New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_STP.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_STP.tex @ 2298

Last change on this file since 2298 was 2282, checked in by gm, 14 years ago

ticket:#658 merge DOC of all the branches that form the v3.3 beta

  • Property svn:executable set to *
File size: 22.6 KB
Line 
1
2% ================================================================
3% Chapter 2 Ñ Time Domain (step.F90)
4% ================================================================
5\chapter{Time Domain (STP) }
6\label{STP}
7\minitoc
8
9% Missing things:
10%  - daymod: definition of the time domain (nit000, nitend andd the calendar)
11
12
13\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction
14which could be referred to here, would help  ==> to be added}
15%%%%
16
17
18\newpage
19$\ $\newline    % force a new ligne
20
21
22Having defined the continuous equations in Chap.~\ref{PE}, we need now to choose
23a time discretization. In the present chapter, we provide a general description of the \NEMO 
24time stepping strategy and the consequences for the order in which the equations are
25solved.
26
27$\ $\newline    % force a new ligne
28% ================================================================
29% Time Discretisation
30% ================================================================
31\section{Time stepping environment}
32\label{STP_environment}
33
34The time stepping used in \NEMO is a three level scheme that can be
35represented as follows:
36\begin{equation} \label{Eq_STP}
37   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \  \text{RHS}_x^{t-\rdt,\,t,\,t+\rdt}
38\end{equation} 
39where $x$ stands for $u$, $v$, $T$ or $S$; RHS is the Right-Hand-Side of the
40corresponding time evolution equation; $\rdt$ is the time step; and the
41superscripts indicate the time at which a quantity is evaluated. Each term of the
42RHS is evaluated at a specific time step depending on the physics with which
43it is associated.
44
45The choice of the time step used for this evaluation is discussed below as
46well as the implications for starting or restarting a model
47simulation. Note that the time stepping calculation is generally performed in a single
48operation. With such a complex and nonlinear system of equations it would be
49dangerous to let a prognostic variable evolve in time for each term separately.
50
51The three level scheme requires three arrays for each prognostic variable.
52For each variable $x$ there is $x_b$ (before), $x_n$ (now) and $x_a$. The third array,
53although referred to as $x_a$ (after) in the code, is usually not the variable at
54the after time step; but rather it is used to store the time derivative (RHS in
55\eqref{Eq_STP}) prior to time-stepping the equation. Generally, the time
56stepping is performed once at each time step in the \mdl{tranxt} and \mdl{dynnxt} 
57modules, except when using implicit vertical diffusion or calculating sea surface height
58in which case time-splitting options are used.
59
60% -------------------------------------------------------------------------------------------------------------
61%        Non-Diffusive Part---Leapfrog Scheme
62% -------------------------------------------------------------------------------------------------------------
63\section{Non-Diffusive Part --- Leapfrog Scheme}
64\label{STP_leap_frog}
65
66The time stepping used for processes other than diffusion is the well-known leapfrog
67scheme \citep{Mesinger_Arakawa_Bk76}.  This scheme is widely used for advection
68processes in low-viscosity fluids. It is a time centred scheme, $i.e.$ 
69the RHS in \eqref{Eq_STP} is evaluated at time step $t$, the now time step.
70It may be used for momentum and tracer advection,
71pressure gradient, and Coriolis terms, but not for diffusion terms.
72It is an efficient method that achieves
73second-order accuracy with just one right hand side evaluation per time step.
74Moreover, it does not artificially damp linear oscillatory motion nor does it produce
75instability by amplifying the oscillations. These advantages are somewhat diminished
76by the large phase-speed error of the leapfrog scheme, and the unsuitability
77of leapfrog differencing for the representation of diffusion and Rayleigh
78damping processes. However, the scheme allows the coexistence of a numerical
79and a physical mode due to its leading third order dispersive error. In other words a
80divergence of odd and even time steps may occur. To prevent it, the leapfrog scheme
81is often used in association with a Robert-Asselin time filter (hereafter the LF-RA scheme).
82This filter, first designed by \citet{Robert_JMSJ66} and more comprehensively studied
83by \citet{Asselin_MWR72}, is a kind of laplacian diffusion in time that mixes odd and
84even time steps:
85\begin{equation} \label{Eq_STP_asselin}
86x_F^t  = x^t + \gamma \, \left[ x_F^{t-\rdt} - 2 x^t + x^{t+\rdt} \right]
87\end{equation} 
88where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin
89coefficient. $\gamma$ is initialized as \np{rn\_atfp} (namelist parameter).
