New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in trunk/DOC/BETA/Biblio – NEMO

source: trunk/DOC/BETA/Biblio/Biblio.bib @ 933

Last change on this file since 933 was 817, checked in by gm, 16 years ago

trunk - update including Steven correction of the first 5 chapters (until DYN) and activation of Appendix A & B

  • Property svn:executable set to *
File size: 77.8 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@ARTICLE{Adcroft_Campin_OM04,
89  author = {A. Adcroft and J.-M. Campin},
90  title = {Re-scaled height coordinates for accurate representation of free-surface
91   flows in ocean circulation models},
92  journal = {Ocean Modelling},
93  year = {2004},
94  volume = {7},
95  owner = {gm},
96  timestamp = {2008.01.27}
97}
98
99@ARTICLE{Arakawa1966,
100  author = {A. Arakawa},
101  title = {Computational design for long term numerical integration of the equations
102   of fluid motion, two-dimensional incompressible flow, Part. I.},
103  journal = JCP,
104  year = {1966},
105  volume = {I},
106  pages = {119-149},
107  owner = {gm},
108  timestamp = {2007.08.04}
109}
110
111@ARTICLE{Arakawa1990,
112  author = {A. Arakawa and Y.-J. G. Hsu},
113  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
114   the Shallow Water Equations},
115  journal = MWR,
116  year = {1990},
117  volume = {118},
118  pages = {1960--1969
119   
120   },
121  number = {10},
122  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
123   water equations with no or arbitrarily small energy dissipation,
124   a family of finite-difference schemes have been derived with which
125   potential enstrophy is guaranteed to decrease while energy is conserved
126   (when the mass flux is nondivergent and time is continuous). Among
127   this family of schemes, there is a member that minimizes the spurious
128   impact of infinite potential vorticities associated with infinitesimal
129   fluid depth. The scheme is, therefore, useful for problems in which
130   the free surface may intersect with the lower boundary.},
131  date = {October 01, 1990},
132  owner = {gm},
133  timestamp = {2007.08.05}
134}
135
136@ARTICLE{Arakawa1981,
137  author = {Arakawa, Akio and Lamb, Vivian R.},
138  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
139   Water Equations},
140  journal = MWR,
141  year = {1981},
142  volume = {109},
143  pages = {18--36
144   
145   },
146  number = {1},
147  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
148   topography, a potential enstrophy and energy conserving scheme for
149   the shallow water equations is derived. It is pointed out that a
150   family of schemes can conserve total energy for general flow and
151   potential enstrophy for flow with no mass flux divergence. The newly
152   derived scheme is a unique member of this family, that conserves
153   both potential enstrophy and energy for general flow. Comparison
154   by means of numerical experiment with a scheme that conserves (potential)
155   enstrophy for purely horizontal nondivergent flow demonstrated the
156   considerable superiority of the newly derived potential enstrophy
157   and energy conserving scheme, not only in suppressing a spurious
158   energy cascade but also in determining the overall flow regime. The
159   potential enstrophy and energy conserving scheme for a spherical
160   grid is also presented.},
161  date = {January 01, 1981},
162  owner = {gm},
163  timestamp = {2007.08.05}
164}
165
166@ARTICLE{Arhan2006,
167  author = {M. Arhan and A.M. Treguier and B. Bourles and S. Michel},
168  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the
169   Atlantic Ocean from a general circulation model},
170  journal = JPO,
171  year = {2006},
172  volume = { 36},
173  pages = {1502-1522}
174}
175
176@ARTICLE{ASSELIN1972,
177  author = {R. Asselin},
178  title = {Frequency Filter for Time Integrations},
179  journal = MWR,
180  year = {1972},
181  volume = {100},
182  pages = {487-490},
183  number = {6},
184  abstract = {A simple filter for controlling high-frequency computational and physical
185   modes arising in time integrations is proposed. A linear analysis
186   of the filter with leapfrog, implicit, and semi-implicit, differences
187   is made. The filter very quickly removes the computational mode and
188   is also very useful in damping high-frequency physical waves. The
189   stability of the leapfrog scheme is adversely affected when a large
190   filter parameter is used, but the analysis shows that the use of
191   centered differences with frequency filter is still more advantageous
192   than the use of the Euler-backward method. An example of the use
193   of the filter in an actual forecast with the meteorological equations
194   is shown.},
195  date = {June 01, 1972},
196  owner = {gm},
197  timestamp = {2007.08.03}
198}
199
200@ARTICLE{Barnier_al_OD06,
201  author = {B. Barnier and G. Madec and T. Penduff and J.-M. Molines and A.-M.
202   Treguier and J. Le Sommer and A. Beckmann and A. Biastoch and C.
203   Boning and J. Dengg and C. Derval and E. Durand and S. Gulev and
204   E. Remy and C. Talandier and S. Theetten and M. Maltrud and J. McClean
205   and B. De Cuevas},
206  title = {Impact of partial steps and momentum advection schemes in a global
207   ocean circulation model at eddy-permitting resolution.},
208  journal = {Ocean Dyn.},
209  year = {2006},
210  pages = {doi: 10.1007/s10236-006-0082-1.},
211  owner = {gm},
212  timestamp = {2008.01.25}
213}
214
215@INCOLLECTION{Barnier1996,
216  author = {B. Barnier and P. Marchesiello and A.P. de Miranda},
217  title = {Modeling the ocean circulation in the South Atlantic: A strategy
218   for dealing with open boundaries},
219  booktitle = {The South Atlantic: Present and Past Circulation},
220  publisher = {Springer-Verlag, Berlin},
221  year = {1996},
222  editor = {G.Wefer and W.H. Berger and G Siedler and D. Webb},
223  pages = {289-304}
224}
225
226@ARTICLE{Barnier1998,
227  author = {B. Barnier and P. Marchesiello and A. P. de Miranda and J.M. Molines
228   and M. Coulibaly},
229  title = {A sigma-coordinate primitive equation model for studying the circulation
230   in the South Atlantic I, Model configuration with error estimates},
231  journal = {Deep Sea Res.},
232  year = {1998},
233  volume = {45},
234  pages = {543-572}
235}
236
237@ARTICLE{Beckmann1998,
238  author = {A. Beckmann},
239  title = {The representation of bottom boundary layer processes in numerical
240   ocean circulation models.},
241  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
242   (eds.), NATO Science Series, Kluwer Academic Publishers},
243  year = {1998},
244  owner = {gm},
245  timestamp = {2007.08.04}
246}
247
248@ARTICLE{BeckDos1998,
249  author = {A. Beckmann and R. D\"{o}scher},
250  title = {A method for improved representation of dense water spreading over
251   topography in geopotential-coordinate models},
252  journal = JPO,
253  year = {1998},
254  volume = {27},
255  pages = {581-591},
256  owner = {gm},
257  timestamp = {2007.08.04}
258}
259
260@ARTICLE{Beckmann1993,
261  author = {A. Beckmann and D. B. Haidvogel},
262  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
263   I - Problem Formulation and Model Accuracy},
264  journal = {Journal of Physical Oceanography},
265  year = {1993},
266  volume = {23},
267  pages = {1736--1753
268   
269   },
270  number = {8},
271  abstract = {A sigma coordinate ocean circulation model is employed to study flow
272   trapped to a tall seamount in a periodic f-plane channel. In Part
273   I, errors arising from the pressure gradient formulation in the steep
274   topography/strong stratification limit are examined. To illustrate
275   the error properties, a linearized adiabatic version of the model
276   is considered, both with and without forcing, and starting from a
277   resting state with level isopycnals. The systematic discretization
278   errors from the horizontal pressure gradient terms are shown analytically
279   to increase with steeper topography (relative to a fixed horizontal
280   grid) and for stronger stratification (as measured by the Burger
281   number). For an initially quiescent unforced ocean, the pressure
282   gradient errors produce a spurious oscillating current that, at the
283   end of 10 days, is approximately 1 cm s−1 in amplitude. The
284   period of the spurious oscillation (about 0.5 days) is shown to be
285   a consequence of the particular form of the pressure gradient terms
286   in the sigma coordinate system. With the addition of an alongchannel
287   diurnal forcing, resonantly generated seamount-trapped waves are
288   observed to form. Error levels in these solutions are less than those
289   in the unforced cases; spurious time-mean currents are several orders
290   of magnitude less in amplitude than the resonant propagating waves.
291   However, numerical instability is encountered in a wider range of
292   parameter space. The properties of these resonantly generated waves
293   is explored in detail in Part II of this study. Several new formulations
294   of the pressure gradient terms are tested. Two of the formulations—constructed
295   to have additional conservation properties relative to the traditional
296   form of the pressure gradient terms (conservation of JEBAR and conservation
297   of energy)—are found to have error properties generally similar
298   to those of the traditional formulation. A corrected gradient algorithm,
299   based upon vertical interpolation of the pressure field, has a dramatically
300   reduced error level but a much more restrictive range of stable behavior.},
301  date = {August 01, 1993},
302  owner = {gm},
303  timestamp = {2007.08.03}
304}
305
306@ARTICLE{Blanke1993,
307  author = {B. Blanke and P. Delecluse},
308  title = {Low frequency variability of the tropical Atlantic ocean simulated
309   by a general circulation model with mixed layer physics},
310  journal = JPO,
311  year = {1993},
312  volume = {23},
313  pages = {1363-1388}
314}
315
316@ARTICLE{blanketal97,
317  author = {B. Blanke and J. D. Neelin and D. Gutzler},
318  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
319  journal = JC,
320  year = {1997},
321  volume = {10},
322  pages = {1473-1486},
323  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
324   and predictability is the role of random
325   
326   forcing by atmospheric variability with short correlation times, on
327   coupled variability with interannual timescales.
