New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_A.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_A.tex @ 994

Last change on this file since 994 was 994, checked in by gm, 16 years ago

trunk - add steven correction + several other things + rename BETA into TexFiles?

  • Property svn:executable set to *
File size: 14.6 KB
Line 
1
2% ================================================================
3% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
4% ================================================================
5\chapter{Curvilinear $s$-Coordinate Equations}
6\label{Apdx_A}
7\minitoc
8
9In order to establish the set of Primitive Equation in curvilinear $s$-coordinates ($i.e.$ 
10orthogonal curvilinear coordinate in the horizontal and $s$-coordinate in the vertical), we
11start from the set of equation established in \S\ref{PE_zco_Eq} for the special case
12$k = z$ and thus $e_3 = 1$, and we introduce an arbitrary vertical coordinate
13$s = s(i,j,z,t)$. Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ 
14(which now depends on $(i,j,z,t)$) and the horizontal slope of $s$-surfaces by :
15\begin{equation} \label{Apdx_A_s_slope}
16\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
17\quad \text{and} \quad 
18\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
19\end{equation}
20
21The chain rule to establish the model equations in the curvilinear $s$-coordinate system
22is:
23\begin{equation} \label{Apdx_A_s_chain_rule}
24\begin{aligned}
25&\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
26\left. {\frac{\partial \bullet }{\partial t}} \right|_s
27    -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\
28&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
29  \left. {\frac{\partial \bullet }{\partial i}} \right|_s
30     -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}=
31     \left. {\frac{\partial \bullet }{\partial i}} \right|_s
32     -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet }{\partial s} \\
33&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
34\left. {\frac{\partial \bullet }{\partial j}} \right|_s
35   - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
36\left. {\frac{\partial \bullet }{\partial j}} \right|_s
37   - \frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet }{\partial s} \\
38&\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\
39\end{aligned}
40\end{equation}
41
42In particular applying the time derivative chain rule to $z$ provide the expression of $w_s$,  the vertical velocity of the $s-$surfaces:
43\begin{equation} \label{Apdx_A_w_in_s}
44w_s   =  \left.   \frac{\partial z }{\partial t}   \right|_s
45            = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 
46             = e_3 \, \frac{\partial s}{\partial t} 
47\end{equation}
48
49% ================================================================
50% continuity equation
51% ================================================================
52\section{Continuity Equation}
53\label{Apdx_B_continuity}
54
55Using (\ref{Apdx_A_s_chain_rule}) and the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate, the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows:
56
57\begin{align*}
58\nabla \cdot {\rm {\bf U}} 
59&= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
60                  +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
61+ \frac{\partial w}{\partial z}     \\
62\\
63&     = \frac{1}{e_1 \,e_2 }  \left[
64        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
65        - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}
66      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       
67        - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s}   \right]
68   + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z}                        \\
69\\
70&     = \frac{1}{e_1 \,e_2 }   \left[
71        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
72      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s        \right]
73   + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
74                  -  \sigma _1 \frac{\partial u}{\partial s}
75                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]          \\
76\\
77&     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
78        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_
79        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s     
80      + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
81        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right]          \\
82& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
83   + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
84                  -  \sigma _1 \frac{\partial u}{\partial s}
85                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]      \\
86\\
87\end{align*}
88
89Noting that $\frac{1}{e_1 }\left. {\frac{\partial e_3 }{\partial i}}
90\right|_s =\frac{1}{e_1 }\left. {\frac{\partial ^2z}{\partial i\,\partial 
91s}} \right|_s =\frac{\partial }{\partial s}\left( {\frac{1}{e_1 }\left.
92{\frac{\partial z}{\partial i}} \right|_s } \right)=\frac{\partial \sigma _1 
93}{\partial s}$ and $\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}}
94\right|_s =\frac{\partial \sigma _2 }{\partial s}$, it becomes:
95
96\begin{align*}
97\nabla \cdot {\rm {\bf U}} 
98& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
99        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
100      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]        \\ 
101& \qquad \qquad \qquad \qquad \qquad \quad
102 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\ 
103\\
104& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
105        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
106      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
107   + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma _1  - v\;\sigma _2  \right]
108 \end{align*} 
109 
110Here, $w$ is the vertical velocity relative to the $z-$coordinate system. Introducing the dia-surface velocity component, $\omega $, defined as the velocity relative to the moving $s$-surfaces and normal to them:
111\begin{equation} \label{Apdx_A_w_s}
112\omega  = w - w_s - \sigma _1 \,u - \sigma _2 \,v    \\