90Its default value is \np{rn\_atfp}=$10^{-3}$ (see \S~\ref{STP_mLF}),
91causing only a weak dissipation of high frequency motions (\citep{Farge1987}).
92The addition of a time filter degrades the accuracy of the
93calculation from second to first order. However, the second order truncation
94error is proportional to $\gamma$, which is small compared to 1. Therefore,
95the LF-RA is a quasi second order accurate scheme. The LF-RA scheme
96is preferred to other time differencing schemes such as
97predictor corrector or trapezoidal schemes, because the user has an explicit
98and simple control of the magnitude of the time diffusion of the scheme.
99When used with the 2nd order space centred discretisation of the
100advection terms in the momentum and tracer equations, LF-RA avoids implicit
101numerical diffusion: diffusion is set explicitly by the user through the Robert-Asselin
102filter parameter and the viscosity and diffusion coefficients.
103
104% -------------------------------------------------------------------------------------------------------------
105%        Diffusive Part---Forward or Backward Scheme
106% -------------------------------------------------------------------------------------------------------------
107\section{Diffusive Part --- Forward or Backward Scheme}
108\label{STP_forward_imp}
109
110The leapfrog differencing scheme is unsuitable for the representation of
111diffusion and damping processes. For a tendancy $D_x$, representing a
112diffusion term or a restoring term to a tracer climatology
113(when present, see \S~\ref{TRA_dmp}), a forward time differencing scheme
114 is used :
115\begin{equation} \label{Eq_STP_euler}
116   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \ {D_x}^{t-\rdt}
117\end{equation} 
118
119This is diffusive in time and conditionally stable. The
120conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies_Bk04}:
121\begin{equation} \label{Eq_STP_euler_stability}
122A^h < \left\{
123\begin{aligned}
124                    &\frac{e^2}{  8 \; \rdt }   &&\quad \text{laplacian diffusion}  \\
125                    &\frac{e^4}{64 \; \rdt }    &&\quad \text{bilaplacian diffusion} 
126            \end{aligned}
127\right.
128\end{equation}
129where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is
130the mixing coefficient. The linear constraint \eqref{Eq_STP_euler_stability} 
131is a necessary condition, but not sufficient. If it is not satisfied, even mildly,
132then the model soon becomes wildly unstable. The instability can be removed
133by either reducing the length of the time steps or reducing the mixing coefficient.
134
135For the vertical diffusion terms, a forward time differencing scheme can be
136used, but usually the numerical stability condition imposes a strong
137constraint on the time step. Two solutions are available in \NEMO to overcome
138the stability constraint: $(a)$ a forward time differencing scheme using a
139time splitting technique (\np{ln\_zdfexp} = true) or $(b)$ a backward (or implicit)
140time differencing scheme (\np{ln\_zdfexp} = false). In $(a)$, the master
141time step $\Delta $t is cut into $N$ fractional time steps so that the
142stability criterion is reduced by a factor of $N$. The computation is performed as
143follows:
144\begin{equation} \label{Eq_STP_ts}
145\begin{split}
146& x_\ast ^{t-\rdt} = x^{t-\rdt}   \\
147& x_\ast ^{t-\rdt+L\frac{2\rdt}{N}}=x_\ast ^{t-\rdt+\left( {L-1} 
148\right)\frac{2\rdt}{N}}+\frac{2\rdt}{N}\;\text{DF}^{t-\rdt+\left( {L-1} \right)\frac{2\rdt}{N}}
149        \quad \text{for $L=1$ to $N$}      \\
150& x^{t+\rdt} = x_\ast^{t+\rdt}
151\end{split}
152\end{equation}
153with DF a vertical diffusion term. The number of fractional time steps, $N$, is given
154by setting \np{nn\_zdfexp}, (namelist parameter). The scheme $(b)$ is unconditionally
155stable but diffusive. It can be written as follows:
156\begin{equation} \label{Eq_STP_imp}
157   x^{t+\rdt} = x^{t-\rdt} + 2 \, \rdt \  \text{RHS}_x^{t+\rdt}
158\end{equation} 
159
160This scheme is rather time consuming since it requires a matrix inversion,
161but it becomes attractive since a value of 3 or more is needed for N in
162the forward time differencing scheme. For example, the finite difference
163approximation of the temperature equation is:
164\begin{equation} \label{Eq_STP_imp_zdf}
165\frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\rdt}\equiv \text{RHS}+\frac{1}{e_{3t} }\delta 
166_k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
167\right]
168\end{equation}
169where RHS is the right hand side of the equation except for the vertical diffusion term.