328   
329   The discussion of this question requires a quantitative assessment
330   of the stochastic component of the wind stress
331   
332   forcing. Self-consistent estimates of this noise (the stochastic forcing)
333   can be made quite naturally in an empirical
334   
335   atmospheric model that uses a statistical estimate of the relationship
336   between sea surface temperature (SST) and
337   
338   wind stress anomaly patterns as the deterministic feedback between
339   the ocean and the atmosphere. The authors
340   
341   use such an empirical model as the atmospheric component of a hybrid
342   coupled model, coupled to the GFDL
343   
344   ocean general circulation model. The authors define as residual the
345   fraction of the Florida State University wind
346   
347   stress not explained by the empirical atmosphere run from observed
348   SST, and a noise product is constructed by
349   
350   random picks among monthly maps of this residual.
351   
352   The impact of included or excluded noise is assessed with several
353   ensembles of simulations. The model is
354   
355   run in coupled regimes where, in the absence of noise, it is perfectly
356   periodic: in the presence of prescribed
357   
358   seasonal variability, the model is strongly frequency locked on a
359   2-yr period; in annual average conditions it
360   
361   has a somewhat longer inherent ENSO period (30 months). Addition of
362   noise brings an irregular behavior that
363   
364   is considerably richer in spatial patterns as well as in temporal
365   structures. The broadening of the model ENSO
366   
367   spectral peak is roughly comparable to observed. The tendency to frequency
368   lock to subharmonic resonances
369   
370   of the seasonal cycle tends to increase the broadening and to emphasize
371   lower frequencies. An inclination to
372   
373   phase lock to preferred seasons persists even in the presence of noise-induced
374   irregularity. Natural uncoupled
375   
376   atmospheric variability is thus a strong candidate for explaining
377   the observed aperiodicity in ENSO time series.
378   
379   Model–model hindcast experiments also suggest the importance of atmospheric
380   noise in setting limits to ENSO
381   
382   predictability.},
383  pdf = {Blanke_etal_JC97.pdf}
384}
385
386@ARTICLE{Blayo2005,
387  author = {E. Blayo and L. Debreu},
388  title = {Revisiting open boundary conditions from the point of view of characteristic
389   variables},
390  journal = {Ocean Modelling},
391  year = {2005},
392  volume = {9},
393  pages = {231-252}
394}
395
396@ARTICLE{Bougeault1989,
397  author = {P. Bougeault and P. Lacarrere},
398  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
399   Model},
400  journal = MWR,
401  year = {1989},
402  volume = {117},
403  pages = {1872-1890},
404  number = {8},
405  abstract = {The possibility of extending existing techniques for turbulence parameterization
406   in the planetary boundary layer to attitude, orography-induced turbulence
407   events is examined. Starting from a well-tested scheme, we show that
408   it is possible to generalize the specification method of the length
409   scales, with no deterioration of the scheme performance in the boundary
410   layer. The new scheme is implemented in a two-dimensional version
411   of a limited-area, numerical model used for the simulation of mesobeta-scale
412   atmospheric flows. Three well-known cases of orographically induced
413   turbulence are studied. The comparison with observations and former
414   studies shows a satisfactory behavior of the new scheme.},
415  date = {August 01, 1989},
416  owner = {gm},
417  timestamp = {2007.08.06}
418}
419
420@ARTICLE{Brown1978,
421  author = {J. A. Brown and K. A. Campana},
422  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
423  journal = MWR,
424  year = {1978},
425  volume = {106},
426  pages = {1125-1136},
427  number = {8},
428  month = aug,
429  abstract = {A simple method for integrating the primitive equations is presented
430   which allows for a timestep increment up to twice that of the conventional
431   leapfrog scheme. It consists of a time-averaging operator, which
432   incorporates three consecutive time levels, on the pressure gradient
433   terms in the equations of motion. An attractive feature of the method
434   is its case in programming, since the resulting finite-difference
435   equations can he solved explicitly.Presented here are linear analyses
436   of the method applied to the barotropic and two-layer baroclinic
437   gravity waves. Also presented is an analysis of the method with a
438   time-damping device incorporated, which is an alternative in controlling
439   linearly amplifying computational modes.},
440  owner = {gm},
441  timestamp = {2007.08.05}
442}
443
444@ARTICLE{Bryan1997,
445  author = {K. Bryan},
446  title = {A Numerical Method for the Study of the Circulation of the World
447   Ocean},
448  journal = JCP,
449  year = {1997},
450  volume = {135, 2},
451  owner = {gm},
452  timestamp = {2007.08.10}
453}
454
455@ARTICLE{Bryan1984,
456  author = {K. Bryan},
457  title = {Accelerating the convergence to equilibrium of ocean-climate models},
458  journal = JPO,
459  year = {1984},
460  volume = {14},
461  owner = {gm},
462  timestamp = {2007.08.10}
463}
464
465@ARTICLE{Bryden1973,
466  author = {H. L. Bryden},
467  title = {New polynomials for thermal expansion, adiabatic temperature gradient
468   
469   and potential temperature of sea water},
470  journal = DSR,
471  year = {1973},
472  volume = {20},
473  pages = {401-408},
474  owner = {gm},
475  timestamp = {2007.08.04}
476}
477
478@ARTICLE{Campin2004,
479  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
480  title = {Conservation of properties in a free-surface model},
481  journal = {Ocean Modelling},
482  year = {2004},
483  volume = {6, 3-4},
484  pages = {221-244},
485  owner = {gm},
486  timestamp = {2007.08.04}
487}
488
489@ARTICLE{Campin_Goosse_Tel99,
490  author = {J. M. Campin and H. Goosse},
491  title = {Parameterization of density-driven downsloping flow for a coarse-resolution
492   ocean model in z-coordinate},
493  journal = {Tellus},
494  year = {1999},
495  volume = {51},
496  pages = {412-430},
497  owner = {gm},
498  timestamp = {2008.01.20}
499}
500
501@ARTICLE{Cox1987,
502  author = {M. Cox},
503  title = {Isopycnal diffusion in a z-coordinate ocean model},
504  journal = {Ocean Modelling},
505  year = {1987},
506  volume = {74},
507  pages = {1-9},
508  owner = {gm},
509  timestamp = {2007.08.03}
510}
511
512@ARTICLE{Dorscher_Beckmann_JAOT00,
513  author = {R. D\"{o}scher and A. Beckmann},
514  title = {Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution
515   Model of the North Atlantic Ocean},
516  journal = JAOT,
517  year = {2000},
518  volume = {17},
519  pages = {698-707},
520  owner = {gm},
521  timestamp = {2008.01.23}
522}
523
524@ARTICLE{Debreu_al_CG2008,
525  author = {L. Debreu and C. Vouland and E. Blayo},
526  title = {AGRIF: Adaptive Grid Refinement In Fortran},
527  journal = {Computers and Geosciences},
528  year = {2008},
529  volume = {34},
530  pages = {8-13},
531  owner = {gm},
532  timestamp = {2008.02.03}
533}
534
535@ARTICLE{Delecluse_Madec_Bk00,
536  author = {P. Delecluse and G. Madec},
537  title = {Ocean modelling and the role of the ocean in the climate system},
538  journal = {In \textit{Modeling the Earth's Climate and its Variability}, Les
539   Houches, Session, LXVII 1997,
540   
541   Eds. W. R. Holland, S. Joussaume and F. David, Elsevier Science,},
542  year = {2000},
543  pages = {237-313},
544  owner = {gm},
545  timestamp = {2008.02.03}
546}
547
548@ARTICLE{Dukowicz1994,
549  author = {J. K. Dukowicz and R. D. Smith},
550  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
551  journal = JGR,
552  year = {1994},
553  volume = {99},
554  pages = {7991-8014},
555  owner = {gm},
556  timestamp = {2007.08.03}
557}
558
559@INCOLLECTION{Durran2001,
560  author = {D.R. Durran },
561  title = {Open boundary conditions: fact and fiction},
562  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
563  publisher = {Kluwer Academic Publishers},
564  year = {2001},
565  editor = {P.F. Hodnett}
566}
567
568@ARTICLE{Dutay.J.C2004,
569  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
570   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
571   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
572  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
573   
574   with mantle helium-3},
575  journal = {Journal of Marine Systems},
576  year = {2004},
577  pages = {1-22},
578  abstract = {We compare simulations of the injection of mantle helium-3 into the
579   deep ocean from six global coarse resolution models which participated
580   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
581   discuss the results of a study carried out with one of the models,
582   which examines the effect of the subgrid-scale mixing parameterization.
583   These sensitivity tests provide useful information to interpret the
584   differences among the OCMIP models and between model simulations
585   and the data.
586   
587   We find that the OCMIP models, which parameterize subgrid-scale mixing
588   using an eddy-induced velocity, tend to
589   
590   underestimate the ventilation of the deep ocean, based on diagnostics
591   with d3He. In these models, this parameterization is implemented
592   with a constant thickness diffusivity coefficient. In future simulations,
593   we recommend using such a parameterization with spatially and temporally
594   varying coefficients in order to moderate its effect on stratification.
595   
596   The performance of the models with regard to the formation of AABW
597   confirms the conclusion from a previous evaluation with CFC-11. Models
598   coupled with a sea-ice model produce a substantial bottom water formation
599   in the Southern Ocean that tends to overestimate AABW ventilation,
600   while models that are not coupled with a sea-ice model systematically
601   underestimate the formation of AABW.
