated within the \NEMO framework ($i.e.$ using scale
251factors rather than grid-size and having a position of $T$-points that is not
252necessary in the middle of vertical velocity points, see Fig.~\ref{Fig_zgr_e3}).
253
254In the formulation \eqref{Eq_tra_ldf_iso} introduced in 1995 in OPA, the ancestor of \NEMO,
255the off-diagonal terms of the small angle diffusion tensor contain several double
256spatial averages of a gradient, for example $\overline{\overline{\delta_k \cdot}}^{\,i,k}$.
257It is apparent that the combination of a $k$ average and a $k$ derivative of the tracer
258allows for the presence of grid point oscillation structures that will be invisible
259to the operator. These structures are \textit{computational modes}. They
260will not be damped by the iso-neutral operator, and even possibly amplified by it.
261In other word, the operator applied to a tracer does not warranties the decrease of
262its global average variance. To circumvent this, we have introduced a smoothing of
263the slopes of the iso-neutral surfaces (see \S\ref{LDF}). Nevertheless, this technique
264works fine for $T$ and $S$ as they are active tracers ($i.e.$ they enter the computation
265of density), but it does not work for a passive tracer.   \citep{Griffies_al_JPO98} introduce
266a different way to discretise the off-diagonal terms that nicely solve the problem.
267The idea is to get rid of combinations of an averaged in one direction combined
268with a derivative in the same direction by considering triads. For example in the
269(\textbf{i},\textbf{k}) plane, the four triads are defined at the $(i,k)$ $T$-point as follows:
270\begin{equation} \label{Gf_triads}
271_i^k \mathbb{T}_{i_p}^{k_p} (T)
272= \frac{1}{4} \ {b_u}_{\,i+i_p}^{\,k}  \  A_i^k    \left
273                                                     \frac{ \delta_{i + i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
274-\ {_i^k \mathbb{R}_{i_p}^{k_p}} \ \frac{ \delta_{k+k_p} [T^i] }{ {e_{3w}}_{\,i}^{\,k+k_p} } 
275                             \right)
276\end{equation}
277where the indices $i_p$ and $k_p$ define the four triads and take the following value:
278$i_p = -1/2$ or $1/2$ and $k_p = -1/2$ or $1/2$,
279$b_u= e_{1u}\,e_{2u}\,e_{3u}$ is the volume of $u$-cells,
280$A_i^k$ is the lateral eddy diffusivity coefficient defined at $T$-point,
281and $_i^k \mathbb{R}_{i_p}^{k_p}$ is the slope associated with each triad :
282\begin{equation} \label{Gf_slopes}
283_i^k \mathbb{R}_{i_p}^{k_p} 
284=\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}} \ \frac 
285{\left(\alpha / \beta \right)_i^\ \delta_{i + i_p}[T^k] - \delta_{i + i_p}[S^k] }
286{\left(\alpha / \beta \right)_i^\ \delta_{k+k_p}[T^i ] - \delta_{k+k_p}[S^i ] }
287\end{equation}
288Note that in \eqref{Gf_slopes} we use the ratio $\alpha / \beta$ instead of
289multiplying the temperature derivative by $\alpha$ and the salinity derivative
290by $\beta$. This is more efficient as the ratio $\alpha / \beta$ can to be
291evaluated directly.
292
293Note that in \eqref{Gf_triads}, we chose to use ${b_u}_{\,i+i_p}^{\,k}$ instead of
294${b_{uw}}_{\,i+i_p}^{\,k+k_p}$. This choice has been motivated by the decrease
295of tracer variance and the presence of partial cell at the ocean bottom
296(see Appendix~\ref{Apdx_Gf_operator}).
297
298%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
299\begin{figure}[!ht] \label{Fig_ISO_triad}
300\begin{center}
301\includegraphics[width=0.70\textwidth]{./TexFiles/Figures/Fig_ISO_triad.pdf}
302\caption{Triads used in the Griffies's like iso-neutral diffision scheme for
303$u$-component (upper panel) and $w$-component (lower panel).}
304\end{center}
305\end{figure}
306%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
307
308The four iso-neutral fluxes associated with the triads are defined at $T$-point.
