New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_ZDF.tex in branches/nemo_v3_3_beta/DOC/TexFiles/Chapters – NEMO

source: branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_ZDF.tex @ 2282

Last change on this file since 2282 was 2282, checked in by gm, 14 years ago

ticket:#658 merge DOC of all the branches that form the v3.3 beta

  • Property svn:executable set to *
File size: 60.3 KB
Line 
1% ================================================================
2% Chapter Ñ Vertical Ocean Physics (ZDF)
3% ================================================================
4\chapter{Vertical Ocean Physics (ZDF)}
5\label{ZDF}
6\minitoc
7
8%gm% Add here a small introduction to ZDF and naming of the different physics (similar to what have been written for TRA and DYN.
9
10
11\newpage
12$\ $\newline    % force a new ligne
13
14
15% ================================================================
16% Vertical Mixing
17% ================================================================
18\section{Vertical Mixing}
19\label{ZDF_zdf}
20
21The discrete form of the ocean subgrid scale physics has been presented in
22\S\ref{TRA_zdf} and \S\ref{DYN_zdf}. At the surface and bottom boundaries,
23the turbulent fluxes of momentum, heat and salt have to be defined. At the
24surface they are prescribed from the surface forcing (see Chap.~\ref{SBC}),
25while at the bottom they are set to zero for heat and salt, unless a geothermal
26flux forcing is prescribed as a bottom boundary condition ($i.e.$ \key{trabbl} 
27defined, see \S\ref{TRA_bbc}), and specified through a bottom friction
28parameterisation for momentum (see \S\ref{ZDF_bfr}).
29
30In this section we briefly discuss the various choices offered to compute
31the vertical eddy viscosity and diffusivity coefficients, $A_u^{vm}$ ,
32$A_v^{vm}$ and $A^{vT}$ ($A^{vS}$), defined at $uw$-, $vw$- and $w$-
33points, respectively (see \S\ref{TRA_zdf} and \S\ref{DYN_zdf}). These
34coefficients can be assumed to be either constant, or a function of the local
35Richardson number, or computed from a turbulent closure model (either
36TKE or KPP formulation). The computation of these coefficients is initialized
37in the \mdl{zdfini} module and performed in the \mdl{zdfric}, \mdl{zdftke} or
38\mdl{zdfkpp} modules. The trends due to the vertical momentum and tracer
39diffusion, including the surface forcing, are computed and added to the
40general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively.
41These trends can be computed using either a forward time stepping scheme
42(namelist parameter \np{ln\_zdfexp}=true) or a backward time stepping
43scheme (\np{ln\_zdfexp}=false) depending on the magnitude of the mixing
44coefficients, and thus of the formulation used (see \S\ref{STP}).
45
46% -------------------------------------------------------------------------------------------------------------
47%        Constant
48% -------------------------------------------------------------------------------------------------------------
49\subsection{Constant (\key{zdfcst})}
50\label{ZDF_cst}
51%--------------------------------------------namzdf---------------------------------------------------------
52\namdisplay{namzdf}
53%--------------------------------------------------------------------------------------------------------------
54
55When \key{zdfcst} is defined, the momentum and tracer vertical eddy coefficients
56are set to constant values over the whole ocean. This is the crudest way to define
57the vertical ocean physics. It is recommended that this option is only used in
58process studies, not in basin scale simulations. Typical values used in this case are:
59\begin{align*} 
60A_u^{vm} = A_v^{vm} &= 1.2\ 10^{-4}~m^2.s^{-1}  \\
61A^{vT} = A^{vS} &= 1.2\ 10^{-5}~m^2.s^{-1}
62\end{align*}
63
64These values are set through the \np{rn\_avm0} and \np{rn\_avt0} namelist parameters.
65In all cases, do not use values smaller that those associated with the molecular
66viscosity and diffusivity, that is $\sim10^{-6}~m^2.s^{-1}$ for momentum,
67$\sim10^{-7}~m^2.s^{-1}$ for temperature and $\sim10^{-9}~m^2.s^{-1}$ for salinity.
68
69
70% -------------------------------------------------------------------------------------------------------------
71%        Richardson Number Dependent
72% -------------------------------------------------------------------------------------------------------------
73\subsection{Richardson Number Dependent (\key{zdfric})}
74\label{ZDF_ric}
75
76%--------------------------------------------namric---------------------------------------------------------
77\namdisplay{namzdf_ric}
78%--------------------------------------------------------------------------------------------------------------
79
80When \key{zdfric} is defined, a local Richardson number dependent formulation
81for the vertical momentum and tracer eddy coefficients is set. The vertical mixing
82coefficients are diagnosed from the large scale variables computed by the model.
83\textit{In situ} measurements have been used to link vertical turbulent activity to
84large scale ocean structures. The hypothesis of a mixing mainly maintained by the
85growth of Kelvin-Helmholtz like instabilities leads to a dependency between the
86vertical eddy coefficients and the local Richardson number ($i.e.$ the
87ratio of stratification to vertical shear). Following \citet{Pacanowski_Philander_JPO81}, the following
88formulation has been implemented:
89\begin{equation} \label{Eq_zdfric}
90   \left\{      \begin{aligned}
91         A^{vT} &= \frac {A_{ric}^{vT}}{\left( 1+a \; Ri \right)^n} + A_b^{vT}       \\
92         A^{vm} &= \frac{A^{vT}        }{\left( 1+ a \;Ri  \right)   } + A_b^{vm}
93   \end{aligned}    \right.
94\end{equation}
95where $Ri = N^2 / \left(\partial_z \textbf{U}_h \right)^2$ is the local Richardson
96number, $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}),
97$A_b^{vT} $ and $A_b^{vm}$ are the constant background values set as in the
98constant case (see \S\ref{ZDF_cst}), and $A_{ric}^{vT} = 10^{-4}~m^2.s^{-1}$ 
99is the maximum value that can be reached by the coefficient when $Ri\leq 0$,
100$a=5$ and $n=2$. The last three values can be modified by setting the
101\np{rn\_avmri}, \np{rn\_alp} and \np{nn\_ric} namelist parameters, respectively.
102
103% -------------------------------------------------------------------------------------------------------------
104%        TKE Turbulent Closure Scheme
105% -------------------------------------------------------------------------------------------------------------
106\subsection{TKE Turbulent Closure Scheme (\key{zdftke})}
107\label{ZDF_tke}
108
109%--------------------------------------------namzdf_tke--------------------------------------------------
110\namdisplay{namzdf_tke}
111%--------------------------------------------------------------------------------------------------------------
112
113The vertical eddy viscosity and diffusivity coefficients are computed from a TKE
114turbulent closure model based on a prognostic equation for $\bar{e}$, the turbulent
115kinetic energy, and a closure assumption for the turbulent length scales. This
116turbulent closure model has been developed by \citet{Bougeault1989} in the
117atmospheric case, adapted by \citet{Gaspar1990} for the oceanic case, and
118embedded in OPA, the ancestor of NEMO, by \citet{Blanke1993} for equatorial Atlantic
119simulations. Since then, significant modifications have been introduced by
120\citet{Madec1998} in both the implementation and the formulation of the mixing
121length scale. The time evolution of $\bar{e}$ is the result of the production of
122$\bar{e}$ through vertical shear, its destruction through stratification, its vertical
123diffusion, and its dissipation of \citet{Kolmogorov1942} type:
124\begin{equation} \label{Eq_zdftke_e}
125\frac{\partial \bar{e}}{\partial t} =
126\frac{K_m}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2
127                    +\left( {\frac{\partial v}{\partial k}} \right)^2} \right]
128-K_\rho\,N^2
129+\frac{1}{e_3} \;\frac{\partial }{\partial k}\left[ {\frac{A^{vm}}{e_3 }
130            \;\frac{\partial \bar{e}}{\partial k}} \right]
131- c_\epsilon \;\frac{\bar {e}^{3/2}}{l_\epsilon }
132\end{equation}
133\begin{equation} \label{Eq_zdftke_kz}
134   \begin{split}
135         K_m &= C_k\  l_k\  \sqrt {\bar{e}\; }     \\
136         K_\rho &= A^{vm} / P_{rt}
137   \end{split}
138\end{equation}
139where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}),
140$l_{\epsilon }$ and $l_{\kappa }$ are the dissipation and mixing length scales,
141$P_{rt}$ is the Prandtl number, $K_m$ and $K_\rho$ are the vertical eddy viscosity
142and diffusivity coefficients. The constants $C_k =  0.1$ and $C_\epsilon = \sqrt {2} /2$ 
143$\approx 0.7$ are designed to deal with vertical mixing at any depth \citep{Gaspar1990}.