602   
603   We also analyze specific features of the deep 3He distribution (3He
604   plumes) that are particularly well depicted in the data and which
605   put severe constraints on the deep circulation. We show that all
606   the models fail to reproduce a correct propagation of these plumes
607   in the deep ocean. The resolution of the models may be too coarse
608   to reproduce the strong and narrow currents in the deep ocean, and
609   the models do not incorporate the geothermal heating that may also
610   contribute to the generation of these currents. We also use the context
611   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
612   to compare and evaluate modeled deep-ocean circulations. Although
613   the source function of mantle helium is known with a rather large
614   uncertainty, we find that the parameterization used for the injection
615   of mantle helium-3 is sufficient to generate realistic results, even
616   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
617   Res. 100 (1995) 3829] claimed this parameterization generates
618   
619   inadequate results. These results are supported by a multi-tracer
620   evaluation performed by considering the simulated distributions of
621   both helium-3 and natural 14C, and comparing the simulated tracer
622   fields with available data.},
623  owner = {sandra},
624  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
625  timestamp = {2006.10.17}
626}
627
628@ARTICLE{Eiseman1980,
629  author = {P. R. Eiseman and A. P. Stone},
630  title = {Conservation lows of fluid dynamics -- A survey},
631  journal = {SIAM Review},
632  year = {1980},
633  volume = {22},
634  pages = {12-27},
635  owner = {gm},
636  timestamp = {2007.08.03}
637}
638
639@PHDTHESIS{Farge1987,
640  author = {M. Farge},
641  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
642   de Saint Venant},
643  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
644  year = {1987},
645  owner = {gm},
646  timestamp = {2007.08.03}
647}
648
649@ARTICLE{Farrow1995,
650  author = {D. E. Farrow and D. P. Stevens},
651  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
652   models},
653  journal = JPO,
654  year = {1995},
655  volume = {25},
656  pages = {1731-1741.},
657  owner = {gm},
658  timestamp = {2007.08.04}
659}
660
661@ARTICLE{Fujio1991,
662  author = {S. Fujio and N. Imasato},
663  title = {Diagnostic calculation for circulation and water mass movement in
664   the deep Pacific},
665  journal = JGR,
666  year = {1991},
667  volume = {96},
668  pages = {759-774},
669  month = jan,
670  owner = {gm},
671  timestamp = {2007.08.04}
672}
673
674@ARTICLE{Gargett1984,
675  author = {A. E. Gargett},
676  title = {Vertical eddy diffusivity in the ocean interior},
677  journal = JMR,
678  year = {1984},
679  volume = {42},
680  owner = {gm},
681  timestamp = {2007.08.06}
682}
683
684@ARTICLE{Gaspar1990,
685  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
686  title = {A simple eddy kinetic energy model for simulations of the oceanic
687   vertical mixing\: Tests at Station Papa and long-term upper ocean
688   study site},
689  journal = JGR,
690  year = {1990},
691  volume = {95(C9)},
692  owner = {gm},
693  timestamp = {2007.08.06}
694}
695
696@ARTICLE{Gent1990,
697  author = {P. R. Gent and J. C. Mcwilliams},
698  title = {Isopycnal Mixing in Ocean Circulation Models},
699  journal = JPO,
700  year = {1990},
701  volume = {20},
702  pages = {150-155},
703  number = {1},
704  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
705   is proposed for use in non-eddy-resolving ocean circulation models.
706   The mixing is applied in isopycnal coordinates to isopycnal layer
707   thickness, or inverse density gradient, as well as to passive scalars,
708   temperature and salinity. The transformation of these mixing forms
709   to physical coordinates is also presented.},
710  date = {January 01, 1990},
711  owner = {gm},
712  timestamp = {2007.08.03}
713}
714
715@ARTICLE{Gerdes1993a,
716  author = {R. Gerdes},
717  title = {A primitive equation ocean circulation model using a general vertical
718   coordinate transformation 1. Description and testing of the model},
719  journal = JGR,
720  year = {1993},
721  volume = {98},
722  owner = {gm},
723  timestamp = {2007.08.03}
724}
725
726@ARTICLE{Gerdes1993b,
727  author = {R. Gerdes},
728  title = {A primitive equation ocean circulation model using a general vertical
729   coordinate transformation 2. Application to an overflow problem},
730  journal = JGR,
731  year = {1993},
732  volume = {98},
733  pages = {14703-14726},
734  owner = {gm},
735  timestamp = {2007.08.03}
736}
737
738@TECHREPORT{Gibson_TR86,
739  author = {J. K. Gibson},
740  title = {Standard software development and maintenance},
741  institution = {Operational Dep., ECMWF, Reading, UK.},
742  year = {1986},
743  owner = {gm},
744  timestamp = {2008.02.03}
745}
746
747@BOOK{Gill1982,
748  title = {Atmosphere-Ocean Dynamics},
749  publisher = {International Geophysics Series, Academic Press, New-York},
750  year = {1982},
751  author = {A. E. Gill}
752}
753
754@ARTICLE{Griffes2005,
755  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
756   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
757   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
758  title = {Formulation of an ocean model for global climate simulations},
759  journal = OS,
760  year = {2005},
761  pages = {165–246},
762  abstract = {This paper summarizes the formulation of the ocean component to the
763   Geophysical
764   
765   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
766   the 4th IPCC As- Assessment
767   
768   (AR4) of global climate change. In particular, it reviews elements
769   of ocean
770   
771   sessment climate models and how they are pieced together for use in
772   a state-of-the-art coupled 5
773   
774   model. Novel issues are also highlighted, with particular attention
775   given to sensitivity of
776   
777   the coupled simulation to physical parameterizations and numerical
778   methods. Features
779   
780   of the model described here include the following: (1) tripolar grid
781   to resolve the Arctic
782   
783   Ocean without polar filtering, (2) partial bottom step representation
784   of topography to
785   
786   better represent topographically influenced advective and wave processes,
787   (3) more 10
788   
789   accurate equation of state, (4) three-dimensional flux limited tracer
790   advection to reduce
791   
792   overshoots and undershoots, (5) incorporation of regional climatological
793   variability in
794   
795   shortwave penetration, (6) neutral physics parameterization for representation
796   of the
797   
798   pathways of tracer transport, (7) staggered time stepping for tracer
799   conservation and
800   
801   numerical eciency, (8) anisotropic horizontal viscosities for representation
802   of equato- 15
803   
804   rial currents, (9) parameterization of exchange with marginal seas,
805   (10) incorporation
806   
807   of a free surface that accomodates a dynamic ice model and wave propagation,
808   (11)
809   
810   transport of water across the ocean free surface to eliminate unphysical
811   “virtual tracer
812   
813   flux” methods, (12) parameterization of tidal mixing on continental
814   shelves.},
815  owner = {sandra},
816  pdf = {Griffies_al_OSD05.pdf},
817  timestamp = {2007.01.25}
818}
819
820@BOOK{Griffies2004,
821  title = {Fundamentals of ocean climate models},
822  publisher = {Princeton University Press, 434pp},
823  year = {2004},
824  author = {S. M. Griffies},
825  owner = {gm},
826  timestamp = {2007.08.05}
827}
828
829@ARTICLE{Griffies1998,
830  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
831   Larichev and J. K. Dukowicz and R. D. Smith},
832  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
833  journal = JPO,
834  year = {1998},
835  volume = {28},
836  pages = {805-830},
837  number = {5},
838  abstract = {This paper considers the requirements that must be satisfied in order
839   to provide a stable and physically based isoneutral tracer diffusion
840   scheme in a z-coordinate ocean model. Two properties are emphasized:
841   1) downgradient orientation of the diffusive fluxes along the neutral
842   directions and 2) zero isoneutral diffusive flux of locally referenced
843   potential density. It is shown that the Cox diffusion scheme does
844   not respect either of these properties, which provides an explanation
845   for the necessity to add a nontrivial background horizontal diffusion
846   to that scheme. A new isoneutral diffusion scheme is proposed that
847   aims to satisfy the stated properties and is found to require no
848   horizontal background diffusion.},
849  date = {May 01, 1998},
850  owner = {gm},
851  timestamp = {2007.08.05}
852}
853
854@ARTICLE{Griffies2001,
855  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
856  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
857   Ocean Models},
858  journal = MWR,
859  year = {2001},
860  volume = {129},
861  pages = {1081-1098},
862  number = {5},
863  abstract = {This paper details a free surface method using an explicit time stepping
864   scheme for use in z-coordinate ocean models. One key property that
865   makes the method especially suitable for climate simulations is its
866   very stable numerical time stepping scheme, which allows for the
867   use of a long density time step, as commonly employed with coarse-resolution
868   rigid-lid models. Additionally, the effects of the undulating free
869   surface height are directly incorporated into the baroclinic momentum
870   and tracer equations. The novel issues related to local and global
871   tracer conservation when allowing for the top cell to undulate are
872   the focus of this work. The method presented here is quasi-conservative
873   locally and globally of tracer when the baroclinic and tracer time
874   steps are equal. Important issues relevant for using this method
875   in regional as well as large-scale climate models are discussed and
876   illustrated, and examples of scaling achieved on parallel computers
877   provided.},
878  date = {May 01, 2001},
879  owner = {gm},
880  timestamp = {2007.08.04}
881}
882
883@ARTICLE{Guily2001,
884  author = {E. Guilyardi and G. Madec and L. Terray},
885  title = {The role of lateral ocean physics in the upper ocean thermal balance
886   of a coupled ocean-atmosphere GCM},
887  journal = CD,
888  year = {2001},
889  volume = {17},
890  pages = {589-599},
891  number = {8},
892  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
893}
894
895@BOOK{Haltiner1980,
896  title = {Numerical prediction and dynamic meteorology},
897  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
898  year = {1980},
899  author = {G. J. Haltiner and R. T. Williams},
900  owner = {gm},
901  timestamp = {2007.08.03}
902}
903
904@ARTICLE{Haney1991,
905  author = {R. L. Haney},
906  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
907   Ocean Models},
908  journal = JPO,
909  year = {1991},
910  volume = {21},
911  pages = {610--619
912   
913   },
914  number = {4},
915  abstract = {The error in computing the pressure gradient force near steep topography
916   using terms following (σ) coordinates is investigated in an
917   ocean model using the family of vertical differencing schemes proposed
918   by Arakawa and Suarez. The truncation error is estimated by substituting
919   known buoyancy profiles into the finite difference hydrostatic and
920   pressure gradient terms. The error due to “hydrostatic inconsistency,”
921   which is not simply a space truncation error, is also documented.