309They take the following expression :
310\begin{flalign} \label{Gf_fluxes}
311\begin{split}
312{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T)
313   &= \ \; \qquad  \quad    { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+i_p}^{\,k}}    \\
314{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T)
315   &=  -\; { _i^k \mathbb{R}_{i_p}^{k_p} }
316             \ \; { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+k_p}}
317\end{split}
318\end{flalign}
319
320The resulting iso-neutral fluxes at $u$- and $w$-points are then given by the
321sum of the fluxes that cross the $u$- and $w$-face (Fig.~\ref{Fig_ISO_triad}):
322\begin{flalign} \label{Eq_iso_flux} 
323\textbf{F}_{iso}(T)
324&\equiv  \sum_{\substack{i_p,\,k_p}} 
325   \begin{pmatrix} 
326      {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T)      \\
327      \\
328      {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T)      \\   
329   \end{pmatrix}    \notag \\
330&  \notag \\
331&\equiv  \sum_{\substack{i_p,\,k_p}} 
332   \begin{pmatrix} 
333      && { _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+1/2}^{\,k} }    \\
334      \\
335      & -\; { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} }
336        & {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+1/2} }   \\   
337   \end{pmatrix}      % \\
338% &\\
339% &\equiv  \sum_{\substack{i_p,\,k_p}}
340%    \begin{pmatrix}
341%       \qquad  \qquad  \qquad
342%       \frac{1}{ {e_{1u}}_{\,i+1/2}^{\,k} }  \ \; 
343%        { _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T)\\
344%       \\
345%       -\frac{1}{ {e_{3w}}_{\,i}^{\,k+1/2} }  \ \;
346%        { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 
347%                  {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T)\\   
348%    \end{pmatrix}     
349\end{flalign}
350resulting in a iso-neutral diffusion tendency on temperature given by the divergence
351of the sum of all the four triad fluxes :
352\begin{equation} \label{Gf_operator}
353D_l^T = \frac{1}{b_T}  \sum_{\substack{i_p,\,k_p}} \left\{ 
354       \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 
355        + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right]   \right\}
356\end{equation}
357where $b_T= e_{1T}\,e_{2T}\,e_{3T}$ is the volume of $T$-cells.
358
359This expression of the iso-neutral diffusion has been chosen in order to satisfy
360the following six properties:
361\begin{description}
362\item[$\bullet$ horizontal diffusion] The discretization of the diffusion operator
363recovers the traditional five-point Laplacian in the limit of flat iso-neutral direction :
364\begin{equation} \label{Gf_property1a}
365D_l^T = \frac{1}{b_T}  \ \delta_{i} 
366   \left[ \frac{e_{2u}\,e_{3u}}{e_{1u}} \; \overline{A}^{\,i} \; \delta_{i+1/2}[T] \right]
367\qquad  \text{when} \quad 
368   { _i^k \mathbb{R}_{i_p}^{k_p} }=0
369\end{equation}
370
371\item[$\bullet$ implicit treatment in the vertical]  In the diagonal term associated
372with the vertical divergence of the iso-neutral fluxes (i.e. the term associated
373with a second order vertical derivative) appears only tracer values associated
374with a single water column. This is of paramount importance since it means
375that the implicit in time algorithm for solving the vertical diffusion equation can
376be used to evaluate this term. It is a necessity since the vertical eddy diffusivity
377associated with this term, 
378\begin{equation}
379    \sum_{\substack{i_p, \,k_p}} \left\{ 
380      A_i^k \; \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2
381   \right\} 
382\end{equation}
383can be quite large.