170We rewrite \eqref{Eq_STP_imp} as:
171\begin{equation} \label{Eq_STP_imp_mat}
172-c(k+1)\;T^{t+1}(k+1) + d(k)\;T^{t+1}(k) - \;c(k)\;T^{t+1}(k-1) \equiv b(k)
173\end{equation}
174where
175\begin{align*} 
176 c(k) &= A_w^{vT} (k) \, / \, e_{3w} (k)     \\
177 d(k) &= e_{3t} (k)       \, / \, (2\rdt) + c_k + c_{k+1}    \\
178 b(k) &= e_{3t} (k) \; \left( T^{t-1}(k) \, / \, (2\rdt) + \text{RHS} \right)   
179\end{align*}
180
181\eqref{Eq_STP_imp_mat} is a linear system of equations with an associated
182matrix which is tridiagonal. Moreover, $c(k)$ and $d(k)$ are positive and the diagonal
183term is greater than the sum of the two extra-diagonal terms, therefore a special
184adaptation of the Gauss elimination procedure is used to find the solution
185(see for example \citet{Richtmyer1967}).
186
187
188
189% -------------------------------------------------------------------------------------------------------------
190%        Hydrostatic Pressure gradient
191% -------------------------------------------------------------------------------------------------------------
192\section{Hydrostatic Pressure Gradient --- semi-implicit scheme}
193\label{STP_hpg_imp}
194
195%\gmcomment{
196%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
197\begin{figure}[!t] \label{Fig_TimeStep_flowchart}  \begin{center}
198\includegraphics[width=0.7\textwidth]{./TexFiles/Figures/Fig_TimeStepping_flowchart.pdf}
199\caption{Sketch of the leapfrog time stepping sequence in \NEMO from \citet{Leclair_Madec_OM09}.
200The use of a semi-implicit computation of the hydrostatic pressure gradient requires
201the tracer equation to be stepped forward prior to the momentum equation.
202The need for knowledge of the vertical scale factor (here denoted as $h$)
203requires the sea surface height and the continuity equation to be stepped forward
204prior to the computation of the tracer equation.
205Note that the method for the evaluation of the surface pressure gradient $\nabla p_s$ is not presented here
206(see \S~\ref{DYN_spg}). }
207\end{center}   \end{figure}
208%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
209%}
210
211The range of stability of the Leap-Frog scheme can be extended by a factor of two
212by introducing a semi-implicit computation of the hydrostatic pressure gradient term
213\citep{Brown_Campana_MWR78}. Instead of evaluating the pressure at $t$, a linear
214combination of values at $t-\rdt$, $t$ and $t+\rdt$ is used (see \S~\ref{DYN_hpg_imp}). 
215This technique, controlled by the \np{nn\_dynhpg\_rst} namelist parameter, does not
216introduce a significant additional computational cost when tracers and thus density
217is time stepped before the dynamics. This time step ordering is used in \NEMO 
218(Fig.\ref{Fig_TimeStep_flowchart}).
219
220
221This technique, used in several GCMs (\NEMO, POP or MOM for instance),
222makes the Leap-Frog scheme as efficient
223\footnote{The efficiency is defined as the maximum allowed Courant number of the time
224stepping scheme divided by the number of computations of the right-hand side per time step.} 
225as the Forward-Backward scheme used in MOM \citep{Griffies_al_OS05} and more
226efficient than the LF-AM3 scheme (leapfrog time stepping combined with a third order
227Adams-Moulthon interpolation for the predictor phase) used in ROMS
228\citep{Shchepetkin_McWilliams_OM05}.
229
230In fact, this technique is efficient when the physical phenomenon that
231limits the time-step is internal gravity waves (IGWs). Indeed, it is
232equivalent to applying a time filter to the pressure gradient to eliminate high
233frequency IGWs. Obviously, the doubling of the time-step is achievable only
234if no other factors control the time-step, such as the stability limits associated
235with advection, diffusion or Coriolis terms. For example, it is inefficient in low resolution
236global ocean configurations, since inertial oscillations in the vicinity of the North Pole
237are the limiting factor for the time step. It is also often inefficient in very high
238resolution configurations where strong currents and small grid cells exert
239the strongest constraint on the time step.