144They are set through namelist parameters \np{nn\_ediff} and \np{nn\_ediss}.
145$P_{rt}$ can be set to unity or, following \citet{Blanke1993}, be a function
146of the local Richardson number, $R_i$:
147\begin{align*} \label{Eq_prt}
148P_{rt} = \begin{cases}
149                    \ \ \ 1 &      \text{if $\ R_i \leq 0.2$}  \\
150                    5\,R_i &      \text{if $\ 0.2 \leq R_i \leq 2$}  \\
151                    \ \ 10 &      \text{if $\ 2 \leq R_i$} 
152            \end{cases}
153\end{align*}
154The choice of $P_{rt}$ is controlled by the \np{nn\_pdl} namelist parameter.
155
156For computational efficiency, the original formulation of the turbulent length
157scales proposed by \citet{Gaspar1990} has been simplified. Four formulations
158are proposed, the choice of which is controlled by the \np{nn\_mxl} namelist
159parameter. The first two are based on the following first order approximation
160\citep{Blanke1993}:
161\begin{equation} \label{Eq_tke_mxl0_1}
162l_k = l_\epsilon = \sqrt {2 \bar{e}\; } / N
163\end{equation}
164which is valid in a stable stratified region with constant values of the Brunt-
165Vais\"{a}l\"{a} frequency. The resulting length scale is bounded by the distance
166to the surface or to the bottom (\np{nn\_mxl} = 0) or by the local vertical scale factor
167(\np{nn\_mxl} = 1). \citet{Blanke1993} notice that this simplification has two major
168drawbacks: it makes no sense for locally unstable stratification and the
169computation no longer uses all the information contained in the vertical density
170profile. To overcome these drawbacks, \citet{Madec1998} introduces the
171\np{nn\_mxl} = 2 or 3 cases, which add an extra assumption concerning the vertical
172gradient of the computed length scale. So, the length scales are first evaluated
173as in \eqref{Eq_tke_mxl0_1} and then bounded such that:
174\begin{equation} \label{Eq_tke_mxl_constraint}
175\frac{1}{e_3 }\left| {\frac{\partial l}{\partial k}} \right| \leq 1
176\qquad \text{with }\  l =  l_k = l_\epsilon
177\end{equation}
178\eqref{Eq_tke_mxl_constraint} means that the vertical variations of the length
179scale cannot be larger than the variations of depth. It provides a better
180approximation of the \citet{Gaspar1990} formulation while being much less
181time consuming. In particular, it allows the length scale to be limited not only
182by the distance to the surface or to the ocean bottom but also by the distance
183to a strongly stratified portion of the water column such as the thermocline
184(Fig.~\ref{Fig_mixing_length}). In order to impose the \eqref{Eq_tke_mxl_constraint} 
185constraint, we introduce two additional length scales: $l_{up}$ and $l_{dwn}$,
186the upward and downward length scales, and evaluate the dissipation and
187mixing length scales as (and note that here we use numerical indexing):
188%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
189\begin{figure}[!t] \label{Fig_mixing_length}  \begin{center}
190\includegraphics[width=1.00\textwidth]{./TexFiles/Figures/Fig_mixing_length.pdf}
191\caption {Illustration of the mixing length computation. }
192\end{center} 
193\end{figure}
194%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
195\begin{equation} \label{Eq_tke_mxl2}
196\begin{aligned}
197 l_{up\ \ }^{(k)} &= \min \left(  l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3t}^{(k)}\ \ \ \;  \right)
198    \quad &\text{ from $k=1$ to $jpk$ }\ \\
199 l_{dwn}^{(k)} &= \min \left(  l^{(k)} \ , \ l_{dwn}^{(k-1)} + e_{3t}^{(k-1)}  \right)   
200    \quad &\text{ from $k=jpk$ to $1$ }\ \\
201\end{aligned}
202\end{equation}
203where $l^{(k)}$ is computed using \eqref{Eq_tke_mxl0_1},
204$i.e.$ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$.
205
206In the \np{nn\_mxl}=2 case, the dissipation and mixing length scales take the same
207value: $ l_k=  l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)$, while in the
208\np{nn\_mxl}=2 case, the dissipation and mixing turbulent length scales are give
209as in \citet{Gaspar1990}:
210\begin{equation} \label{Eq_tke_mxl_gaspar}
211\begin{aligned}
212& l_k          = \sqrt{\  l_{up} \ \ l_{dwn}\ }    \\
213& l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)
214\end{aligned}
215\end{equation}
216
217At the sea surface the value of $\bar{e}$ is prescribed from the wind
218stress field: $\bar{e}=rn\_ebb\;\left| \tau \right|$ (\np{rn\_ebb}=60 by default)
219with a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist
220parameters). Its value at the bottom of the ocean is assumed to be
221equal to the value of the level just above. The time integration of the
222$\bar{e}$ equation may formally lead to negative values because the
223numerical scheme does not ensure its positivity. To overcome this
224problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn\_emin} 
225namelist parameter). Following \citet{Gaspar1990}, the cut-off value is set
226to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. This allows the subsequent formulations
227to match that of \citet{Gargett1984} for the diffusion in the thermocline and
228deep ocean :  $K_\rho = 10^{-3} / N$.
229In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical
230instabilities associated with too weak vertical diffusion. They must be
231specified at least larger than the molecular values, and are set through
232\np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \S\ref{ZDF_cst}).
233
234% -------------------------------------------------------------------------------------------------------------
235%        TKE Turbulent Closure Scheme : new organization to energetic considerations
236% -------------------------------------------------------------------------------------------------------------
237\subsection{TKE discretization considerations (\key{zdftke})}
238\label{ZDF_tke_ene}
239
240%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
241\begin{figure}[!t] \label{Fig_TKE_time_scheme}  \begin{center}
242\includegraphics[width=1.00\textwidth]{./TexFiles/Figures/Fig_ZDF_TKE_time_scheme.pdf}
243\caption {Illustration of the TKE time integration and its links to the momentum and tracer time integration. }
244\end{center} 
245\end{figure}
246%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
247
248The production of turbulence by vertical shear (the first term of the right hand side
249of \eqref{Eq_zdftke_e}) should balance the loss of kinetic energy associated with
250the vertical momentum diffusion (first line in \eqref{Eq_PE_zdf}). To do so a special care
251have to be taken for both the time and space discretization of the TKE equation \citep{Burchard_OM02}.
252
253Let us first address the time stepping issue. Fig.~\ref{Fig_TKE_time_scheme} shows
254how the two-level Leap-Frog time stepping of the momentum and tracer equations interplays
255with the one-level forward time stepping of TKE equation. With this framework, the total loss
256of kinetic energy (in 1D for the demonstration) due to the vertical momentum diffusion is
257obtained by multiplying this quantity by $u^t$ and summing the result vertically:   
258\begin{equation} \label{Eq_energ1}
259\begin{split}
260\int_{-H}^{\eta}  u^t \,\partial_z &\left( {K_m}^t \,(\partial_z u)^{t+\rdt}  \right) \,dz   \\
261&= \Bigl[  u^t \,{K_m}^t \,(\partial_z u)^{t+\rdt} \Bigr]_{-H}^{\eta}         
262 - \int_{-H}^{\eta}{ {K_m}^t \,\partial_z{u^t} \,\partial_z u^{t+\rdt} \,dz }
263\end{split}
264\end{equation}
265Here, the vertical diffusion of momentum is discretized backward in time
266with a coefficient, $K_m$, known at time $t$ (Fig.~\ref{Fig_TKE_time_scheme}),
267as it is required when using the TKE scheme (see \S\ref{STP_forward_imp}).