384
385\item[$\bullet$ pure iso-neutral operator]  The iso-neutral flux of locally referenced
386potential density is zero, $i.e.$
387\begin{align} \label{Gf_property2}
388\begin{matrix}
389&{_i^k {\mathbb{F}_u}_{i_p}^{k_p} (\rho)} 
390   &=    &\alpha_i^k   &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T)
391   &- \ \;  \beta _i^k    &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (S) & = \ 0   \\
392&{_i^k {\mathbb{F}_w}_{i_p}^{k_p} (\rho)} 
393   &=    &\alpha_i^k   &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T)
394   &- \  \; \beta _i^k    &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (S)  &= \ 0
395\end{matrix}
396\end{align}
397This result is trivially obtained using the \eqref{Gf_triads} applied to $T$ and $S$ 
398and the definition of the triads' slopes \eqref{Gf_slopes}.
399
400\item[$\bullet$ conservation of tracer] The iso-neutral diffusion term conserve the
401total tracer content, $i.e.$
402\begin{equation} \label{Gf_property1}
403\sum_{i,j,k} \left\{ D_l^T \ b_T \right\} = 0
404\end{equation}
405This property is trivially satisfied since the iso-neutral diffusive operator
406is written in flux form.
407
408\item[$\bullet$ decrease of tracer variance] The iso-neutral diffusion term does
409not increase the total tracer variance, $i.e.$
410\begin{equation} \label{Gf_property1}
411\sum_{i,j,k} \left\{ T \ D_l^T \ b_T \right\} \leq 0
412\end{equation}
413The property is demonstrated in the Appendix~\ref{Apdx_Gf_operator}. It is a
414key property for a diffusion term. It means that the operator is also a dissipation
415term, $i.e.$ it is a sink term for the square of the quantity on which it is applied.
416It therfore ensure that, when the diffusivity coefficient is large enough, the field
417on which it is applied become free of grid-point noise.
418
419\item[$\bullet$ self-adjoint operator] The iso-neutral diffusion operator is self-adjoint,
420$i.e.$
421\begin{equation} \label{Gf_property1}
422\sum_{i,j,k} \left\{ S \ D_l^T \ b_T \right\} = \sum_{i,j,k} \left\{ D_l^S \ T \ b_T \right\} 
423\end{equation}
424In other word, there is no needs to develop a specific routine from the adjoint of this
425operator. We just have to apply the same routine. This properties can be demonstrated
426quite easily in a similar way the "non increase of tracer variance" property has been
427proved (see Appendix~\ref{Apdx_Gf_operator}).
428\end{description}
429
430
431$\ $\newline      %force an empty line
432% ================================================================
433% Skew flux formulation for Eddy Induced Velocity :
434% ================================================================
435\subsection{ Eddy induced velocity and Skew flux formulation}
436
437When Gent and McWilliams [1990] diffusion is used (\key{traldf\_eiv} defined),
438an additional advection term is added. The associated velocity is the so called
439eddy induced velocity, the formulation of which depends on the slopes of iso-
440neutral surfaces. Contrary to the case of iso-neutral mixing, the slopes used
441here are referenced to the geopotential surfaces, $i.e.$ \eqref{Eq_ldfslp_geo} 
442is used in $z$-coordinate, and the sum \eqref{Eq_ldfslp_geo}
443+ \eqref{Eq_ldfslp_iso} in $z^*$ or $s$-coordinates.
444
445The eddy induced velocity is given by:
446\begin{equation} \label{Eq_eiv_v}
447\begin{split}
448 u^* & = - \frac{1}{e_2\,e_{3}}          \;\partial_k \left( e_2 \, A_e \; r_\right)   
449          = - \frac{1}{e_3}                     \;\partial_k \left(           A_e \; r_\right)            \\
450 v^* & = - \frac{1}{e_1\,e_3}\;             \partial_k \left( e_1 \, A_e \; r_\right)   
451          = - \frac{1}{e_3}                     \;\partial_k \left(           A_e \; r_\right)             \\
452w^* & =    \frac{1}{e_1\,e_2}\; \left\{   \partial_\left( e_2 \, A_e \; r_\right)
453                             + \partial_\left( e_1 \, A_e \;r_j   \right) \right\}   \\
454\end{split}
455\end{equation}
456where $A_{e}$ is the eddy induced velocity coefficient, and $r_i$ and $r_j$ the
457slopes between the iso-neutral and the geopotential surfaces.