922   The results show that the pressure gradient error is spread throughout
923   the water column, and it is sensitive to the vertical resolution
924   and to the placement of the grid points relative to the vertical
925   structure of the buoyancy field being modeled. Removing a reference
926   state, as suggested for the atmosphere by Gary, reduces the truncation
927   error associated with the two lowest vertical modes by a factor of
928   2 to 3. As an example, the error in computing the pressure gradient
929   using a standard 10-level primitive equation model applied to buoyancy
930   profiles and topographic slopes typical of the California Current
931   region corresponds to a false geostrophic current of the order of
932   10–12 cm s−1. The analogous error in a hydrostatically
933   consistent 30-level model with the reference state removed is about
934   an order of magnitude smaller.},
935  date = {April 01, 1991},
936  owner = {gm},
937  timestamp = {2007.08.03}
938}
939
940@ARTICLE{Hsu1990,
941  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
942  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
943   Coordinate},
944  journal = MWR,
945  year = {1990},
946  volume = {118},
947  pages = {1933--1959
948   
949   },
950  number = {10},
951  abstract = {In constructing a numerical model of the atmosphere, we must choose
952   an appropriate vertical coordinate. Among the various possibilities,
953   isentropic vertical coordinates such as the θ-coordinate seem
954   to have the greatest potential, in spite of the technical difficulties
955   in treating the intersections of coordinate surfaces with the lower
956   boundary. The purpose of this paper is to describe the θ-coordinate
957   model we have developed and to demonstrate its potential through
958   simulating the nonlinear evolution of a baroclinic wave.In the model
959   we have developed, vertical discretization maintains important integral
960   constraints, such as conservation of the angular momentum and total
961   energy. In treating the intersections of coordinate surfaces with
962   the lower boundary, we have followed the massless-layer approach
963   in which the intersecting coordinate surfaces are extended along
964   the boundary by introducing massless layers. Although this approach
965   formally eliminates the intersection problem, it raises other computational
966   problems. Horizontal discretization of the continuity and momentum
967   equations in the model has been carefully designed to overcome these
968   problems.Selected results from a 10-day integration with the 25-layer,
969   β-plane version of the model are presented. It seems that the
970   model can simulate the nonlinear evolution of a baroclinic wave and
971   associated dynamical processes without major computational difficulties.},
972  date = {October 01, 1990},
973  owner = {gm},
974  timestamp = {2007.08.05}
975}
976
977@ARTICLE{JackMcD1995,
978  author = {D. R. Jackett and T. J. McDougall},
979  title = {Minimal adjustment of hydrographic data to achieve static stability},
980  journal = JAOT,
981  year = {1995},
982  volume = {12},
983  pages = {381-389},
984  owner = {gm},
985  timestamp = {2007.08.04}
986}
987
988@BOOK{Jerlov1968,
989  title = {Optical Oceanography},
990  publisher = {194pp},
991  year = {1968},
992  author = {N. G. Jerlov},
993  owner = {gm},
994  timestamp = {2007.08.04}
995}
996
997@INPROCEEDINGS{Killworth1989,
998  author = {P. D. Killworth},
999  title = {On the parameterization of deep convection in ocean models},
1000  booktitle = {Parameterization of small-scale processes},
1001  year = {1989},
1002  editor = {Hawaiian winter workshop},
1003  month = {January 17-20},
1004  organization = {University of Hawaii at Manoa},
1005  owner = {gm},
1006  timestamp = {2007.08.06}
1007}
1008
1009@ARTICLE{Killworth1992,
1010  author = {P. D. Killworth},
1011  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
1012  journal = JPO,
1013  year = {1992},
1014  volume = {22},
1015  pages = {1379-1387}
1016}
1017
1018@ARTICLE{Killworth1991,
1019  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
1020   S. M.},
1021  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
1022  journal = JPO,
1023  year = {1991},
1024  volume = {21},
1025  pages = {1333--1348},
1026  number = {9},
1027  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
1028   circulation model, adapted to include a free surface, is described.
1029   The model is designed for the following uses: tidal studies
1030   (a tidal option is explicitly included); assimilation of altimetric
1031   data (since the surface elevation is now a prognostic variable);
1032   and in situations where accurate relaxation to obtain the streamfunction
1033   in the original model is too time consuming. Comparison is made between
1034   a 300-year run of the original model and the free-surface version,
1035   using a very coarse North Atlantic calculation as the basis. The
1036   results are very similar, differing only in the streamfunction over
1037   topography; this is to be expected, since the treatment of topographic
1038   torques on the barotropic flow differs because of the nature of the
1039   modifications.},
1040  date = {September 01, 1991},
1041  owner = {gm},
1042  timestamp = {2007.08.03}
1043}
1044
1045@ARTICLE{Kolmogorov1942,
1046  author = {A. N. Kolmogorov},
1047  title = {The equation of turbulent motion in an incompressible fluid},
1048  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
1049  year = {1942},
1050  volume = {6},
1051  pages = {56-58},
1052  owner = {gm},
1053  timestamp = {2007.08.06}
1054}
1055
1056@PHDTHESIS{Levy1996,
1057  author = {M. L\'{e}vy},
1058  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
1059   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
1060  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
1061  year = {1996},
1062  owner = {gm},
1063  timestamp = {2007.08.04}
1064}
1065
1066@ARTICLE{Levy2001,
1067  author = {M. L\'{e}vy and A. Estubier and G Madec},
1068  title = {Choice of an advection scheme for biogeochemical models},
1069  journal = GRL,
1070  year = {2001},
1071  volume = {28},
1072  owner = {gm},
1073  timestamp = {2007.08.04}
1074}
1075
1076@ARTICLE{Levy1998,
1077  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
1078  title = {The onset of a bloom after deep winter convection in the Northwestern
1079   Mediterranean Sea: mesoscale
1080   
1081   process study with a primitive equation model},
1082  journal = JMS,
1083  year = {1998},
1084  volume = {16/1-2},
1085  owner = {gm},
1086  timestamp = {2007.08.10}
1087}
1088
1089@BOOK{LargeYeager2004,
1090  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
1091   data sets and flux climatologies},
1092  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
1093   Center for Atmospheric Research},
1094  year = {2004},
1095  author = {W. Large and S. Yeager},
1096  owner = {gm},
1097  timestamp = {2007.08.06}
1098}
1099
1100@ARTICLE{large1994,
1101  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
1102  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
1103   layer parameterization},
1104  journal = {Reviews of Geophysics},
1105  year = {1994},
1106  volume = {32},
1107  pages = {363-404},
1108  doi = {10.1029/94RG01872},
1109  owner = {gm},
1110  timestamp = {2007.08.03}
1111}
1112
1113@PHDTHESIS{Lazar1997,
1114  author = {A. Lazar},
1115  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
1116   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
1117   id\'{e}alis\'{e}e},
1118  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
1119  year = {1997},
1120  owner = {gm},
1121  timestamp = {2007.08.06}
1122}
1123
1124@ARTICLE{Lazar1999,
1125  author = {A. Lazar and G. Madec and P. Delecluse},
1126  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1127   Tracer Transport Parameterizations in an OGCM},
1128  journal = JPO,
1129  year = {1999},
1130  volume = {29},
1131  pages = {2945-2961},
1132  number = {11},
1133  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1134   a vast interior downwelling and a companion intense western boundary
1135   layer upwelling at midlatitude below the thermocline. These features,
1136   related to the so-called Veronis effect, are poorly rationalized
1137   and depart strongly from the classical vision of the deep circulation
1138   where upwelling is considered to occur in the interior. Furthermore,
1139   they significantly alter results of ocean general circulation models
1140   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1141   showed that the parameterization for mesoscale eddy effects formulated
1142   by Gent and McWilliams allows integral quantities like the streamfunction
1143   and meridional heat transport to be free of these undesired effects.
1144   In this paper, an idealized OGCM is used to validate an analytical
1145   rationalization of the processes at work and help understand the
1146   physics. The results show that the features associated with the Veronis
1147   effect can be related quantitatively to three different width scales
1148   that characterize the baroclinic structure of the deep western boundary
1149   current. In addition, since one of these scales may be smaller than
1150   the Munk barotropic layer, usually considered to determine the minimum
1151   resolution and horizontal viscosity for numerical models, the authors
1152   recommend that it be taken into account. Regarding the introduction
1153   of the new parameterization, diagnostics in terms of heat balances
1154   underline some interesting similarities between local heat fluxes
1155   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1156   when a common large diffusivity (here 2000 m2 s−1) is used.
1157   The near-quasigeostrophic character of the flow explains these results.
1158   As a consequence, the response of the Eulerian-mean circulation is
1159   locally similar for runs using either of the two parameterizations.