268The first term of the right hand side of \eqref{Eq_energ1} represents the kinetic energy
269transfer at the surface (atmospheric forcing) and at the bottom (friction effect).
270The second term is always negative. It is the dissipation rate of kinetic energy,
271and thus minus the shear production rate of $\bar{e}$. \eqref{Eq_energ1} 
272implies that, to be energetically consistent, the production rate of $\bar{e}$ 
273used to compute $(\bar{e})^t$ (and thus ${K_m}^t$) should be expressed as
274${K_m}^{t-\rdt}\,(\partial_z u)^{t-\rdt} \,(\partial_z u)^t$ (and not by the more straightforward
275$K_m \left( \partial_z u \right)^2$ expression taken at time $t$ or $t-\rdt$).
276
277A similar consideration applies on the destruction rate of $\bar{e}$ due to stratification
278(second term of the right hand side of \eqref{Eq_zdftke_e}). This term
279must balance the input of potential energy resulting from vertical mixing.
280The rate of change of potential energy (in 1D for the demonstration) due vertical
281mixing is obtained by multiplying vertical density diffusion
282tendency by $g\,z$ and and summing the result vertically:
283\begin{equation} \label{Eq_energ2}
284\begin{split}
285\int_{-H}^{\eta} g\,z\,\partial_z &\left( {K_\rho}^t \,(\partial_k \rho)^{t+\rdt}   \right) \,dz    \\
286&= \Bigl[  g\,z \,{K_\rho}^t \,(\partial_z \rho)^{t+\rdt} \Bigr]_{-H}^{\eta} 
287   - \int_{-H}^{\eta}{ g \,{K_\rho}^t \,(\partial_k \rho)^{t+\rdt} } \,dz   \\
288&= - \Bigl[  z\,{K_\rho}^t \,(N^2)^{t+\rdt} \Bigr]_{-H}^{\eta}
289+ \int_{-H}^{\eta}{  \rho^{t+\rdt} \, {K_\rho}^t \,(N^2)^{t+\rdt} \,dz  }
290\end{split}
291\end{equation}
292where we use $N^2 = -g \,\partial_k \rho / (e_3 \rho)$.
293The first term of the right hand side of \eqref{Eq_energ2}  is always zero
294because there is no diffusive flux through the ocean surface and bottom).
295The second term is minus the destruction rate of  $\bar{e}$ due to stratification.
296Therefore \eqref{Eq_energ1} implies that, to be energetically consistent, the product
297${K_\rho}^{t-\rdt}\,(N^2)^t$ should be used in \eqref{Eq_zdftke_e}, the TKE equation.
298
299Let us now address the space discretization issue.
300The vertical eddy coefficients are defined at $w$-point whereas the horizontal velocity
301components are in the centre of the side faces of a $t$-box in staggered C-grid
302(Fig.\ref{Fig_cell}). A space averaging is thus required to obtain the shear TKE production term.
303By redoing the \eqref{Eq_energ1} in the 3D case, it can be shown that the product of
304eddy coefficient by the shear at $t$ and $t-\rdt$ must be performed prior to the averaging.
305Furthermore, the possible time variation of $e_3$ (\key{vvl} case) have to be taken into
306account.
307
308The above energetic considerations leads to
309the following final discrete form for the TKE equation:
310\begin{equation} \label{Eq_zdftke_ene}
311\begin{split}
312\frac { (\bar{e})^t - (\bar{e})^{t-\rdt} } {\rdt}  \equiv 
313\Biggl\{ \Biggr.
314  &\overline{ \left( \left(\overline{K_m}^{\,i+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[u^{t+\rdt}]}{{e_3u}^{t+\rdt} } 
315                                                                              \ \frac{\delta_{k+1/2}[u^ t         ]}{{e_3u}^ t          }  \right) }^{\,i} \\
316+&\overline{  \left( \left(\overline{K_m}^{\,j+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[v^{t+\rdt}]}{{e_3v}^{t+\rdt} } 
317                                                                               \ \frac{\delta_{k+1/2}[v^ t         ]}{{e_3v}^ t          }  \right) }^{\,j} 
318\Biggr. \Biggr\}   \\
319%
320- &{K_\rho}^{t-\rdt}\,{(N^2)^t}    \\
321%
322+&\frac{1}{{e_3w}^{t+\rdt}}  \;\delta_{k+1/2} \left[   {K_m}^{t-\rdt} \,\frac{\delta_{k}[(\bar{e})^{t+\rdt}]} {{e_3w}^{t+\rdt}}   \right]   \\
323%
324- &c_\epsilon \; \left( \frac{\sqrt{\bar {e}}}{l_\epsilon}\right)^{t-\rdt}\,(\bar {e})^{t+\rdt}
325\end{split}
326\end{equation}
327where the last two terms in \eqref{Eq_zdftke_ene} (vertical diffusion and Kolmogorov dissipation)
328are time stepped using a backward scheme (see\S\ref{STP_forward_imp}).
329Note that the Kolmogorov term has been linearized in time in order to render
330the implicit computation possible. The restart of the TKE scheme
331requires the storage of $\bar {e}$, $K_m$, $K_\rho$ and $l_\epsilon$ as they all appear in
332the right hand side of \eqref{Eq_zdftke_ene}. For the latter, it is in fact
333the ratio $\sqrt{\bar{e}}/l_\epsilon$ which is stored.
334
335% -------------------------------------------------------------------------------------------------------------
336%        GLS Generic Length Scale Scheme
337% -------------------------------------------------------------------------------------------------------------
338\subsection{GLS Generic Length Scale (\key{zdfgls})}
339\label{ZDF_gls}
340
341%--------------------------------------------namgls---------------------------------------------------------
342\namdisplay{namgls}
343%--------------------------------------------------------------------------------------------------------------
344
345The Generic Length Scale (GLS) scheme is a turbulent closure scheme based on
346two prognostic equations: one for the turbulent kinetic energy $\bar {e}$, and another
347for the generic length scale, $\psi$ \citep{Umlauf_Burchard_JMS03, Umlauf_Burchard_CSR05}.
348This later variable is defined as : $\psi = {C_{0\mu}}^{p} \ {\bar{e}}^{m} \ l^{n}$,
349where the triplet $(p, m, n)$ value given in Tab.\ref{Tab_GLS} allows to recover
350a number of well-known turbulent closures ($k$-$kl$ \citep{Mellor_Yamada_1982},
351$k$-$\epsilon$ \citep{Rodi_1987}, $k$-$\omega$ \citep{Wilcox_1988} 
352among others \citep{Umlauf_Burchard_JMS03,Kantha_Carniel_CSR05}).
353The GLS scheme is given by the following set of equations:
354\begin{equation} \label{Eq_zdfgls_e}
355\frac{\partial \bar{e}}{\partial t} =
356\frac{K_m}{\sigma_e e_3 }\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
357                                                   +\left( \frac{\partial v}{\partial k} \right)^2} \right]
358-K_\rho \,N^2
359+\frac{1}{e_3}\,\frac{\partial}{\partial k} \left[ \frac{K_m}{e_3}\,\frac{\partial \bar{e}}{\partial k} \right]
360- \epsilon
361\end{equation}
362
363\begin{equation} \label{Eq_zdfgls_psi}
364   \begin{split}
365\frac{\partial \psi}{\partial t} =& \frac{\psi}{\bar{e}} \left\{
366\frac{C_1\,K_m}{\sigma_{\psi} {e_3}}\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
367                                                                   +\left( \frac{\partial v}{\partial k} \right)^2} \right]
368- C_3 \,K_\rho\,N^2   - C_2 \,\epsilon \,Fw   \right\}             \\
369&+\frac{1}{e_3}  \;\frac{\partial }{\partial k}\left[ {\frac{K_m}{e_3 }
370                                  \;\frac{\partial \psi}{\partial k}} \right]\;
371   \end{split}
372\end{equation}
373
374\begin{equation} \label{Eq_zdfgls_kz}
375   \begin{split}
376         K_m    &= C_{\mu} \ \sqrt {\bar{e}} \ l         \\
377         K_\rho &= C_{\mu'}\ \sqrt {\bar{e}} \ l
378   \end{split}
379\end{equation}
380
381\begin{equation} \label{Eq_zdfgls_eps}
382{\epsilon} = C_{0\mu} \,\frac{\bar {e}^{3/2}}{l} \;
383\end{equation}
384where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2})
385and $\epsilon$ the dissipation rate.