458%%gm wrong: to be modified with 2 2D streamfunctions
459 In other words,
460the eddy induced velocity can be derived from a vector streamfuntion, $\phi$, which
461is given by $\phi = A_e\,\textbf{r}$ as $\textbf{U}^*  = \textbf{k} \times \nabla \phi$
462%%end gm
463
464A traditional way to implement this additional advection is to add it to the eulerian
465velocity prior to compute the tracer advection. This allows us to take advantage of
466all the advection schemes offered for the tracers (see \S\ref{TRA_adv}) and not just
467a $2^{nd}$ order advection scheme. This is particularly useful for passive tracers
468where \emph{positivity} of the advection scheme is of paramount importance.
469% give here the expression using the triads. It is different from the one given in \eqref{Eq_ldfeiv}
470% see just below a copy of this equation:
471%\begin{equation} \label{Eq_ldfeiv}
472%\begin{split}
473% u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\
474% v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\
475%w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + %\delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\
476%\end{split}
477%\end{equation}
478\begin{equation} \label{Eq_eiv_vd} 
479\textbf{F}_{eiv}^T   \equiv   \left( \begin{aligned}                               
480 \sum_{\substack{i_p,\,k_p}} &
481 +{e_{2u}}_{i+1/2-i_p}^{k}                                  \ \ {A_{e}}_{i+1/2-i_p}^{k} 
482\ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} }    \ \ \delta_{k+k_p}[T_{i+1/2-i_p}]      \\
483    \\
484 \sum_{\substack{i_p,\,k_p}} &
485 - {e_{2u}}_i^{k+1/2-k_p}                                      \ {A_{e}}_i^{k+1/2-k_p} 
486\ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} }    \ \delta_{i+i_p}[T^{k+1/2-k_p}]    \\   
487\end{aligned}   \right)
488\end{equation}
489
490\ref{Griffies_JPO98} introduces another way to implement the eddy induced advection,
491the so-called skew form. It is based on a transformation of the advective fluxes
492using the non-divergent nature of the eddy induced velocity.
493For example in the (\textbf{i},\textbf{k}) plane, the tracer advective fluxes can be
494transformed as follows:
495\begin{flalign*}
496\begin{split}
497\textbf{F}_{eiv}^T =
498\begin{pmatrix} 
499           {e_{2}\,e_{3}\;  u^*}       \\
500      {e_{1}\,e_{2}\; w^*}  \\
501\end{pmatrix}   \;   T
502&=
503\begin{pmatrix} 
504           { - \partial_k \left( e_{2} \, A_{e} \; r_i \right) \; T \;}       \\
505      {+ \partial_\left( e_{2} \, A_{e} \; r_i \right) \; T \;}    \\
506\end{pmatrix}        \\
507&=       
508\begin{pmatrix} 
509           { - \partial_k \left( e_{2} \, A_{e} \; r_\; T \right) \;}  \\
510      {+ \partial_\left( e_{2} \, A_{e} \; r_\; T \right) \;}   \\
511\end{pmatrix}       
512 +
513\begin{pmatrix} 
514           {+ e_{2} \, A_{e} \; r_\; \partial_k T}  \\
515      { - e_{2} \, A_{e} \; r_\; \partial_i  T}  \\
516\end{pmatrix}   
517\end{split}
518\end{flalign*}
519and since the eddy induces velocity field is no-divergent, we end up with the skew
520form of the eddy induced advective fluxes:
521\begin{equation} \label{Eq_eiv_skew_continuous}
522\textbf{F}_{eiv}^T = \begin{pmatrix} 
523           {+ e_{2} \, A_{e} \; r_\; \partial_k T}   \\
524      { - e_{2} \, A_{e} \; r_\; \partial_i  T}  \\
525                                 \end{pmatrix}
526\end{equation}
527The tendency associated with eddy induced velocity is then simply the divergence