1160   However, it is shown that the advective nature of the eddy-induced
1161   heat fluxes results in a very different effective circulation, which
1162   is the one felt by tracers.},
1163  date = {November 01, 1999},
1164  owner = {gm},
1165  timestamp = {2007.08.06}
1166}
1167
1168@ARTICLE{Lengaigne_al_JGR03,
1169  author = {M. Lengaigne and G. Madec and G. Alory and C. Menkes},
1170  title = {Sensitivity of the tropical Pacific Ocean to isopycnal diffusion
1171   on tracer and dynamics},
1172  journal = JGR,
1173  year = {2003},
1174  volume = {108 (C11)},
1175  pages = {3345, doi:10.1029/2002JC001704},
1176  owner = {gm},
1177  timestamp = {2008.01.26}
1178}
1179
1180@ARTICLE{Leonard1991,
1181  author = {B. P. Leonard},
1182  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1183   advection},
1184  journal = {Computer Methods in Applied Mechanics and Engineering},
1185  year = {1991},
1186  pages = {17-74},
1187  owner = {gm},
1188  timestamp = {2007.08.04}
1189}
1190
1191@TECHREPORT{Leonard1988,
1192  author = {B. P. Leonard},
1193  title = {Universal limiter for transient interpolation modelling of the advective
1194   transport equations},
1195  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1196  year = {1988},
1197  owner = {gm},
1198  timestamp = {2007.08.04}
1199}
1200
1201@ARTICLE{Leonard1979,
1202  author = {B. P. Leonard},
1203  title = {A stable and accurate convective modelling procedure based on quadratic
1204   upstream interpolation},
1205  journal = {Computer Methods in Applied Mechanics and Engineering},
1206  year = {1979},
1207  volume = {19},
1208  pages = {59-98},
1209  month = jun,
1210  owner = {gm},
1211  timestamp = {2007.08.04}
1212}
1213
1214@TECHREPORT{Levier2007,
1215  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1216  title = {Free surface and variable volume in the NEMO code},
1217  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1218   NEMO web site},
1219  year = {2007},
1220  owner = {gm},
1221  timestamp = {2007.08.03}
1222}
1223
1224@BOOK{levitus82,
1225  title = {Climatological Atlas of the world ocean},
1226  publisher = {NOAA professional paper No. 13, 174pp},
1227  year = {1982},
1228  author = {S Levitus },
1229  note = {173 p.}
1230}
1231
1232@TECHREPORT{Lott1989,
1233  author = {F. Lott and G. Madec},
1234  title = {Implementation of bottom topography in the Ocean General Circulation
1235   Model OPA of the LODYC: formalism and experiments.},
1236  institution = {LODYC, France, 36pp.},
1237  year = {1989},
1238  number = {3},
1239  owner = {gm},
1240  timestamp = {2007.08.03}
1241}
1242
1243@ARTICLE{Lott1990,
1244  author = {F. Lott and G. Madec and J. Verron},
1245  title = {Topographic experiments in an Ocean General Circulation Model},
1246  journal = {Ocean Modelling},
1247  year = {1990},
1248  volume = {88},
1249  pages = {1-4},
1250  owner = {gm},
1251  timestamp = {2007.08.03}
1252}
1253
1254@PHDTHESIS{Madec1990,
1255  author = {G. Madec},
1256  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1257   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1258  school = {Universit\'{e}Pierre et Marie Curie, Paris, France, 194pp.},
1259  year = {1990},
1260  owner = {gm},
1261  timestamp = {2007.08.10}
1262}
1263
1264@ARTICLE{Madec1991a,
1265  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1266  title = {Effect of thermohaline forcing variability on deep water formation
1267   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1268   study},
1269  journal = DAO,
1270  year = {1991},
1271  owner = {gm},
1272  timestamp = {2007.08.06}
1273}
1274
1275@ARTICLE{Madec1991b,
1276  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1277  title = {A three-dimensional numerical study of deep water formation in the
1278   
1279   
1280   Northwestern Mediterranean Sea .},
1281  journal = JPO,
1282  year = {1991},
1283  volume = {21},
1284  owner = {gm},
1285  timestamp = {2007.08.06}
1286}
1287
1288@INBOOK{Madec1991c,
1289  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1290   Sea},
1291  title = {Deep convection and deep water formation in the oceans},
1292  publisher = {Elsevier Oceanographic Series},
1293  year = {1991},
1294  author = {G. Madec and M. Cr\'{e}pon},
1295  owner = {gm},
1296  timestamp = {2007.08.06}
1297}
1298
1299@ARTICLE{Madec1997,
1300  author = {G. Madec and P. Delecluse},
1301  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1302  journal = {Int. WOCE Newsletter},
1303  year = {1997},
1304  volume = {26},
1305  pages = {12-15},
1306  owner = {gm},
1307  timestamp = {2007.08.06}
1308}
1309
1310@TECHREPORT{Madec1998,
1311  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1312  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1313  institution = {LODYC/IPSL Note 11},
1314  year = {1998}
1315}
1316
1317@ARTICLE{MadecImb1996,
1318  author = {G Madec and M Imbard},
1319  title = {A global ocean mesh to overcome the north pole singularity},
1320  journal = CD,
1321  year = {1996},
1322  volume = {12},
1323  pages = {381-388}
1324}
1325
1326@ARTICLE{Madec1996,
1327  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1328  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1329   Mediterranean Sea},
1330  journal = JPO,
1331  year = {1996},
1332  volume = {26},
1333  pages = {1393-1408},
1334  number = {8},
1335  month = aug,
1336  abstract = {The large-scale processes preconditioning the winter deep-water formation
1337   in the northwestern Mediterranean Sea are investigated with a primitive
1338   equation numerical model where convection is parameterized by a non-penetrative
1339   convective adjustment algorithm. The ocean is forced by momentum
1340   and buoyancy fluxes that have the gross features of mean winter forcing
1341   found in the MEDOC area. The wind-driven barotropic circulation appears
1342   to be a major ingredient of the preconditioning phase of deep-water
1343   formation. After three months, the ocean response is dominated by
1344   a strong barotropic cyclonic vortex located under the forcing area,
1345   which fits the Sverdrup balance away from the northern coast. In
1346   the vortex center, the whole water column remains trapped under the
1347   forcing area all winter. This trapping enables the thermohaline forcing
1348   to drive deep-water formation efficiently. Sensitivity studies show
1349   that, β effect and bottom topography play a paramount role and
1350   confirm that deep convection occurs only in areas that combine a
1351   strong surface thermohaline forcing and a weak barotropic advection
1352   so that water masses are submitted to the negative buoyancy fluxes
1353   for a much longer time. In particular, the impact of the Rhône
1354   Deep Sea Fan on the barotropic circulation dominates the β effect:
1355   the barotropic flow is constrained to follow the bathymetric contours
1356   and the cyclonic vortex is shifted southward so that the fluid above
1357   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1358   above the fan in agreement with observations. The selection of the
1359   area of deep-water formation through the defection of the barotropic
1360   circulation by the topography seems a more efficient mechanism than
1361   those associated with the wind- driven barotropic vortex. This is
1362   due to its permanency, while the latter may be too sensitive to time
1363   and space variations of the forcing.},
1364  owner = {gm},
1365  timestamp = {2007.08.03}
1366}
1367
1368@ARTICLE{Madec1988,
1369  author = {G. Madec and C. Rahier and M. Chartier},
1370  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1371   streamfunction in a multilevel OGCM},
1372  journal = {Ocean Modelling},
1373  year = {1988},
1374  volume = {78},
1375  owner = {gm},
1376  timestamp = {2007.08.10}
1377}
1378
1379@ARTICLE{Maltrud1998,
1380  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1381  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1382   winds},
1383  journal = JGR,
1384  year = {1998},
1385  volume = {103(C13)},
1386  pages = {30,825-30,854},
1387  owner = {gm},
1388  timestamp = {2007.08.05}
1389}
1390
1391@ARTICLE{Marchesiello2001,
1392  author = { P. Marchesiello and J. Mc Williams and A. Shchepetkin },
1393  title = {Open boundary conditions for long-term integrations of Regional Oceanic
1394   Models},
1395  journal = {Ocean Modelling},
1396  year = {2001},
1397  volume = {3},
1398  pages = {1-20}
1399}
1400
1401@PHDTHESIS{MartiTh1992,
1402  author = {O. Marti},
1403  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1404   et du transport de traceurs anthropog\'{e}niques},
1405  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1406  year = {1992},
1407  owner = {gm},
1408  timestamp = {2007.08.04}
1409}
1410
1411@ARTICLE{Marti1992,
1412  author = {O. Marti and G. Madec and P. Delecluse},
1413  title = {Comment on "Net diffusivity in ocean general circulation models with
1414   nonuniform grids" by F. L. Yin and I. Y. Fung},
1415  journal = JGR,
1416  year = {1992},
1417  volume = {97},
1418  pages = {12763-12766},
1419  month = aug,
1420  owner = {gm},
1421  timestamp = {2007.08.03}
1422}
1423
1424@ARTICLE{McDougall1987,
1425  author = {T. J. McDougall},
1426  title = {Neutral Surfaces},
1427  journal = {Journal of Physical Oceanography},
1428  year = {1987},
1429  volume = {17},
1430  pages = {1950-1964},
1431  number = {11},
1432  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1433   rather efficiently by mesoscale eddies and two-dimensional turbulence
1434   along “neutral surfaces”, defined such that when water
1435   parcels are moved small distances in the neutral surface, they experience
1436   no buoyant restoring forces. By contrast, work would have to be done
1437   on a moving fluid parcel in order to keep it on a potential density
1438   surface. The differences between neutral surfaces and potential density
1439   surfaces are due to the variation of α/β with pressure
1440   (where α is the thermal expansion coefficient and β is
1441   the saline contraction coefficient). By regarding the equation of
1442   state of seawater as a function of salinity, potential temperature,
1443   and pressure, rather than in terms of salinity, temperature, and
1444   pressure, it is possible to quantify the differences between neutral
1445   surfaces and potential density surfaces. In particular, the spatial
1446   gradients of scalar properties (e.g., S, θ, tritium or potential
1447   vorticity) on a neutral surface can be quite different to the corresponding
1448   gradients in a potential density surface. For example, at a potential
1449   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1450   of potential temperature in a potential density surface (referenced
1451   to sea level) is too large by between 50% and 350% (depending
1452   on the stability ratio Rp of the water column) compared with the
1453   physically relevant gradient of potential temperature on the neutral
1454   surface. Three-examples of neutral surfaces are presented, based
1455   on the Levitus atlas of the North Atlantic.},
1456  date = {November 01, 1987},
1457  owner = {gm},
1458  timestamp = {2007.08.04}
1459}
1460
1461@ARTICLE{Merryfield1999,
1462  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1463  title = {A Global Ocean Model with Double-Diffusive Mixing},
1464  journal = JPO,
1465  year = {1999},
1466  volume = {29},
1467  pages = {1124-1142},
1468  number = {6},
1469  abstract = {A global ocean model is described in which parameterizations of diapycnal