240
241% -------------------------------------------------------------------------------------------------------------
242%        The Modified Leapfrog -- Asselin Filter scheme
243% -------------------------------------------------------------------------------------------------------------
244\section{The Modified Leapfrog -- Asselin Filter scheme}
245\label{STP_mLF}
246
247Significant changes have been introduced by \cite{Leclair_Madec_OM09} in the
248LF-RA scheme in order to ensure tracer conservation and to allow the use of
249a much smaller value of the Asselin filter parameter. The modifications affect
250both the forcing and filtering treatments in the LF-RA scheme.
251
252In a classical LF-RA environment, the forcing term is centred in time, $i.e.$ 
253it is time-stepped over a $2\rdt$ period:  $x^t  = x^t + 2\rdt Q^t $ where $Q$ 
254is the forcing applied to $x$, and the time filter is given by \eqref{Eq_STP_asselin} 
255so that $Q$ is redistributed over several time step.
256In the modified LF-RA environment, these two formulations have been replaced by:
257\begin{align} 
258x^{t+\rdt}  &= x^{t-\rdt} + \rdt \left( Q^{t-\rdt/2} + Q^{t+\rdt/2} \right)                   \label{Eq_STP_forcing} \\
259%
260x_F^&= x^t + \gamma \, \left[ x_F^{t-\rdt} - 2 x^t + x^{t+\rdt} \right] 
261           - \gamma\,\rdt \, \left[ Q^{t+\rdt/2} -  Q^{t-\rdt/2} \right]                          \label{Eq_STP_RA}
262\end{align}
263The change in the forcing formulation given by \eqref{Eq_STP_forcing} 
264(see Fig.\ref{Fig_MLF_forcing}) has a significant effect: the forcing term no
265longer excites the divergence of odd and even time steps \citep{Leclair_Madec_OM09}.
266% forcing seen by the model....
267This property improves the LF-RA scheme in two respects.
268First, the LF-RA can now ensure the local and global conservation of tracers.
269Indeed, time filtering is no longer required on the forcing part. The influence of
270the Asselin filter on the forcing is be removed by adding a new term in the filter
271(last term in \eqref{Eq_STP_RA} compared to \eqref{Eq_STP_asselin}). Since
272the filtering of the forcing was the source of non-conservation in the classical
273LF-RA scheme, the modified formulation becomes conservative  \citep{Leclair_Madec_OM09}.
274Second, the LF-RA becomes a truly quasi-second order scheme. Indeed,
275\eqref{Eq_STP_forcing} used in combination with a careful treatment of static
276instability (\S\ref{ZDF_evd}) and of the TKE physics (\S\ref{ZDF_tke_ene}),
277the two other main sources of time step divergence, allows a reduction by
278two orders of magnitude of the Asselin filter parameter.
279
280Note that the forcing is now provided at the middle of a time step: $Q^{t+\rdt/2}$ 
281is the forcing applied over the $[t,t+\rdt]$ time interval. This and the change
282in the time filter, \eqref{Eq_STP_RA}, allows an exact evaluation of the
283contribution due to the forcing term between any two time steps,
284even if separated by only $\rdt$ since the time filter is no longer applied to the
285forcing term.
286
287%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
288\begin{figure}[!t] \label{Fig_MLF_forcing}  \begin{center}
289\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_MLF_forcing.pdf}
290\caption{Illustration of forcing integration methods.
291(top) ''Traditional'' formulation : the forcing is defined at the same time as the variable
292to which it is applied (integer value of the time step index) and it is applied over a $2\rdt$ period.
293(bottom)  modified formulation : the forcing is defined in the middle of the time (integer and a half
294value of the time step index) and the mean of two successive forcing values ($n-1/2$, $n+1/2$).
295is applied over a $2\rdt$ period.}
296\end{center}   \end{figure}
297%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
298
299% -------------------------------------------------------------------------------------------------------------
300%        Start/Restart strategy
301% -------------------------------------------------------------------------------------------------------------
302\section{Start/Restart strategy}
303\label{STP_rst}
304%--------------------------------------------namrun-------------------------------------------
305\namdisplay{namrun}         
306%--------------------------------------------------------------------------------------------------------------
307
308The first time step of this three level scheme when starting from initial conditions
309is a forward step (Euler time integration):
310\begin{equation} \label{Eq_DOM_euler}
311   x^1 = x^0 + \rdt \ \text{RHS}^0
312\end{equation}
313This is done simply by keeping the leapfrog environment ($i.e.$ the \eqref{Eq_STP} 
314three level time stepping) but setting all $x^0$ (\textit{before}) and $x^{1}$ (\textit{now}) fields
315equal at the first time step and using half the value of $\rdt$.