528of the \eqref{Eq_eiv_skew_continuous} fluxes. It naturally conserves the tracer
529content, as it is expressed in flux form and, as the advective form, it preserve the
530tracer variance. Another interesting property of \eqref{Eq_eiv_skew_continuous} 
531form is that when $A=A_e$, a simplification occurs in the sum of the iso-neutral
532diffusion and eddy induced velocity terms:
533\begin{flalign} \label{Eq_eiv_skew+eiv_continuous}
534\textbf{F}_{iso}^T + \textbf{F}_{eiv}^T &=
535\begin{pmatrix} 
536           + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T -  e_2 \, A \; r_i                              \;\partial_k T   \\
537      -  e_2 \, A_{e} \; r_i           \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T   \\
538\end{pmatrix}
539+
540\begin{pmatrix} 
541           {+ e_{2} \, A_{e} \; r_\; \partial_k T}   \\
542      { - e_{2} \, A_{e} \; r_\; \partial_i  T}  \\
543\end{pmatrix}      \\
544&= \begin{pmatrix} 
545           + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T    \\
546      -  2\; e_2 \, A_{e} \; r_i      \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T   \\
547\end{pmatrix}
548\end{flalign}
549The horizontal component reduces to the one use for an horizontal laplacian
550operator and the vertical one keep the same complexity, but not more. This property
551has been used to reduce the computational time \citep{Griffies_JPO98}, but it is
552not of practical use as usually $A \neq A_e$. Nevertheless this property can be used to
553choose a discret form of  \eqref{Eq_eiv_skew_continuous} which is consistent with the
554iso-neutral operator \eqref{Gf_operator}. Using the slopes \eqref{Gf_slopes} 
555and defining $A_e$ at $T$-point($i.e.$ as $A$, the eddy diffusivity coefficient),
556the resulting discret form is given by:
557\begin{equation} \label{Eq_eiv_skew} 
558\textbf{F}_{eiv}^T   \equiv   \frac{1}{4} \left( \begin{aligned}                               
559 \sum_{\substack{i_p,\,k_p}} &
560 +{e_{2u}}_{i+1/2-i_p}^{k}                                  \ \ {A_{e}}_{i+1/2-i_p}^{k} 
561\ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} }    \ \ \delta_{k+k_p}[T_{i+1/2-i_p}]      \\
562    \\
563 \sum_{\substack{i_p,\,k_p}} &
564 - {e_{2u}}_i^{k+1/2-k_p}                                      \ {A_{e}}_i^{k+1/2-k_p} 
565\ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} }    \ \delta_{i+i_p}[T^{k+1/2-k_p}]    \\   
566\end{aligned}   \right)
567\end{equation}
568Note that \eqref{Eq_eiv_skew} is valid in $z$-coordinate with or without partial cells.
569In $z^*$ or $s$-coordinate, the slope between the level and the geopotential surfaces
570must be added to $\mathbb{R}$ for the discret form to be exact.
571
572Such a choice of discretisation is consistent with the iso-neutral operator as it uses the
573same definition for the slopes. It also ensures the conservation of the tracer variance
574(see Appendix \ref{Apdx_eiv_skew}), $i.e.$ it does not include a diffusive component
575but is a "pure" advection term.
576
577
578
579
580$\ $\newpage      %force an empty line
581% ================================================================
582% Discrete Invariants of the iso-neutral diffrusion
583% ================================================================
584\subsection{Discrete Invariants of the iso-neutral diffrusion}
585\label{Apdx_Gf_operator}
586
587Demonstration of the decrease of the tracer variance in the (\textbf{i},\textbf{j}) plane.
588
589This part will be moved in an Appendix.