1470   mixing by double-diffusive fingering and layering are added to a
1471   stability-dependent background turbulent diffusivity. Model runs
1472   with and without double-diffusive mixing are compared for annual-mean
1473   and seasonally varying surface forcing. Sensitivity to different
1474   double-diffusive mixing parameterizations is considered. In all cases,
1475   the locales and extent of salt fingering (as diagnosed from buoyancy
1476   ratio Rρ) are grossly comparable to climatology, although fingering
1477   in the models tends to be less intense than observed. Double-diffusive
1478   mixing leads to relatively minor changes in circulation but exerts
1479   significant regional influences on temperature and salinity.},
1480  date = {June 01, 1999},
1481  owner = {gm},
1482  timestamp = {2007.08.06}
1483}
1484
1485@BOOK{Mesinger_Arakawa_Bk76,
1486  title = {Numerical methods used in Atmospheric models},
1487  publisher = {GARP Publication Series No 17},
1488  year = {1976},
1489  author = {F. Mesinger and A. Arakawa},
1490  owner = {gm},
1491  timestamp = {2008.02.09}
1492}
1493
1494@ARTICLE{Murray1996,
1495  author = {R. J. Murray},
1496  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1497  journal = JCP,
1498  year = {1996},
1499  volume = {126},
1500  pages = {251-273},
1501  number = {2},
1502  month = {July},
1503  owner = {gm},
1504  timestamp = {2007.08.03}
1505}
1506
1507@PHDTHESIS{OlivierPh2001,
1508  author = {F. Olivier},
1509  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1510   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1511  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1512  year = {2001},
1513  owner = {gm},
1514  timestamp = {2007.08.14}
1515}
1516
1517@ARTICLE{PacPhil1981,
1518  author = {R.C. Pacanowski and S.G.H. Philander},
1519  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1520   Oceans},
1521  journal = JPO,
1522  year = {1981},
1523  volume = {11},
1524  pages = {1443-1451},
1525  number = {11},
1526  abstract = {Measurements indicate that mixing processes are intense in the surface
1527   layers of the ocean but weak below the thermocline, except for the
1528   region below the core of the Equatorial Undercurrent where vertical
1529   temperature gradients are small and the shear is large. Parameterization
1530   of these mixing processes by means of coefficients of eddy mixing
1531   that are Richardson-number dependent, leads to realistic simulations
1532   of the response of the equatorial oceans to different windstress
1533   patterns. In the case of eastward winds results agree well with measurements
1534   in the Indian Ocean. In the case of westward winds it is of paramount
1535   importance that the nonzero heat flux into the ocean be taken into
1536   account. This beat flux stabilizes the upper layers and reduces the
1537   intensity of the mixing, especially in the cast. With an appropriate
1538   surface boundary condition, the results are relatively insensitive
1539   to values assigned to constants in the parameterization formula.},
1540  date = {November 01, 1981},
1541  owner = {gm},
1542  timestamp = {2007.08.03}
1543}
1544
1545@ARTICLE{Pacanowski_Gnanadesikan_MWR98,
1546  author = {R. C. Pacanowski and A. Gnanadesikan},
1547  title = {Transient response in a z-level ocean model that resolves topography
1548   
1549   
1550   with partial-cells},
1551  journal = MWR,
1552  year = {1998},
1553  volume = {126},
1554  pages = {3248-3270},
1555  owner = {gm},
1556  timestamp = {2008.01.26}
1557}
1558
1559@ARTICLE{Paulson1977,
1560  author = {C. A. Paulson and J. J. Simpson},
1561  title = {Irradiance Measurements in the Upper Ocean},
1562  journal = JPO,
1563  year = {1977},
1564  volume = {7},
1565  pages = {952-956},
1566  number = {6},
1567  abstract = {Observations were made of downward solar radiation as a function of
1568   depth during an experiment in the North Pacific (35°N, 155°W).
1569   The irradiance meter employed was sensitive to solar radiation of
1570   wavelength 400–1000 nm arriving from above at a horizontal
1571   surface. Because of selective absorption of the short and long wavelengths,
1572   the irradiance decreases much faster than exponential in the upper
1573   few meters, falling to one-third of the incident value between 2
1574   and 3 m depth. Below 10 m the decrease was exponential at a rate
1575   characteristic of moderately clear water of Type IA. Neglecting one
1576   case having low sun altitude, the observations are well represented
1577   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1578   where I is the irradiance at depth −z, I0 is the irradiance
1579   at the surface less reflected solar radiation, R=0.62, ζ1
1580   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1581   and z is the vertical space coordinate, positive upward with the
1582   origin at mean sea level. The depth at which the irradiance falls
1583   to 10% of its surface value is nearly the same as observations
1584   of Secchi depth when cases with high wind speed or low solar altitude
1585   are neglected. Parameters R, ζ1, and ζ2 are computed for
1586   the entire range of oceanic water types.},
1587  date = {November 01, 1977},
1588  owner = {gm},
1589  timestamp = {2007.08.04}
1590}
1591
1592@ARTICLE{Penduff2000,
1593  author = {T. Penduff and B. Barnier and A. Colin de Verdi\`{e}re},
1594  title = { Self-adapting open boundaries for a regional model of the eastern
1595   North Atlantic},
1596  journal = JGR,
1597  year = {2000},
1598  volume = {105},
1599  pages = {11,279-11,297}
1600}
1601
1602@ARTICLE{Penduff2007,
1603  author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and
1604   J. Molines and G. Madec},
1605  title = {Influence of numerical schemes on current-topography interactions
1606   in 1/4$^{\circ}$ global ocean simulations},
1607  journal = {Ocean Science},
1608  year = {2007},
1609  volume = {?},
1610  pages = {in revision}
1611}
1612
1613@ARTICLE{Phillips1959,
1614  author = {R. S. Phillips},
1615  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1616   Equations},
1617  journal = {Transactions of the American Mathematical Society},
1618  year = {1959},
1619  volume = {90(2)},
1620  pages = {193-254},
1621  doi = {doi:10.2307/1993202},
1622  owner = {gm},
1623  timestamp = {2007.08.10}
1624}
1625
1626@ARTICLE{Redi_JPO82,
1627  author = {M. H. Redi},
1628  title = {Oceanic isopycnal mixing by coordinate rotation},
1629  journal = JPO,
1630  year = {1982},
1631  volume = {13},
1632  pages = {1154-1158},
1633  owner = {gm},
1634  timestamp = {2008.02.02}
1635}
1636
1637@ARTICLE{Reverdin1991,
1638  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1639   Morli\`{e}re and J. M. Verstraete},
1640  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1641   numerical simulation and a data analysis},
1642  journal = PO,
1643  year = {1991},
1644  volume = {27},
1645  pages = {273-340},
1646  owner = {gm},
1647  timestamp = {2007.08.04}
1648}
1649
1650@BOOK{Richtmyer1967,
1651  title = {Difference methods for initial-value problems},
1652  publisher = {Interscience Publisher, Second Edition, 405pp},
1653  year = {1967},
1654  author = {R. D. Richtmyer and K. W. Morton},
1655  owner = {gm},
1656  timestamp = {2007.08.04}
1657}
1658
1659@ARTICLE{Robert1966,
1660  author = {A. J. Robert},
1661  title = {The integration of a Low order spectral form of the primitive meteorological
1662   equations},
1663  journal = {J. Meteo. Soc. Japan},
1664  year = {1966},
1665  volume = {44, 2},
1666  owner = {gm},
1667  timestamp = {2007.08.04}
1668}
1669
1670@INCOLLECTION{Roed1986,
1671  author = {L.P. Roed and C.K. Cooper},
1672  title = {Open boundary conditions in numerical ocean models},
1673  booktitle = {Advanced Physical Oceanography Numerical Modelling},
1674  publisher = { NATO ASI Series, vol. 186.},
1675  year = {1986},
1676  editor = {J.J. O'Brien}
1677}
1678
1679@ARTICLE{Roullet2000,
1680  author = {G. Roullet and G. Madec},
1681  title = {salt conservation, free surface, and varying levels: a new formulation
1682   for ocean general circulation models},
1683  journal = JGR,
1684  year = {2000},
1685  volume = {105},
1686  pages = {23,927-23,942},
1687  owner = {sandra},
1688  pdf = {Roullet_Madec_JGR00.pdf},
1689  timestamp = {2007.03.22}
1690}
1691
1692@ARTICLE{Sadourny1975,
1693  author = {R. Sadourny},
1694  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1695  journal = JAS,
1696  year = {1975},
1697  volume = {32},
1698  pages = {680-689},
1699  number = {4},
1700  abstract = {Two simple numerical models of the shallow-water equations identical
1701   in all respects but for their con-servation properties have been
1702   tested regarding their internal mixing processes. The experiments
1703   show that violation of enstrophy conservation results in a spurious
1704   accumulation of rotational energy in the smaller scales, reflected
1705   by an unrealistic increase of enstrophy, which ultimately produces
1706   a finite rate of energy dissipation in the zero viscosity limit,
1707   thus violating the well-known dynamics of two-dimensional flow. Further,
1708   the experiments show a tendency to equipartition of the kinetic energy
1709   of the divergent part of the flow in the inviscid limit, suggesting
1710   the possibility of a divergent energy cascade in the physical system,
1711   as well as a possible influence of the energy mixing on the process
1712   of adjustment toward balanced flow.},
1713  date = {April 01, 1975},
1714  owner = {gm},
1715  timestamp = {2007.08.05}
1716}
1717
1718@ARTICLE{Sarmiento1982,
1719  author = {J. L. Sarmiento and K. Bryan},
1720  title = {Ocean transport model for the North Atlantic},
1721  journal = JGR,
1722  year = {1982},
1723  volume = {87},
1724  pages = {394-409},
1725  owner = {gm},
1726  timestamp = {2007.08.04}
1727}
1728
1729@ARTICLE{Sacha2005,
1730  author = {A. F. Shchepetkin and J. C. McWilliams},
1731  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1732   topography-following-coordinate oceanic modelr},
1733  journal = {Ocean Modelling},
1734  year = {2005},
1735  volume = {9, 4},
1736  pages = {347-404},
1737  owner = {gm},
1738  timestamp = {2007.08.04}
1739}
1740
1741@ARTICLE{Sacha2003,
1742  author = {A. F. Shchepetkin and J. C. McWilliams},
1743  title = {A method for computing horizontal pressure-gradient force in an oceanic
1744   model with a nonaligned
1745   
1746   vertical coordinate},
1747  journal = JGR,
1748  year = {2003},
1749  volume = {108(C3)},
1750  pages = {3090, doi:10.1029/2001JC001047},
1751  owner = {gm},
1752  timestamp = {2007.08.05}
1753}
1754
1755@ARTICLE{Shchepetkin1996,
1756  author = {A. F. Shchepetkin and J. J. O'Brien},
1757  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1758   Equation Ocean Models},
1759  journal = MWR,
1760  year = {1996},
1761  volume = {124},
1762  pages = {1285-1300},
1763  number = {6},
1764  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1765   processes in which the friction is physically relevant and to prevent
1766   numerical instability by suppressing accumulation of energy in the
1767   smallest resolved scales. This study shows that even for the latter
1768   case the form of the friction term should be chosen in a physically
1769   consistent way. Violation of fundamental physical principles reduces
1770   the fidelity of the numerical solution, even if the friction is small.