386The constants $C_1$, $C_2$, $C_3$, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function ($Fw$)
387depends of the choice of the turbulence model. Four different turbulent models are pre-defined
388(Tab.\ref{Tab_GLS}). They are made available through th \np{gls} namelist parameter.
389
390%--------------------------------------------------TABLE--------------------------------------------------
391\begin{table}[htbp]  \label{Tab_GLS}
392\begin{center}
393%\begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c}
394\begin{tabular}{ccccc}
395                         &   $k-kl$   & $k-\epsilon$ & $k-\omega$ &   generic   \\ 
396%                        & \citep{Mellor_Yamada_1982} &  \citep{Rodi_1987}       & \citep{Wilcox_1988} &                 \\ 
397\hline  \hline 
398\np{nn\_clo}     & \textbf{0} &   \textbf{1}  &   \textbf{2}   &    \textbf{3}   \\ 
399\hline 
400$( p , n , m )$          &   ( 0 , 1 , 1 )   & ( 3 , 1.5 , -1 )   & ( -1 , 0.5 , -1 )    &  ( 2 , 1 , -0.67 )  \\
401$\sigma_k$      &    2.44         &     1.              &      2.                &      0.8          \\
402$\sigma_\psi$  &    2.44         &     1.3            &      2.                 &       1.07       \\
403$C_1$              &      0.9         &     1.44          &      0.555          &       1.           \\
404$C_2$              &      0.5         &     1.92          &      0.833          &       1.22       \\
405$C_3$              &      1.           &     1.              &      1.                &       1.           \\
406$F_{wall}$        &      Yes        &       --             &     --                  &      --          \\
407\hline
408\hline
409\end{tabular}
410\caption {Set of predefined GLS parameters, or equivalently predefined turbulence models available with \key{gls} and controlled by the \np{nn\_clos} namelist parameter.}
411\end{center}
412\end{table}
413%--------------------------------------------------------------------------------------------------------------
414
415In the Mellor-Yamada model, the negativity of $n$ allows to use a wall function to force
416the convergence of the mixing length towards $K\,z_b$ ($K$: Kappa and $z_b$: rugosity length)
417value near physical boundaries (logarithmic boundary layer law). $C_{\mu}$ and $C_{\mu'}$ 
418are calculated from stability function proposed by \citet{Galperin_al_JAS88}, or by \citet{Kantha_Clayson_1994} 
419or one of the two functions suggested by \citet{Canuto_2001}  (\np{nn\_stab\_func} = 0, 1, 2 or 3, resp.}). The value of $C_{0\mu}$ depends of the choice of the stability function.
420
421The surface and bottom boundary condition on both $\bar{e}$ and $\psi$ can be calculated
422thanks to Dirichlet or Neumann condition through \np{nn\_tkebc\_surf} and \np{nn\_tkebc\_bot}, resp.
423The wave effect on the mixing could be also being considered \citep{Craig_Banner_1994}.
424
425The $\psi$ equation is known to fail in stably stratified flows, and for this reason
426almost all authors apply a clipping of the length scale as an \textit{ad hoc} remedy.
427With this clipping, the maximum permissible length scale is determined by
428$l_{max} = c_{lim} \sqrt{2\bar{e}}/ N$. A value of $c_{lim} = 0.53$ is often used
429\citep{Galperin_al_JAS88}. \cite{Umlauf_Burchard_CSR05} show that the value of
430the clipping factor is of crucial importance for the entrainment depth predicted in
431stably stratified situations, and that its value has to be chosen in accordance
432with the algebraic model for the turbulent ßuxes. The clipping is only activated
433if \np{ln\_length\_lim}=true, and the $c_{lim}$ is set to the \np{clim\_galp} value.
434
435% -------------------------------------------------------------------------------------------------------------
436%        K Profile Parametrisation (KPP)
437% -------------------------------------------------------------------------------------------------------------
438\subsection{K Profile Parametrisation (KPP) (\key{zdfkpp}) }
439\label{ZDF_kpp}
440
441%--------------------------------------------namkpp--------------------------------------------------------
442\namdisplay{namzdf_kpp}
443%--------------------------------------------------------------------------------------------------------------
444
445The KKP scheme has been implemented by J. Chanut ...
446
447\colorbox{yellow}{Add a description of KPP here.}
448
449
450% ================================================================
451% Convection
452% ================================================================
453\section{Convection}
454\label{ZDF_conv}
455
456%--------------------------------------------namzdf--------------------------------------------------------
457\namdisplay{namzdf}
458%--------------------------------------------------------------------------------------------------------------
459
460Static instabilities (i.e. light potential densities under heavy ones) may
461occur at particular ocean grid points. In nature, convective processes
462quickly re-establish the static stability of the water column. These
463processes have been removed from the model via the hydrostatic
464assumption so they must be parameterized. Three parameterisations
465are available to deal with convective processes: a non-penetrative
466convective adjustment or an enhanced vertical diffusion, or/and the
467use of a turbulent closure scheme.
468
469% -------------------------------------------------------------------------------------------------------------
470%       Non-Penetrative Convective Adjustment
471% -------------------------------------------------------------------------------------------------------------
472\subsection   [Non-Penetrative Convective Adjustment (\np{ln\_tranpc}) ]
473         {Non-Penetrative Convective Adjustment (\np{ln\_tranpc}=.true.) }
474\label{ZDF_npc}
475
476%--------------------------------------------namzdf--------------------------------------------------------
477\namdisplay{namzdf}
478%--------------------------------------------------------------------------------------------------------------
479
480%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
481\begin{figure}[!htb] \label{Fig_npc}   \begin{center}
482\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_npc.pdf}
483\caption {Example of an unstable density profile treated by the non penetrative
484convective adjustment algorithm. $1^{st}$ step: the initial profile is checked from
485the surface to the bottom. It is found to be unstable between levels 3 and 4.
486They are mixed. The resulting $\rho$ is still larger than $\rho$(5): levels 3 to 5
487are mixed. The resulting $\rho$ is still larger than $\rho$(6): levels 3 to 6 are
488mixed. The $1^{st}$ step ends since the density profile is then stable below
489the level 3. $2^{nd}$ step: the new $\rho$ profile is checked following the same
490procedure as in $1^{st}$ step: levels 2 to 5 are mixed. The new density profile
491is checked. It is found stable: end of algorithm.}
492\end{center}   \end{figure}
493%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
494
495The non-penetrative convective adjustment is used when \np{ln\_zdfnpc}=true.
496It is applied at each \np{nn\_npc} time step and mixes downwards instantaneously
497the statically unstable portion of the water column, but only until the density
498structure becomes neutrally stable ($i.e.$ until the mixed portion of the water
499column has \textit{exactly} the density of the water just below) \citep{Madec_al_JPO91}.
500The associated algorithm is an iterative process used in the following way
501(Fig. \ref{Fig_npc}): starting from the top of the ocean, the first instability is
502found. Assume in the following that the instability is located between levels
503$k$ and $k+1$. The potential temperature and salinity in the two levels are
504vertically mixed, conserving the heat and salt contents of the water column.
505The new density is then computed by a linear approximation. If the new
506density profile is still unstable between levels $k+1$ and $k+2$, levels $k$,
507$k+1$ and $k+2$ are then mixed. This process is repeated until stability is
508established below the level $k$ (the mixing process can go down to the
509ocean bottom). The algorithm is repeated to check if the density profile
510between level $k-1$ and $k$ is unstable and/or if there is no deeper instability.
511
512This algorithm is significantly different from mixing statically unstable levels
513two by two. The latter procedure cannot converge with a finite number
514of iterations for some vertical profiles while the algorithm used in \NEMO 
515converges for any profile in a number of iterations which is less than the
516number of vertical levels. This property is of paramount importance as
517pointed out by \citet{Killworth1989}: it avoids the existence of permanent
518and unrealistic static instabilities at the sea surface. This non-penetrative
519convective algorithm has been proved successful in studies of the deep
520water formation in the north-western Mediterranean Sea
521\citep{Madec_al_JPO91, Madec_al_DAO91, Madec_Crepon_Bk91}.