590
591The continuous property to be demonstrated is :
592\begin{align*}
593\int_D  D_l^T \; T \;dv   \leq 0
594\end{align*}
595The discrete form of its left hand side is obtained using \eqref{Eq_iso_flux}
596
597\begin{align*}
598&\int_D  D_l^T \; T \;dv \equiv  \sum_{i,k} \left\{ T \ D_l^T \ b_T \right\}    \\
599&\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
600      \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 
601        + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right]  \ T \right\}    \\
602&\equiv  - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
603                {_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \ \delta_{i+1/2} [T]
604             + {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}}  \ \delta_{k+1/2} [T]   \right\}      \\
605&\equiv -\sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
606   \frac{ _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{1u}}_{\,i+1/2}^{\,k} }  \ \delta_{i+1/2} [T]
607 - { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 
608   \frac{ _i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{3w}}_{\,i}^{\,k+1/2}  } \ \delta_{k+1/2} [T]   
609                                                                       \right\}      \\
610%
611\allowdisplaybreaks
612\intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:}
613%
614&\equiv -\sum_{i,k}
615\begin{Bmatrix} 
616&\ \ \Bigl{ _{i+1}^{k} \mathbb{T}_{-1/2}^{-1/2} (T) } 
617&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
618& -\ \ {_{i}^{k+1} \mathbb{R}_{-1/2}^{-1/2}} 
619&      {_{i}^{k+1} \mathbb{T}_{-1/2}^{-1/2} (T) }   
620&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)
621& \\
622&+\Bigl( \ \;\; { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 
623&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
624& -\ \ {_i^{k+1} \mathbb{R}_{+1/2}^{-1/2}}
625& { _i^{k+1} \mathbb{T}_{+1/2}^{-1/2} (T) }   
626&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}      \Bigr)
627& \\
628&+\Bigl{ _{i+1}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) } 
629&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
630& -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{-1/2}^{+1/2}} 
631&      \ \;\;{_{i}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) }   
632&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)
633& \\
634&+\Bigl( \ \;\; { _{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) } 
635&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
636& -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{+1/2}^{+1/2}} 
637&      \ \;\;{_{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) }   
638&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)   \\
639\end{Bmatrix}
640%
641\allowdisplaybreaks
642\intertext{The summation is done over all $i$ and $k$ indices, it is therefore possible to introduce a shift of $-1$ either in $i$ or $k$ direction in order to regroup all the terms of the summation by triad at a ($i$,$k$) point. In other words, we regroup all the terms in the neighbourhood  that contain a triad at the same ($i$,$k$) indices. It becomes: }
643%
644&\equiv -\sum_{i,k}
645\begin{Bmatrix} 
646&\ \ \Bigl{_i^k \mathbb{T}_{-1/2}^{-1/2} (T) } 
647&\frac{ \delta_{i -1/2} [T] }{{e_{1u} }_{\,i-1/2}^{\,k}} 
648& -\ \ {_i^k \mathbb{R}_{-1/2}^{-1/2}} 
649&      {_i^k \mathbb{T}_{-1/2}^{-1/2} (T) }   
650&\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}}     \Bigr)
651& \\
652&+\Bigl{ _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 
653&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
654& -\ \ {_i^k \mathbb{R}_{+1/2}^{-1/2}}
655&      { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) }   
656&\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}}      \Bigr)
657& \\
658&+\Bigl{_i^k \mathbb{T}_{-1/2}^{+1/2} (T) } 