1771   Several forms of the lateral friction, commonly used in numerical
1772   ocean models, are discussed in the context of shallow-water equations
1773   with nonuniform layer thickness. It is shown that in a numerical
1774   model tuned for the minimal dissipation, the improper form of the
1775   friction term creates finite artificial vorticity sources that do
1776   not vanish with increased resolution, even if the viscous coefficient
1777   is reduced consistently with resolution. An alternative numerical
1778   implementation of the no-slip boundary conditions for an arbitrary
1779   coast line is considered. It was found that the quality of the numerical
1780   solution may be considerably improved by discretization of the viscous
1781   stress tensor in such a way that the numerical boundary scheme approximates
1782   not only the stress tensor to a certain order of accuracy but also
1783   simulates the truncation error of the numerical scheme used in the
1784   interior of the domain. This ensures error cancellation during subsequent
1785   use of the elements of the tensor in the discrete version of the
1786   momentum equations, allowing for approximation of them without decrease
1787   in the order of accuracy near the boundary.},
1788  date = {June 01, 1996},
1789  owner = {gm},
1790  timestamp = {2007.08.14}
1791}
1792
1793@ARTICLE{Simmons2003,
1794  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1795  title = {Tidally driven mixing in a numerical model of the
1796   
1797   ocean general circulation},
1798  journal = OM,
1799  year = {2003},
1800  pages = {1-19},
1801  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1802   tidal energy is dissipated in the
1803   
1804   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1805   energy is converted from the barotropic
1806   
1807   to internal tides in the deep ocean, predominantly around regions
1808   of rough topography such as midocean
1809   
1810   ridges. Aglobal tidal model is used to compute turbulent energy levels
1811   associated with the dissipation
1812   
1813   of internal tides, and the diapycnal mixing supported by this energy
1814   ?ux is computed using a simple parameterization.
1815   
1816   The mixing parameterization has been incorporated into a coarse resolution
1817   numerical model of the
1818   
1819   global ocean. This parameterization o?ers an energetically consistent
1820   and practical means of improving the
1821   
1822   representation of ocean mixing processes in climate models. Novel
1823   features of this implementation are that
1824   
1825   the model explicitly accounts for the tidal energy source for mixing,
1826   and that the mixing evolves both
1827   
1828   spatially and temporally with the model state. At equilibrium, the
1829   globally averaged di?usivity pro?le
1830   
1831   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1832   abyss with a depth average of 0.9
1833   
1834   cm2 s1, in close agreement with inferences from global balances.
1835   Water properties are strongly in?uenced
1836   
1837   by the combination of weak mixing in the main thermocline and enhanced
1838   mixing in the deep ocean.
1839   
1840   Climatological comparisons show that the parameterized mixing scheme
1841   results in a substantial reduction},
1842  owner = {sandra},
1843  pdf = {Simmons_mixing_OM2003.pdf},
1844  timestamp = {2007.03.22}
1845}
1846
1847@ARTICLE{Song1994,
1848  author = {Y. Song and D. Haidvogel},
1849  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
1850   Coordinate System
1851   
1852   Authors:},
1853  journal = JCP,
1854  year = {1994},
1855  volume = {115, 1},
1856  owner = {gm},
1857  timestamp = {2007.08.04}
1858}
1859
1860@ARTICLE{Song1998,
1861  author = {Y. T. Song},
1862  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
1863   Scheme Design and Diagnostic Analysis},
1864  journal = MWR,
1865  year = {1998},
1866  volume = {126},
1867  pages = {3213-3230},
1868  number = {12},
1869  abstract = {A Jacobian formulation of the pressure gradient force for use in models
1870   with topography-following coordinates is proposed. It can be used
1871   in conjunction with any vertical coordinate system and is easily
1872   implemented. Vertical variations in the pressure gradient are expressed
1873   in terms of a vertical integral of the Jacobian of density and depth
1874   with respect to the vertical computational coordinate. Finite difference
1875   approximations are made on the density field, consistent with piecewise
1876   linear and continuous fields, and accurate pressure gradients are
1877   obtained by vertically integrating the discrete Jacobian from sea
1878   surface.Two discrete schemes are derived and examined in detail:
1879   the first using standard centered differencing in the generalized
1880   vertical coordinate and the second using a vertical weighting such
1881   that the finite differences are centered with respect to the Cartesian
1882   z coordinate. Both schemes achieve second-order accuracy for any
1883   vertical coordinate system and are significantly more accurate than
1884   conventional schemes based on estimating the pressure gradients by
1885   finite differencing a previously determined pressure field.The standard
1886   Jacobian formulation is constructed to give exact pressure gradient
1887   results, independent of the bottom topography, if the buoyancy field
1888   varies bilinearly with horizontal position, x, and the generalized
1889   vertical coordinate, s, over each grid cell. Similarly, the weighted
1890   Jacobian scheme is designed to achieve exact results, when the buoyancy
1891   field varies linearly with z and arbitrarily with x, that is, b(x,z)
1892   = b0(x) + b1(x)z.When horizontal resolution cannot be made
1893   fine enough to avoid hydrostatic inconsistency, errors can be substantially
1894   reduced by the choice of an appropriate vertical coordinate. Tests
1895   with horizontally uniform, vertically varying, and with horizontally
1896   and vertically varying buoyancy fields show that the standard Jacobian
1897   formulation achieves superior results when the condition for hydrostatic
1898   consistency is satisfied, but when coarse horizontal resolution causes
1899   this condition to be strongly violated, the weighted Jacobian may
1900   give superior results.},
1901  date = {December 01, 1998},
1902  owner = {gm},
1903  timestamp = {2007.08.05}
1904}
1905
1906@ARTICLE{SongWright1998,
1907  author = {Y. T. Song and D. G. Wright},
1908  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
1909   - Energy, Momentum, and Bottom Torque Consistency},
1910  journal = MWR,
1911  year = {1998},
1912  volume = {126},
1913  pages = {3231-3247},
1914  number = {12},
1915  abstract = {A new formulation of the pressure gradient force for use in models
1916   with topography-following coordinates is proposed and diagnostically
1917   analyzed in Part I. Here, it is shown that important properties of
1918   the continuous equations are retained by the resulting numerical
1919   schemes, and their performance in prognostic simulations is examined.
1920   Numerical consistency is investigated with respect to global energy
1921   conservation, depth-integrated momentum changes, and the representation
1922   of the bottom pressure torque. The performances of the numerical
1923   schemes are tested in prognostic integrations of an ocean model to
1924   demonstrate numerical accuracy and long-term integral stability.
1925   Two typical geometries, an isolated tall seamount and an unforced
1926   basin with sloping boundaries, are considered for the special case
1927   of no external forcing and horizontal isopycnals to test numerical
1928   accuracy. These test problems confirm that the proposed schemes yield
1929   accurate approximations to the pressure gradient force. Integral
1930   consistency conditions are verified and the energetics of the “advective
1931   elimination” of the pressure gradient error (Mellor et al)
1932   is considered.A large-scale wind-driven basin with and without topography
1933   is used to test the model’s long-term integral performance
1934   and the effects of bottom pressure torque on the transport in western
1935   boundary currents. Integrations are carried out for 10 years in each
1936   case and results show that the schemes are stable, and the steep
1937   topography causes no obvious numerical problems. A realistic meandering
1938   western boundary current is well developed with detached cold cyclonic
1939   and warm anticyclonic eddies as it extends across the basin. In addition,
1940   the results with topography show earlier separation and enhanced
1941   transport in the western boundary currents due to the bottom pressure
1942   torque.},
1943  date = {December 01, 1998},
1944  owner = {gm},
1945  timestamp = {2007.08.05}
1946}
1947
1948@PHDTHESIS{Speich1992,
1949  author = {S. Speich},
1950  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
1951   par les d\'{e}troits - cas de la mer d'Alboran},
1952  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1953  year = {1992},
1954  owner = {gm},
1955  timestamp = {2007.08.06}
1956}
1957
1958@ARTICLE{Speich1996,
1959  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
1960  title = {The circulation in the Alboran Sea - a sensitivity study},
1961  journal = JPO,
1962  year = {1996},
1963  volume = {26},
1964  owner = {gm},
1965  timestamp = {2007.08.06}
1966}
1967
1968@ARTICLE{Steele2001,
1969  author = {M. Steele and R. Morley and W. Ermold},
1970  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
1971  journal = {Journal of Climate},
1972  year = {2001},
1973  volume = {14},
1974  pages = {2079--2087
1975   
1976   },
1977  number = {9},
1978  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
1979   Climatology (PHC), has been created that merges the 1998 version
1980   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
1981   The result is a global climatology for temperature and salinity that
1982   contains a good description of the Arctic Ocean and its environs.