522
523Note that in the current implementation of this algorithm presents several
524limitations. First, potential density referenced to the sea surface is used to
525check whether the density profile is stable or not. This is a strong
526simplification which leads to large errors for realistic ocean simulations.
527Indeed, many water masses of the world ocean, especially Antarctic Bottom
528Water, are unstable when represented in surface-referenced potential density.
529The scheme will erroneously mix them up. Second, the mixing of potential
530density is assumed to be linear. This assures the convergence of the algorithm
531even when the equation of state is non-linear. Small static instabilities can thus
532persist due to cabbeling: they will be treated at the next time step.
533Third, temperature and salinity, and thus density, are mixed, but the
534corresponding velocity fields remain unchanged. When using a Richardson
535Number dependent eddy viscosity, the mixing of momentum is done through
536the vertical diffusion: after a static adjustment, the Richardson Number is zero
537and thus the eddy viscosity coefficient is at a maximum. When this convective
538adjustment algorithm is used with constant vertical eddy viscosity, spurious
539solutions can occur since the vertical momentum diffusion remains small even
540after a static adjustment. In that case, we recommend the addition of momentum
541mixing in a manner that mimics the mixing in temperature and salinity
542\citep{Speich_PhD92, Speich_al_JPO96}.
543
544% -------------------------------------------------------------------------------------------------------------
545%       Enhanced Vertical Diffusion
546% -------------------------------------------------------------------------------------------------------------
547\subsection   [Enhanced Vertical Diffusion (\np{ln\_zdfevd})]
548         {Enhanced Vertical Diffusion (\np{ln\_zdfevd}=true)}
549\label{ZDF_evd}
550
551%--------------------------------------------namzdf--------------------------------------------------------
552\namdisplay{namzdf}
553%--------------------------------------------------------------------------------------------------------------
554
555The enhanced vertical diffusion parameterisation is used when \np{ln\_zdfevd}=true.
556In this case, the vertical eddy mixing coefficients are assigned very large values
557(a typical value is $10\;m^2s^{-1})$ in regions where the stratification is unstable
558($i.e.$ when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative)
559\citep{Lazar_PhD97, Lazar_al_JPO99}. This is done either on tracers only
560(\np{nn\_evdm}=0) or on both momentum and tracers (\np{nn\_evdm}=1).
561
562In practice, where $N^2\leq 10^{-12}$, $A_T^{vT}$ and $A_T^{vS}$, and
563if \np{nn\_evdm}=1, the four neighbouring $A_u^{vm} \;\mbox{and}\;A_v^{vm}$ 
564values also, are set equal to the namelist parameter \np{rn\_avevd}. A typical value
565for $rn\_avevd$ is between 1 and $100~m^2.s^{-1}$. This parameterisation of
566convective processes is less time consuming than the convective adjustment
567algorithm presented above when mixing both tracers and momentum in the
568case of static instabilities. It requires the use of an implicit time stepping on
569vertical diffusion terms (i.e. \np{ln\_zdfexp}=false).
570
571Note that the stability test is performed on both \textit{before} and \textit{now} 
572values of $N^2$. This removes a potential source of divergence of odd and
573even time step in a leapfrog environment \citep{Leclair_PhD2010} (see \S\ref{STP_mLF}).
574
575% -------------------------------------------------------------------------------------------------------------
576%       Turbulent Closure Scheme
577% -------------------------------------------------------------------------------------------------------------
578\subsection{Turbulent Closure Scheme (\key{zdftke})}
579\label{ZDF_tcs}
580
581The TKE turbulent closure scheme presented in \S\ref{ZDF_tke} and used
582when the \key{zdftke} is defined, in theory solves the problem of statically
583unstable density profiles. In such a case, the term corresponding to the
584destruction of turbulent kinetic energy through stratification in \eqref{Eq_zdftke_e} 
585becomes a source term, since $N^2$ is negative. It results in large values of
586$A_T^{vT}$ and  $A_T^{vT}$, and also the four neighbouring
587$A_u^{vm} {and}\;A_v^{vm}$ (up to $1\;m^2s^{-1})$. These large values
588restore the static stability of the water column in a way similar to that of the
589enhanced vertical diffusion parameterisation (\S\ref{ZDF_evd}). However,
590in the vicinity of the sea surface (first ocean layer), the eddy coefficients
591computed by the turbulent closure scheme do not usually exceed $10^{-2}m.s^{-1}$,
592because the mixing length scale is bounded by the distance to the sea surface
593(see \S\ref{ZDF_tke}). It can thus be useful to combine the enhanced vertical
594diffusion with the turbulent closure scheme, $i.e.$ setting the \np{ln\_zdfnpc} 
595namelist parameter to true and defining the \key{zdftke} CPP key all together.
596
597The KPP turbulent closure scheme already includes enhanced vertical diffusion
598in the case of convection, as governed by the variables $bvsqcon$ and $difcon$ 
599found in \mdl{zdfkpp}, therefore \np{ln\_zdfevd}=false should be used with the KPP
600scheme. %gm%  + one word on non local flux with KPP scheme trakpp.F90 module...
601
602% ================================================================
603% Double Diffusion Mixing
604% ================================================================
605\section  [Double Diffusion Mixing (\textit{zdfddm} - \key{zdfddm})]
606      {Double Diffusion Mixing (\mdl{zdfddm} module - \key{zdfddm})}
607\label{ZDF_ddm}
608
609%-------------------------------------------namzdf_ddm-------------------------------------------------
610\namdisplay{namzdf_ddm}
611%--------------------------------------------------------------------------------------------------------------
612
613Double diffusion occurs when relatively warm, salty water overlies cooler, fresher
614water, or vice versa. The former condition leads to salt fingering and the latter
615to diffusive convection. Double-diffusive phenomena contribute to diapycnal
616mixing in extensive regions of the ocean.  \citet{Merryfield1999} include a
617parameterisation of such phenomena in a global ocean model and show that
618it leads to relatively minor changes in circulation but exerts significant regional
619influences on temperature and salinity.
620
621Diapycnal mixing of S and T are described by diapycnal diffusion coefficients
622\begin{align*} % \label{Eq_zdfddm_Kz}
623    &A^{vT} = A_o^{vT}+A_f^{vT}+A_d^{vT}  \\
624    &A^{vS} = A_o^{vS}+A_f^{vS}+A_d^{vS}
625\end{align*}
626where subscript $f$ represents mixing by salt fingering, $d$ by diffusive convection,
627and $o$ by processes other than double diffusion. The rates of double-diffusive mixing depend on the buoyancy ratio $R_\rho = \alpha \partial_z T / \beta \partial_z S$,
628where $\alpha$ and $\beta$ are coefficients of thermal expansion and saline
629contraction (see \S\ref{TRA_eos}). To represent mixing of $S$ and $T$ by salt
630fingering, we adopt the diapycnal diffusivities suggested by Schmitt (1981):
631\begin{align} \label{Eq_zdfddm_f}
632A_f^{vS} &=    \begin{cases}
633   \frac{A^{\ast v}}{1+(R_\rho / R_c)^n   } &\text{if  $R_\rho > 1$ and $N^2>0$ } \\
634   0                              &\text{otherwise} 
635            \end{cases}   
636\\           \label{Eq_zdfddm_f_T}
637A_f^{vT} &= 0.7 \ A_f^{vS} / R_\rho 
638\end{align}
639
640%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
641\begin{figure}[!t] \label{Fig_zdfddm}  \begin{center}
642\includegraphics[width=0.99\textwidth]{./TexFiles/Figures/Fig_zdfddm.pdf}
643\caption {From \citet{Merryfield1999} : (a) Diapycnal diffusivities $A_f^{vT}$ 
644and $A_f^{vS}$ for temperature and salt in regions of salt fingering. Heavy
645curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and thin curves
646$A^{\ast v} = 10^{-4}~m^2.s^{-1}$ ; (b) diapycnal diffusivities $A_d^{vT}$ and
647$A_d^{vS}$ for temperature and salt in regions of diffusive convection. Heavy
648curves denote the Federov parameterisation and thin curves the Kelley
649parameterisation. The latter is not implemented in \NEMO. }
650\end{center}    \end{figure}
651%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
652
653The factor 0.7 in \eqref{Eq_zdfddm_f_T} reflects the measured ratio
654$\alpha F_T /\beta F_S \approx  0.7$ of buoyancy flux of heat to buoyancy
655flux of salt ($e.g.$, \citet{McDougall_Taylor_JMR84}). Following  \citet{Merryfield1999},
656we adopt $R_c = 1.6$, $n = 6$, and $A^{\ast v} = 10^{-4}~m^2.s^{-1}$.