659&\frac{ \delta_{i -1/2} [T] }{{e_{1u} }_{\,i-1/2}^{\,k}} 
660& -\ \ {_i^k \mathbb{R}_{-1/2}^{+1/2}} 
661&      {_i^k \mathbb{T}_{-1/2}^{+1/2} (T) }   
662&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)
663& \\
664&+\Bigl( { _i^k \mathbb{T}_{+1/2}^{+1/2} (T) } 
665&\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
666& -\ \ {_i^k \mathbb{R}_{+1/2}^{+1/2}} 
667&      {_i^k \mathbb{T}_{+1/2}^{+1/2} (T) }   
668&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)   \\
669\end{Bmatrix}   \\
670%
671\allowdisplaybreaks
672\intertext{Then outing in factor the triad in each of the four terms of the summation and substituting the triads by their expression given in \eqref{Gf_triads}. It becomes: }
673%
674&\equiv -\sum_{i,k}
675\begin{Bmatrix} 
676&\ \ \Bigl\frac{ \delta_{i -1/2} [T] }{{e_{1u} }_{\,i-1/2}^{\,k}} 
677& -\ \ {_i^k \mathbb{R}_{-1/2}^{-1/2}} 
678&\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}}     \Bigr)^2
679& \frac{1}{4} \ {b_u}_{\,i-1/2}^{\,k}  \  A_i^k
680& \\
681&+\Bigl\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
682& -\ \ {_i^k \mathbb{R}_{+1/2}^{-1/2}}
683&\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}}      \Bigr)^2
684& \frac{1}{4} \ {b_u}_{\,i+1/2}^{\,k}  \  A_i^k
685& \\
686&+\Bigl\frac{ \delta_{i -1/2} [T] }{{e_{1u} }_{\,i-1/2}^{\,k}} 
687& -\ \ {_i^k \mathbb{R}_{-1/2}^{+1/2}} 
688&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)^2
689& \frac{1}{4} \ {b_u}_{\,i-1/2}^{\,k}  \  A_i^k
690& \\
691&+\Bigl( \frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 
692& -\ \ {_i^k \mathbb{R}_{+1/2}^{+1/2}} 
693&\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}}     \Bigr)^2
694& \frac{1}{4} \ {b_u}_{\,i+1/2}^{\,k}  \  A_i^k      \\
695\end{Bmatrix}   \\
696& \\
697%
698&\equiv - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
699\begin{matrix} 
700&\Bigl( \frac{ \delta_{i +i_p} [T] }{{e_{1u} }_{\,i+i_p}^{\,k}} 
701& -\ \ {_i^k \mathbb{R}_{i_p}^{k_p}} 
702&\frac{ \delta_{k+k_p} [T] }{{e_{3w}}_{\,i}^{\,k+k_p}}     \Bigr)^2
703& \frac{1}{4} \ {b_u}_{\,i+i_p}^{\,k}  \  A_i^k   \ \
704\end{matrix}
705 \right\}   
706\quad   \leq 0
707\end{align*} 
708The last inequality is obviously obtained as we succeed in obtaining a negative summation of square quantities.
709
710Note that, if instead of multiplying $D_l^T$ by $T$, we were using another tracer field, let say $S$, then the previous demonstration would have let to:
711\begin{align*}
712\int_D  S \; D_l^\;dv &\equiv  \sum_{i,k} \left\{ S \ D_l^T \ b_T \right\}    \\
713&\equiv - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
714\left( \frac{ \delta_{i +i_p} [S] }{{e_{1u} }_{\,i+i_p}^{\,k}} 
715 - {_i^k \mathbb{R}_{i_p}^{k_p}} 
716\frac{ \delta_{k+k_p} [S] }{{e_{3w}}_{\,i}^{\,k+k_p}}     \right\right.   
717\\   & \qquad \qquad \qquad \ \left.
718\left( \frac{ \delta_{i +i_p} [T] }{{e_{1u} }_{\,i+i_p}^{\,k}} 
719 - {_i^k \mathbb{R}_{i_p}^{k_p}} 
720\frac{ \delta_{k+k_p} [T] }{{e_{3w}}_{\,i}^{\,k+k_p}}     \right)
721 \frac{1}{4} \ {b_u}_{\,i+i_p}^{\,k}  \  A_i^k   \
722 \right\}   
723%
724\allowdisplaybreaks
725\intertext{which, by applying the same operation as before but in reverse order, leads to: }
726%
727&\equiv  \sum_{i,k} \left\{ D_l^S \ T \ b_T \right\}   
728\end{align*} 
729This means that the iso-neutral operator is self-adjoint. There is no need to develop a specific to obtain it.
730
731
732
733$\ $\newpage      %force an empty line
734% ================================================================
735% Discrete Invariants of the skew flux formulation
736% ================================================================
737\subsection{Discrete Invariants of the skew flux formulation}
738\label{Apdx_eiv_skew}
739
740
741Demonstration for the conservation of the tracer variance in the (\textbf{i},\textbf{j}) plane.