316
317It is also possible to restart from a previous computation, by using a
318restart file. The restart strategy is designed to ensure perfect
319restartability of the code: the user should obtain the same results to
320machine precision either by running the model for $2N$ time steps in one go,
321or by performing two consecutive experiments of $N$ steps with a restart.
322This requires saving two time levels and many auxiliary data in the restart
323files in machine precision.
324
325Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
326gradient (see \S\ref{DYN_hpg_imp}), an extra three-dimensional field has to be
327added to the restart file to ensure an exact restartability. This is done optionally
328via the  \np{nn\_dynhpg\_rst} namelist parameter, so that the size of the
329restart file can be reduced when restartability is not a key issue (operational
330oceanography or in ensemble simulations for seasonal forecasting).
331
332Note the size of the time step used, $\rdt$, is also saved in the restart file.
333When restarting, if the the time step has been changed, a restart using an Euler time
334stepping scheme is imposed.
335%%%
336\gmcomment{
337add here how to force the restart to contain only one time step for operational purposes
338
339add also the idea of writing several restart for seasonal forecast : how is it done ?
340
341verify that all namelist pararmeters are truly described
342
343a word on the check of restart  .....
344}
345%%%
346
347\gmcomment{       % add a subsection here 
348
349%-------------------------------------------------------------------------------------------------------------
350%        Time Domain
351% -------------------------------------------------------------------------------------------------------------
352\subsection{Time domain}
353\label{STP_time}
354%--------------------------------------------namrun-------------------------------------------
355\namdisplay{namdom}         
356%--------------------------------------------------------------------------------------------------------------
357
358
359 \colorbox{yellow}{add here a few word on nit000 and nitend}
360
361 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
362
363add a description of daymod, and the model calandar (leap-year and co)
364
365}        %% end add
366
367
368
369%%
370\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme   
371
372Implicit time stepping in case of variable volume thickness.
373
374Tracer case (NB for momentum in vector invariant form take care!)
375
376\begin{flalign*}
377&\frac{\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}}{2\rdt}
378\equiv \text{RHS}+ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
379\right]      \\
380&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
381\equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
382\right]      \\
383&\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}
384\equiv 2\rdt \ \text{RHS}
385+ 2\rdt \ \left\{ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} [ T_{k+1}^{t+1} - T_k      ^{t+1} ]
386                          - \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} [ T_k       ^{t+1} - T_{k-1}^{t+1} ]  \right\}     \\
387&\\
388&\left( e_{3t}\,T \right)_k^{t+1}
389{2\rdt} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}                  T_{k+1}^{t+1} 
390+ {2\rdt} \ \left\{  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
391                            +  \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}     \right\}   T_{k    }^{t+1}
392{2\rdt} \           \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                  T_{k-1}^{t+1}      \\
393&\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}    \\
394%
395\end{flalign*}
396
397\begin{flalign*}
398\allowdisplaybreaks
399\intertext{ Tracer case }
400%
401&  \qquad \qquad  \quad   -  {2\rdt}                  \ \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2}   
402                                                                                                      \qquad \qquad \qquad  \qquad  T_{k+1}^{t+1}   \\
403&+ {2\rdt} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k+1/2} 
404                                                                               +   \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
405& \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\rdt} \                          \left[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \right]_{k-1/2}                          \quad \ \ T_{k-1}^{t+1}     
406\ \equiv \ \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}  \\
407%
408\end{flalign*}
409\begin{flalign*}
410\allowdisplaybreaks
411\intertext{ Tracer content case }
412%
413& -  {2\rdt} \              & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_{k+1}^{t+1}}  && \  \left( e_{3t}\,T \right)_{k+1}^{t+1}   &\\
414& + {2\rdt} \ \left[ 1  \right.+ & \frac{(A_w^{vt})_{k+1/2}} {(e_{3w})_{k+1/2}^{t+1}\;(e_{3t})_k^{t+1}} 
415                                    + & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \left\right& \left( e_{3t}\,T \right)_{k   }^{t+1}  &\\
416& -  {2\rdt} \               & \frac{(A_w^{vt})_{k -1/2}} {(e_{3w})_{k -1/2}^{t+1}\;(e_{3t})_{k-1}^{t+1}}     &\  \left( e_{3t}\,T \right)_{k-1}^{t+1}   
417\equiv \left( e_{3t}\,T \right)_k^{t-1} + {2\rdt} \ \text{RHS}  &
418\end{flalign*}
419
420%%
421}
422%%
Note: See TracBrowser for help on using the repository browser.