657
658To represent mixing of S and T by diffusive layering,  the diapycnal diffusivities suggested by Federov (1988) is used:
659\begin{align}  \label{Eq_zdfddm_d}
660A_d^{vT} &=    \begin{cases}
661   1.3635 \, \exp{\left( 4.6\, \exp{ \left[  -0.54\,( R_{\rho}^{-1} - 1 )  \right] }    \right)}
662                           &\text{if  $0<R_\rho < 1$ and $N^2>0$ } \\
663   0                       &\text{otherwise} 
664            \end{cases}   
665\\          \label{Eq_zdfddm_d_S}
666A_d^{vS} &=    \begin{cases}
667   A_d^{vT}\ \left( 1.85\,R_{\rho} - 0.85 \right)
668                           &\text{if  $0.5 \leq R_\rho<1$ and $N^2>0$ } \\
669   A_d^{vT} \ 0.15 \ R_\rho
670                           &\text{if  $\ \ 0 < R_\rho<0.5$ and $N^2>0$ } \\
671   0                       &\text{otherwise} 
672            \end{cases}   
673\end{align}
674
675The dependencies of \eqref{Eq_zdfddm_f} to \eqref{Eq_zdfddm_d_S} on $R_\rho$ 
676are illustrated in Fig.~\ref{Fig_zdfddm}. Implementing this requires computing
677$R_\rho$ at each grid point on every time step. This is done in \mdl{eosbn2} at the
678same time as $N^2$ is computed. This avoids duplication in the computation of
679$\alpha$ and $\beta$ (which is usually quite expensive).
680
681% ================================================================
682% Bottom Friction
683% ================================================================
684\section  [Bottom Friction (\textit{zdfbfr})]   {Bottom Friction (\mdl{zdfbfr} module)}
685\label{ZDF_bfr}
686
687%--------------------------------------------nambfr--------------------------------------------------------
688\namdisplay{nambfr}
689%--------------------------------------------------------------------------------------------------------------
690
691Both the surface momentum flux (wind stress) and the bottom momentum
692flux (bottom friction) enter the equations as a condition on the vertical
693diffusive flux. For the bottom boundary layer, one has:
694\begin{equation} \label{Eq_zdfbfr_flux}
695A^{vm} \left( \partial {\textbf U}_h / \partial z \right) = {{\cal F}}_h^{\textbf U}
696\end{equation}
697where ${\cal F}_h^{\textbf U}$ is represents the downward flux of horizontal momentum
698outside the logarithmic turbulent boundary layer (thickness of the order of
6991~m in the ocean). How ${\cal F}_h^{\textbf U}$ influences the interior depends on the
700vertical resolution of the model near the bottom relative to the Ekman layer
701depth. For example, in order to obtain an Ekman layer depth
702$d = \sqrt{2\;A^{vm}} / f = 50$~m, one needs a vertical diffusion coefficient
703$A^{vm} = 0.125$~m$^2$s$^{-1}$ (for a Coriolis frequency
704$f = 10^{-4}$~m$^2$s$^{-1}$). With a background diffusion coefficient
705$A^{vm} = 10^{-4}$~m$^2$s$^{-1}$, the Ekman layer depth is only 1.4~m.
706When the vertical mixing coefficient is this small, using a flux condition is
707equivalent to entering the viscous forces (either wind stress or bottom friction)
708as a body force over the depth of the top or bottom model layer. To illustrate
709this, consider the equation for $u$ at $k$, the last ocean level:
710\begin{equation} \label{Eq_zdfbfr_flux2}
711\frac{\partial u_k}{\partial t} = \frac{1}{e_{3u}} \left[ \frac{A_{uw}^{vm}}{e_{3uw}} \delta_{k+1/2}\;[u] - {\cal F}^u_h \right] \approx - \frac{{\cal F}^u_{h}}{e_{3u}}
712\end{equation}
713If the bottom layer thickness is 200~m, the Ekman transport will
714be distributed over that depth. On the other hand, if the vertical resolution
715is high (1~m or less) and a turbulent closure model is used, the turbulent
716Ekman layer will be represented explicitly by the model. However, the
717logarithmic layer is never represented in current primitive equation model
718applications: it is \emph{necessary} to parameterize the flux ${\cal F}^u_h $.
719Two choices are available in \NEMO: a linear and a quadratic bottom friction.
720Note that in both cases, the rotation between the interior velocity and the
721bottom friction is neglected in the present release of \NEMO.
722
723In the code, the bottom friction is imposed by adding the trend due to the bottom
724friction to the general momentum trend in \mdl{dynbfr}. For the time-split surface
725pressure gradient algorithm, the momentum trend due to the barotropic component
726needs to be handled separately. For this purpose it is convenient to compute and
727store coefficients which can be simply combined with bottom velocities and geometric
728values to provide the momentum trend due to bottom friction.
729These coefficients are computed in \mdl{zdfbfr} and generally take the form
730$c_b^{\textbf U}$ where:
731\begin{equation} \label{Eq_zdfbfr_bdef}
732\frac{\partial {\textbf U_h}}{\partial t} =
733  - \frac{{\cal F}^{\textbf U}_{h}}{e_{3u}} = \frac{c_b^{\textbf U}}{e_{3u}} \;{\textbf U}_h^b
734\end{equation}
735where $\textbf{U}_h^b = (u_b\;,\;v_b)$ is the near-bottom, horizontal, ocean velocity.
736
737% -------------------------------------------------------------------------------------------------------------
738%       Linear Bottom Friction
739% -------------------------------------------------------------------------------------------------------------
740\subsection{Linear Bottom Friction (\np{nn\_botfr} = 0 or 1) }
741\label{ZDF_bfr_linear}
742
743The linear bottom friction parameterisation (including the special case
744of a free-slip condition) assumes that the bottom friction
745is proportional to the interior velocity (i.e. the velocity of the last
746model level):
747\begin{equation} \label{Eq_zdfbfr_linear}
748{\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3} \; \frac{\partial \textbf{U}_h}{\partial k} = r \; \textbf{U}_h^b
749\end{equation}
750where $r$ is a friction coefficient expressed in ms$^{-1}$.
751This coefficient is generally estimated by setting a typical decay time
752$\tau$ in the deep ocean,
753and setting $r = H / \tau$, where $H$ is the ocean depth. Commonly accepted
754values of $\tau$ are of the order of 100 to 200 days \citep{Weatherly_JMR84}.
755A value $\tau^{-1} = 10^{-7}$~s$^{-1}$ equivalent to 115 days, is usually used
756in quasi-geostrophic models. One may consider the linear friction as an
757approximation of quadratic friction, $r \approx 2\;C_D\;U_{av}$ (\citet{Gill1982},
758Eq. 9.6.6). For example, with a drag coefficient $C_D = 0.002$, a typical speed
759of tidal currents of $U_{av} =0.1$~m\;s$^{-1}$, and assuming an ocean depth
760$H = 4000$~m, the resulting friction coefficient is $r = 4\;10^{-4}$~m\;s$^{-1}$.
761This is the default value used in \NEMO. It corresponds to a decay time scale
762of 115~days. It can be changed by specifying \np{rn\_bfric1} (namelist parameter).
763
764For the linear friction case the coefficients defined in the general
765expression \eqref{Eq_zdfbfr_bdef} are:
766\begin{equation} \label{Eq_zdfbfr_linbfr_b}
767\begin{split}
768 c_b^u &= - r\\
769 c_b^v &= - r\\
770\end{split}
771\end{equation}
772When \np{nn\_botfr}=1, the value of $r$ used is \np{rn\_bfric1}.