742
743This have to be moved in an Appendix.
744
745The continuous property to be demonstrated is :
746\begin{align*}
747\int_D \nabla \cdot \textbf{F}_{eiv}(T) \; T \;dv  \equiv 0
748\end{align*}
749The discrete form of its left hand side is obtained using \eqref{Eq_eiv_skew}
750\begin{align*}
751 \sum\limits_{i,k} \sum_{\substack{i_p,\,k_p}}  \Biggl\{   \;\;
752 \delta_&\left[                                                   
753{e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k} 
754\ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}]         
755   \right] \; T_i^k      \\
756- \delta_k &\left[
757{e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2} 
758\ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}]   
759   \right] \; T_i^k      \         \Biggr\}   
760\end{align*}
761apply the adjoint of delta operator, it becomes
762\begin{align*}
763 \sum\limits_{i,k} \sum_{\substack{i_p,\,k_p}}  \Biggl\{   \;\;
764  &\left(                                                   
765{e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k} 
766\ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}]         
767   \right) \; \delta_{i+1/2}[T^{k}]      \\
768- &\left(
769{e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2} 
770\ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}]   
771     \right) \; \delta_{k+1/2}[T_{i}]       \         \Biggr\}       
772\end{align*}
773Expending the summation on $i_p$ and $k_p$, it becomes:
774\begin{align*}
775 \begin{matrix} 
776&\sum\limits_{i,k}   \Bigl\{ 
777  &+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k} 
778  &\ {_{i+1}^k \mathbb{R}_{- 1/2}^{-1/2}} &\delta_{k-1/2}[T_{i+1}]    &\delta_{i+1/2}[T^{k}]   &\\
779&&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:}     
780  &\ {\ \ \;_i^k \mathbb{R}_{+1/2}^{-1/2}}  &\delta_{k-1/2}[T_{i\ \ \ \;}&\delta_{i+1/2}[T^{k}] &\\
781&&+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k} 
782  &\ {_{i+1}^k \mathbb{R}_{- 1/2}^{+1/2}} &\delta_{k+1/2}[T_{i+1}]     &\delta_{i+1/2}[T^{k}] &\\
783&&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:}       
784    &\ {\ \ \;_i^k \mathbb{R}_{+1/2}^{+1/2}} &\delta_{k+1/2}[T_{i\ \ \ \;}] &\delta_{i+1/2}[T^{k}] &\\
785%
786&&-{e_{2u}}_i^{k+1}                                &{A_{e}}_i^{k+1} 
787  &{_i^{k+1} \mathbb{R}_{-1/2}^{- 1/2}}   &\delta_{i-1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\   
788&&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:} 
789  &{\ \ \;_i^\mathbb{R}_{-1/2}^{+1/2}}   &\delta_{i-1/2}[T^{k\ \ \ \:}&\delta_{k+1/2}[T_{i}] &\\
790&&-{e_{2u}}_i^{k+1    }                             &{A_{e}}_i^{k+1} 
791  &{_i^{k+1} \mathbb{R}_{+1/2}^{- 1/2}}   &\delta_{i+1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\   
792&&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:} 
793  &{\ \ \;_i^\mathbb{R}_{+1/2}^{+1/2}}   &\delta_{i+1/2}[T^{k\ \ \ \:}&\delta_{k+1/2}[T_{i}]
794&\Bigr\}  \\
795\end{matrix}   
796\end{align*}
797The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{+1/2}}$ are the
798same but of opposite signs, they cancel out.
799Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{-1/2}}$.
800The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{-1/2}}$ are the
801same but both of opposite signs and shifted by 1 in $k$ direction. When summing over $k$ 
802they cancel out with the neighbouring grid points.
803Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{+1/2}}$ in the
804$i$ direction. Therefore the sum over the domain is zero, $i.e.$ the variance of the
805tracer is preserved by the discretisation of the skew fluxes.
806
Note: See TracBrowser for help on using the repository browser.