1983   Monthly, seasonal, and annual average products have been generated.
1984   How the original datasets were prepared for merging, how the optimal
1985   interpolation procedure was performed, and characteristics of the
1986   resulting dataset are discussed, followed by a summary and discussion
1987   of future plans.},
1988  date = {May 01, 2001},
1989  owner = {gm},
1990  timestamp = {2007.08.06}
1991}
1992
1993@ARTICLE{Stein1992,
1994  author = {C. A. Stein and S. Stein},
1995  title = {A model for the global variation in oceanic depth and heat flow with
1996   lithospheric age},
1997  journal = {Nature},
1998  year = {1992},
1999  volume = {359},
2000  pages = {123-129},
2001  owner = {gm},
2002  timestamp = {2007.08.04}
2003}
2004
2005@ARTICLE{Thiem2006,
2006  author = {O. Thiem and J. Berntsen},
2007  title = {Internal pressure errors in sigma-coordinate ocean models due to
2008   anisotropy},
2009  journal = {Ocean Modelling},
2010  year = {2006},
2011  volume = {12, 1-2},
2012  owner = {gm},
2013  timestamp = {2007.08.05}
2014}
2015
2016@ARTICLE{Treguier1992,
2017  author = {A.M. Tr\'{e}guier},
2018  title = {Kinetic energy analysis of an eddy resolving, primitive equation
2019   North Atlantic model},
2020  journal = JGR,
2021  year = {1992},
2022  volume = {97},
2023  pages = {687-701}
2024}
2025
2026@ARTICLE{Treguier2001,
2027  author = {A.M Tr\'{e}guier and B. Barnier and A.P. de Miranda and J.M. Molines
2028   and N. Grima and M. Imbard and G. Madec and C. Messager and T. Reynaud
2029   and S. Michel},
2030  title = {An Eddy Permitting model of the Atlantic circulation: evaluating
2031   open boundary conditions},
2032  journal = JGR,
2033  year = {2001},
2034  volume = {106},
2035  pages = {22115-22129}
2036}
2037
2038@ARTICLE{Treguier1996,
2039  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
2040  title = {Properties of nonuniform grids used in ocean general circulation
2041   models},
2042  journal = JGR,
2043  year = {1996},
2044  volume = {101},
2045  pages = {20877-20881},
2046  owner = {gm},
2047  timestamp = {2007.08.03}
2048}
2049
2050@ARTICLE{Treguier1997,
2051  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
2052  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
2053   Ocean Models},
2054  journal = JPO,
2055  year = {1997},
2056  volume = {27},
2057  pages = {567-580},
2058  number = {4},
2059  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
2060   consistent with the fact that the ocean interior is nearly adiabatic.
2061   Gent and McWilliams have described a framework in which this can
2062   be approximated in z-coordinate primitive equation models by incorporating
2063   the effects of eddies on the buoyancy field through an eddy-induced
2064   velocity. It is also natural to base a parameterization on the simple
2065   picture of the mixing of potential vorticity in the interior and
2066   the mixing of buoyancy at the surface. The authors discuss the various
2067   constraints imposed by these two requirements and attempt to clarify
2068   the appropriate boundary conditions on the eddy-induced velocities
2069   at the surface. Quasigeostrophic theory is used as a guide to the
2070   simplest way of satisfying these constraints.},
2071  date = {April 01, 1997},
2072  owner = {gm},
2073  timestamp = {2007.08.03}
2074}
2075
2076@BOOK{UNESCO1983,
2077  title = {Algorithms for computation of fundamental property of sea water},
2078  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
2079  year = {1983},
2080  author = {UNESCO},
2081  owner = {gm},
2082  timestamp = {2007.08.04}
2083}
2084
2085@TECHREPORT{OASIS2006,
2086  author = {S. Valcke},
2087  title = {OASIS3 User Guide (prism\_2-5)},
2088  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
2089   64 pp},
2090  year = {2006},
2091  owner = {gm},
2092  timestamp = {2007.08.05}
2093}
2094
2095@TECHREPORT{valal00,
2096  author = {S. Valcke and L. Terray and A. Piacentini },
2097  title = {The OASIS Coupled User Guide Version 2.4},
2098  institution = {CERFACS},
2099  year = {2000},
2100  number = {TR/CMGC/00-10}
2101}
2102
2103@ARTICLE{Weatherly1984,
2104  author = {G. L. Weatherly},
2105  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
2106  journal = JMR,
2107  year = {1984},
2108  volume = {42, 2},
2109  pages = {289-301},
2110  owner = {gm},
2111  timestamp = {2007.08.06}
2112}
2113
2114@ARTICLE{Weaver1997,
2115  author = {A. J. Weaver and M. Eby},
2116  title = {On the numerical implementation of advection schemes for use in conjuction
2117   with various mixing
2118   
2119   parameterizations in the GFDL ocean model},
2120  journal = JPO,
2121  year = {1997},
2122  volume = {27},
2123  owner = {gm},
2124  timestamp = {2007.08.06}
2125}
2126
2127@ARTICLE{Webb1998,
2128  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
2129  title = {Improved Advection Schemes for Ocean Models},
2130  journal = JAOT,
2131  year = {1998},
2132  volume = {15},
2133  pages = {1171-1187},
2134  number = {5},
2135  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
2136   ocean model, based on a control volume form of the advection equation.
2137   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
2138   forward time-stepping schemes used by the ocean model. Farrow and
2139   Stevens overcame the problem by implementing a predictor–corrector
2140   time-stepping scheme, but this is computationally expensive to run.
2141   The present paper shows that the problem can be overcome by splitting
2142   the QUICK operator into an O(δx2) advective term and a velocity
2143   dependent biharmonic diffusion term. These can then be time-stepped
2144   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
2145   ocean model, leading to a significant increase in model efficiency.
2146   A small change in the advection operator coefficients may also be
2147   made leading to O(δx4) accuracy. Tests of the improved schemes
2148   are carried out making use of a global eddy-permitting ocean model.
2149   Results are presented from cases where the schemes were applied to
2150   only the tracer fields and also from cases where they were applied
2151   to both the tracer and velocity fields. It is found that the new
2152   schemes have the most effect in the western boundary current regions,
2153   where, for example, the warm core of the Agulhas Current is no longer
2154   broken up by numerical noise.},
2155  date = {October 01, 1998},
2156  owner = {gm},
2157  timestamp = {2007.08.04}
2158}
2159
2160@ARTICLE{Willebrand2001,
2161  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
2162   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
2163   L. New},
2164  title = {Circulation characteristics in three eddy-permitting models of the
2165   North Atlantic},
2166  journal = {Progress in Oceanography},
2167  year = {2001},
2168  volume = {48, 2},
2169  pages = {123-161},
2170  owner = {gm},
2171  timestamp = {2007.08.04}
2172}
2173
2174@ARTICLE{Zalesak1979,
2175  author = {S. T. Zalesak},
2176  title = {Fully multidimensional flux corrected transport algorithms for fluids},
2177  journal = JCP,
2178  year = {1979},
2179  volume = {31},
2180  owner = {gm},
2181  timestamp = {2007.08.04}
2182}
2183
2184@ARTICLE{Zhang1992,
2185  author = {Zhang, R.-H. and Endoh, M.},
2186  title = {A free surface general circulation model for the tropical Pacific
2187   Ocean},
2188  journal = JGR,
2189  year = {1992},
2190  volume = {97},
2191  pages = {11237-11255},
2192  month = jul,
2193  owner = {gm}
2194}
2195
2196@comment{jabref-meta: groupsversion:3;}
2197
2198@comment{jabref-meta: groupstree:
21990 AllEntriesGroup:;
22001 ExplicitGroup:El Nino\;2\;blanketal97\;;
22012 ExplicitGroup:97/98 event\;0\;;
22022 ExplicitGroup:Forecast\;0\;;
22032 ExplicitGroup:GHG change\;0\;;
22042 ExplicitGroup:in GCMs\;0\;;
22052 ExplicitGroup:in MIPs\;0\;;
22062 ExplicitGroup:momentum balance\;0\;;
22072 ExplicitGroup:Obs analysis\;0\;;
22082 ExplicitGroup:Paleo\;0\;;
22092 ExplicitGroup:Previous events\;0\;;
22102 ExplicitGroup:Reviews\;0\;;
22112 ExplicitGroup:Simple models\;0\;Zhang1992\;;
22122 ExplicitGroup:SPL, SC, mean\;0\;;
22132 ExplicitGroup:Teleconnections\;0\;;
22142 ExplicitGroup:Low freq\;0\;;
22152 ExplicitGroup:Theory\;0\;;
22162 ExplicitGroup:Energetics\;0\;;
22171 ExplicitGroup:Diurnal in tropics\;0\;;
22181 ExplicitGroup:Indian\;0\;;
22191 ExplicitGroup:Atlantic\;0\;;
22201 ExplicitGroup:MJO, IO, TIW\;2\;;
22212 ExplicitGroup:Obs\;0\;;
22222 ExplicitGroup:GCM\;0\;;
22232 ExplicitGroup:Mechanims\;0\;;
22242 ExplicitGroup:TIW\;0\;;
22251 ExplicitGroup:Observations\;2\;;
22262 ExplicitGroup:ERBE\;0\;;
22272 ExplicitGroup:Tropical\;0\;;
22282 ExplicitGroup:Global\;0\;;
22292 ExplicitGroup:Clouds\;0\;;
22302 ExplicitGroup:Scale interactions\;0\;;
22311 ExplicitGroup:Mechanisms\;2\;;
22322 ExplicitGroup:CRF\;0\;;
22332 ExplicitGroup:Water vapor\;0\;;
22342 ExplicitGroup:Atmos mechanisms\;0\;;
22351 ExplicitGroup:GCMs\;2\;;
22362 ExplicitGroup:Uncertainty\;0\;;
22372 ExplicitGroup:Momentum balance\;0\;;
22381 ExplicitGroup:Climate change\;0\;;
22392 ExplicitGroup:IPCC AR4\;0\;;
22401 ExplicitGroup:Analysis tools\;0\;;
22411 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2242}
2243
Note: See TracBrowser for help on using the repository browser.