773Setting \np{nn\_botfr}=0 is equivalent to setting $r=0$ and leads to a free-slip
774bottom boundary condition. These values are assigned in \mdl{zdfbfr}.
775From v3.2 onwards there is support for local enhancement of these values
776via an externally defined 2D mask array (\np{ln\_bfr2d}=true) given
777in the \ifile{bfr\_coef} input NetCDF file. The mask values should vary from 0 to 1.
778Locations with a non-zero mask value will have the friction coefficient increased
779by $mask\_value$*\np{rn\_bfrien}*\np{rn\_bfric1}.
780
781% -------------------------------------------------------------------------------------------------------------
782%       Non-Linear Bottom Friction
783% -------------------------------------------------------------------------------------------------------------
784\subsection{Non-Linear Bottom Friction (\np{nn\_botfr} = 2)}
785\label{ZDF_bfr_nonlinear}
786
787The non-linear bottom friction parameterisation assumes that the bottom
788friction is quadratic:
789\begin{equation} \label{Eq_zdfbfr_nonlinear}
790{\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3 }\frac{\partial \textbf {U}_h
791}{\partial k}=C_D \;\sqrt {u_b ^2+v_b ^2+e_b } \;\; \textbf {U}_h^b
792\end{equation}
793where $C_D$ is a drag coefficient, and $e_b $ a bottom turbulent kinetic energy
794due to tides, internal waves breaking and other short time scale currents.
795A typical value of the drag coefficient is $C_D = 10^{-3} $. As an example,
796the CME experiment \citep{Treguier_JGR92} uses $C_D = 10^{-3}$ and
797$e_b = 2.5\;10^{-3}$m$^2$\;s$^{-2}$, while the FRAM experiment \citep{Killworth1992} 
798uses $C_D = 1.4\;10^{-3}$ and $e_b =2.5\;\;10^{-3}$m$^2$\;s$^{-2}$.
799The CME choices have been set as default values (\np{rn\_bfric2} and \np{rn\_bfeb2} 
800namelist parameters).
801
802As for the linear case, the bottom friction is imposed in the code by
803adding the trend due to the bottom friction to the general momentum trend
804in \mdl{dynbfr}.
805For the non-linear friction case the terms
806computed in \mdl{zdfbfr}  are:
807\begin{equation} \label{Eq_zdfbfr_nonlinbfr}
808\begin{split}
809 c_b^u &= - \; C_D\;\left[ u^2 + \left(\bar{\bar{v}}^{i+1,j}\right)^2 + e_b \right]^{1/2}\\
810 c_b^v &= - \; C_D\;\left[  \left(\bar{\bar{u}}^{i,j+1}\right)^2 + v^2 + e_b \right]^{1/2}\\
811\end{split}
812\end{equation}
813
814The coefficients that control the strength of the non-linear bottom friction are
815initialised as namelist parameters: $C_D$= \np{rn\_bfri2}, and $e_b$ =\np{rn\_bfeb2}.
816Note for applications which treat tides explicitly a low or even zero value of
817\np{rn\_bfeb2} is recommended. From v3.2 onwards a local enhancement of $C_D$ 
818is possible via an externally defined 2D mask array (\np{ln\_bfr2d}=true).
819See previous section for details.
820
821% -------------------------------------------------------------------------------------------------------------
822%       Bottom Friction stability
823% -------------------------------------------------------------------------------------------------------------
824\subsection{Bottom Friction stability considerations}
825\label{ZDF_bfr_stability}
826
827Some care needs to exercised over the choice of parameters to ensure that the
828implementation of bottom friction does not induce numerical instability. For
829the purposes of stability analysis, an approximation to \eqref{Eq_zdfbfr_flux2}
830is:
831\begin{equation} \label{Eqn_bfrstab}
832\begin{split}
833 \Delta u &= -\frac{{{\cal F}_h}^u}{e_{3u}}\;2 \rdt    \\
834               &= -\frac{ru}{e_{3u}}\;2\rdt\\
835\end{split}
836\end{equation}
837\noindent where linear bottom friction and a leapfrog timestep have been assumed.
838To ensure that the bottom friction cannot reverse the direction of flow it is necessary to have:
839\begin{equation}
840 |\Delta u| < \;|u|
841\end{equation}
842\noindent which, using \eqref{Eqn_bfrstab}, gives:
843\begin{equation}
844r\frac{2\rdt}{e_{3u}} < 1 \qquad  \Rightarrow \qquad r < \frac{e_{3u}}{2\rdt}\\
845\end{equation}
846This same inequality can also be derived in the non-linear bottom friction case
847if a velocity of 1 m.s$^{-1}$ is assumed. Alternatively, this criterion can be
848rearranged to suggest a minimum bottom box thickness to ensure stability:
849\begin{equation}
850e_{3u} > 2\;r\;\rdt
851\end{equation}
852\noindent which it may be necessary to impose if partial steps are being used.
853For example, if $|u| = 1$ m.s$^{-1}$, $rdt = 1800$ s, $r = 10^{-3}$ then
854$e_{3u}$ should be greater than 3.6 m. For most applications, with physically
855sensible parameters these restrictions should not be of concern. But
856caution may be necessary if attempts are made to locally enhance the bottom
857friction parameters.
858To ensure stability limits are imposed on the bottom friction coefficients both during
859initialisation and at each time step. Checks at initialisation are made in \mdl{zdfbfr} 
860(assuming a 1 m.s$^{-1}$ velocity in the non-linear case).
861The number of breaches of the stability criterion are reported as well as the minimum
862and maximum values that have been set. The criterion is also checked at each time step,
863using the actual velocity, in \mdl{dynbfr}. Values of the bottom friction coefficient are
864reduced as necessary to ensure stability; these changes are not reported.
865
866% -------------------------------------------------------------------------------------------------------------
867%       Bottom Friction with split-explicit time splitting
868% -------------------------------------------------------------------------------------------------------------
869\subsection{Bottom Friction with split-explicit time splitting}
870\label{ZDF_bfr_ts}
871
872When calculating the momentum trend due to bottom friction in \mdl{dynbfr}, the
873bottom velocity at the before time step is used. This velocity includes both the
874baroclinic and barotropic components which is appropriate when using either the
875explicit or filtered surface pressure gradient algorithms (\key{dynspg\_exp} or
876{\key{dynspg\_flt}). Extra attention is required, however, when using
877split-explicit time stepping (\key{dynspg\_ts}). In this case the free surface
878equation is solved with a small time step \np{nn\_baro}*\np{rn\_rdt}, while the three
879dimensional prognostic variables are solved with a longer time step that is a
880multiple of \np{rn\_rdt}. The trend in the barotropic momentum due to bottom
881friction appropriate to this method is that given by the selected parameterisation
882($i.e.$ linear or non-linear bottom friction) computed with the evolving velocities
883at each barotropic timestep.
884
885In the case of non-linear bottom friction, we have elected to partially linearise
886the problem by keeping the coefficients fixed throughout the barotropic
887time-stepping to those computed in \mdl{zdfbfr} using the now timestep.
888This decision allows an efficient use of the $c_b^{\vect{U}}$ coefficients to:
889
890\begin{enumerate}
891\item On entry to \rou{dyn\_spg\_ts}, remove the contribution of the before
892barotropic velocity to the bottom friction component of the vertically
893integrated momentum trend. Note the same stability check that is carried out
894on the bottom friction coefficient in \mdl{dynbfr} has to be applied here to
895ensure that the trend removed matches that which was added in \mdl{dynbfr}.
896\item At each barotropic step, compute the contribution of the current barotropic
897velocity to the trend due to bottom friction. Add this contribution to the
898vertically integrated momentum trend. This contribution is handled implicitly which
899eliminates the need to impose a stability criteria on the values of the bottom friction
900coefficient within the barotropic loop.
901\end{enumerate}
902
903Note that the use of an implicit formulation
904for the bottom friction trend means that any limiting of the bottom friction coefficient
905in \mdl{dynbfr} does not adversely affect the solution when using split-explicit time
906splitting. This is because the major contribution to bottom friction is likely to come from
907the barotropic component which uses the unrestricted value of the coefficient.
908
909The implicit formulation takes the form:
910\begin{equation} \label{Eq_zdfbfr_implicitts}
911 \bar{U}^{t+ \rdt} = \; \left [ \bar{U}^{t-\rdt}\; + 2 \rdt\;RHS \right ] / \left [ 1 - 2 \rdt \;c_b^{u} / H_e \right ] 
912\end{equation}
913where $\bar U$ is the barotropic velocity, $H_e$ is the full depth (including sea surface height),
914$c_b^u$ is the bottom friction coefficient as calculated in \rou{zdf\_bfr} and $RHS$ represents
915all the components to the vertically integrated momentum trend except for that due to bottom friction.
916
917
918
919
920% ================================================================
921% Tidal Mixing
922% ================================================================
923\section{Tidal Mixing}
924\label{ZDF_tmx}
925
926%--------------------------------------------namzdf_tmx--------------------------------------------------
927\namdisplay{namzdf_tmx}
928%--------------------------------------------------------------------------------------------------------------
929
930
931% -------------------------------------------------------------------------------------------------------------
932%        Bottom intensified tidal mixing
933% -------------------------------------------------------------------------------------------------------------
934\subsection{Bottom intensified tidal mixing}
935\label{ZDF_tmx_bottom}
936
937The parameterization of tidal mixing follows the general formulation for
938the vertical eddy diffusivity proposed by \citet{St_Laurent_al_GRL02} and
939first introduced in an OGCM by \citep{Simmons_al_OM04}.
940In this formulation an additional vertical diffusivity resulting from internal tide breaking,
941$A^{vT}_{tides}$ is expressed as a function of $E(x,y)$, the energy transfer from barotropic
942tides to baroclinic tides :
943\begin{equation} \label{Eq_Ktides}
944A^{vT}_{tides} =  q \,\Gamma \,\frac{ E(x,y) \, F(z) }{ \rho \, N^2 }
945\end{equation}
946where $\Gamma$ is the mixing efficiency, $N$ the Brunt-Vais\"{a}l\"{a} frequency
947(see \S\ref{TRA_bn2}), $\rho$ the density, $q$ the tidal dissipation efficiency,
948and $F(z)$ the vertical structure function.
949
950The mixing efficiency of turbulence is set by $\Gamma$ (\np{rn\_me} namelist parameter)
951and is usually taken to be the canonical value of $\Gamma = 0.2$ (Osborn 1980).
952The tidal dissipation efficiency is given by the parameter $q$ (\np{rn\_tfe} namelist parameter)
953represents the part of the internal wave energy flux $E(x, y)$ that is dissipated locally,
954with the remaining $1-q$ radiating away as low mode internal waves and
955contributing to the background internal wave field. A value of $q=1/3$ is typically used 
956\citet{St_Laurent_al_GRL02}.
957The vertical structure function $F(z)$ models the distribution of the turbulent mixing in the vertical.
958It is implemented as a simple exponential decaying upward away from the bottom,
959with a vertical scale of $h_o$ (\np{rn\_htmx} namelist parameter, with a typical value of $500\,m$) \citep{St_Laurent_Nash_DSR04},
960\begin{equation} \label{Eq_Fz}
961F(i,j,k) = \frac{ e^{ -\frac{H+z}{h_o} } }{ h_o \left( 1- e^{ -\frac{H}{h_o} } \right) }
962\end{equation}
963and is normalized so that vertical integral over the water column is unity.
964
965The associated vertical viscosity is calculated from the vertical
966diffusivity assuming a Prandtl number of 1, $i.e.$ $A^{vm}_{tides}=A^{vT}_{tides}$.
967In the limit of $N \rightarrow 0$ (or becoming negative), the vertical diffusivity
968is capped at $300\,cm^2/s$ and impose a lower limit on $N^2$ of \np{rn\_n2min} 
969usually set to $10^{-8} s^{-2}$. These bounds are usually rarely encountered.
970
971The internal wave energy map, $E(x, y)$ in \eqref{Eq_Ktides}, is derived
972from a barotropic model of the tides utilizing a parameterization of the
973conversion of barotropic tidal energy into internal waves.
974The essential goal of the parameterization is to represent the momentum
975exchange between the barotropic tides and the unrepresented internal waves
976induced by the tidal ßow over rough topography in a stratified ocean.
977In the current version of \NEMO, the map is built from the output of
978the barotropic global ocean tide model MOG2D-G \citep{Carrere_Lyard_GRL03}.
979This model provides the dissipation associated with internal wave energy for the M2 and K1
980tides component (Fig.~\ref{Fig_ZDF_M2_K1_tmx}). The S2 dissipation is simply approximated
981as being $1/4$ of the M2 one. The internal wave energy is thus : $E(x, y) = 1.25 E_{M2} + E_{K1}$.
982Its global mean value is $1.1$ TW, in agreement with independent estimates
983\citep{Egbert_Ray_Nat00, Egbert_Ray_JGR01}.
984
985%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
986\begin{figure}[!t] \label{Fig_ZDF_M2_K1_tmx}  \begin{center}
987\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_ZDF_M2_K1_tmx.pdf}
988\caption {(a) M2 and (b) K2 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). }
989\end{center} 
990\end{figure}
991%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
992 
993% -------------------------------------------------------------------------------------------------------------
994%        Indonesian area specific treatment
995% -------------------------------------------------------------------------------------------------------------
996\subsection{Indonesian area specific treatment}
997\label{ZDF_tmx_itf}
998
999When the Indonesian Through Flow (ITF) area is included in the model domain,
1000a specific treatment of tidal induced mixing in this area can be used.
1001It is activated through the namelist logical \np{ln\_tmx\_itf}, and the user must provide
1002an input NetCDF file, \ifile{mask\_itf}, which contains a mask array defining the ITF area
1003where the specific treatment is applied.
1004
1005When \np{ln\_tmx\_itf}=true, the two key parameters $q$ and $F(z)$ are adjusted following
1006the parameterisation developed by \ref{Koch-Larrouy_al_GRL07}:
1007
1008First, the Indonesian archipelago is a complex geographic region
1009with a series of large, deep, semi-enclosed basins connected via
1010numerous narrow straits. Once generated, internal tides remain
1011confined within this semi-enclosed area and hardly radiate away.
1012Therefore all the internal tides energy is consumed within this area.
1013So it is assumed that $q = 1$, $i.e.$ all the energy generated is available for mixing.
1014Note that for test purposed, the ITF tidal dissipation efficiency is a
1015namelist parameter (\np{rn\_tfe\_itf}). A value of $1$ or close to is
1016this recommended for this parameter.
1017
1018Second, the vertical structure function, $F(z)$, is no more associated
1019with a bottom intensification of the mixing, but with a maximum of
1020energy available within the thermocline. \ref{Koch-Larrouy_al_GRL07} 
1021have suggested that the vertical distribution of the energy dissipation
1022proportional to $N^2$ below the core of the thermocline and to $N$ above.
1023The resulting $F(z)$ is:
1024\begin{equation} \label{Eq_Fz_itf}
1025F(i,j,k) \sim     \left\{ \begin{aligned}
1026\frac{q\,\Gamma E(i,j) } {\rho N \, \int N     dz}    \qquad \text{when $\partial_z N < 0$} \\
1027\frac{q\,\Gamma E(i,j) } {\rho     \, \int N^2 dz}    \qquad \text{when $\partial_z N > 0$}
1028                      \end{aligned} \right.
1029\end{equation}
1030
1031Averaged over the ITF area, the resulting tidal mixing coefficient is $1.5\,cm^2/s$,
1032which agrees with the independent estimates inferred from observations.
1033Introduced in a regional OGCM, the parameterization improves the water mass
1034characteristics in the different Indonesian seas, suggesting that the horizontal
1035and vertical distributions of the mixing are adequately prescribed
1036\citep{Koch-Larrouy_al_GRL07, Koch-Larrouy_al_OD08a, Koch-Larrouy_al_OD08b}.
1037Note also that such a parameterisation has a sugnificant impact on the behaviour
1038of global coupled GCMs \citep{Koch-Larrouy_al_CD10}.
1039
1040
1041% ================================================================
Note: See TracBrowser for help on using the repository browser.