113\end{equation}
114with $w_s$ given by \eqref{Apdx_A_w_in_s}, we obtain the expression of the divergence of the velocity in the curvilinear $s$-coordinate system:
115\begin{align*} \label{Apdx_A_A4}
116\nabla \cdot {\rm {\bf U}} 
117&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
118        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
119      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
120+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
121+ \frac{1}{e_3 } \frac{\partial w_s       }{\partial s}    \\
122\\
123&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
124        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
125      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
126+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
127+ \frac{1}{e_3 } \frac{\partial}{\partial s}  \left(  e_3 \; \frac{\partial s}{\partial t}   \right)   \\
128\\
129&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
130        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
131      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
132+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
133+ \frac{\partial}{\partial s} \frac{\partial s}{\partial t}
134+ \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}     \\
135\\
136&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
137        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
138      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
139+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
140+ \frac{1}{e_3 } \frac{\partial e_3}{\partial t}     \\
141\end{align*}
142
143As a result, the continuity equation \eqref{Eq_PE_continuity} in $s$-coordinates becomes:
144\begin{equation} \label{Apdx_A_A5}
145\frac{1}{e_3 } \frac{\partial e_3}{\partial t} 
146+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
147         {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
148          +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
149 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0   
150\end{equation}
151
152% ================================================================
153% momentum equation
154% ================================================================
155\section{Momentum Equation}
156\label{Apdx_B_momentum}
157
158Let us consider \eqref{Eq_PE_dyn_vect}, the first component of the
159momentum equation in the vector invariant form (similar manipulations can be performed on the second one). Its non linear term can be transformed
160as follows:
161
162\begin{align*}
163&+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
164- w \;\frac{\partial u}{\partial z} \\
165\\
166&\qquad=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
167\right|_z -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_z } 
168\right]\;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} 
169\right|_z -w\frac{\partial u}{\partial z}      \\
170\\
171&\qquad =\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
172\right|_s -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_s }     \right.
173 \left. {-\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}+\frac{e_2 }{e_3 }\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right]\;v \\ 
174&\qquad \qquad \qquad \qquad \qquad
175{ -\frac{1}{2e_1 }\left( {\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}} \right)
176-\frac{w}{e_3 }\frac{\partial u}{\partial s} }    \\
177\end{align*}
178\begin{align*}
179\qquad  &= \left. \zeta \right|_s \;v
180   - \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
181   - \frac{w}{e_3 }\frac{\partial u}{\partial s}
182   - \left[   {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}
183              - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v      \\
184\qquad&\qquad \qquad \qquad \qquad \qquad \qquad
185\qquad  \qquad \qquad \qquad \quad
186   +\frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s}      \\
187%\\
188\qquad &= \left. \zeta \right|_s \;v
189      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 
190\qquad&\qquad \qquad \qquad
191 -\frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
192   +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s}
193   -\sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\
194\\
195\qquad &= \left. \zeta \right|_s \;v
196      - \frac{1}{2e_1 }\left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s   
197        - \frac{1}{e_3} \left[  w - \sigma _2 v - \sigma _1 u  \right] 
198                \; \frac{\partial u}{\partial s}   \\
199\\
200\qquad &= \left. \zeta \right|_s \;v
201      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
202        - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
203        - \frac{\partial s}{\partial t}  \frac{\partial u}{\partial s} 
204\end{align*}
205
206Therefore, the non-linear terms of the momentum equation have the same form
207in $z-$ and $s-$coordinates but with the addition of the time derivative of the velocity:
208\begin{multline}  \label{Apdx_A_momentum_NL}
209+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
210- w \;\frac{\partial u}{\partial z}    \\
211= - \frac{\partial u}{\partial t} + \left. \zeta \right|_s \;v
212   - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
213   - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
214\end{multline}
215
216The pressure gradient term can be transformed as follows:
217\begin{equation} \label{Apdx_A_grad_p}
218\begin{split}
219 -\frac{1}{\rho _o e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z& =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
220& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
221&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
222\end{split}
223\end{equation}
224
225An additional term appears in (\ref{Apdx_A_grad_p}) which accounts for the tilt of model
226levels.
227
228Introducing \eqref{Apdx_A_momentum_NL} and \eqref{Apdx_A_grad_p} in \eqref{Eq_PE_dyn_vect} and regrouping the time derivative terms in the left hand side, and performing the same manipulation on the second component, we obtain the vector invariant form of momentum equation in $s-$coordinate :
229\begin{subequations} \label{Apdx_A_dyn_vect}
230\begin{multline} \label{Apdx_A_PE_dyn_vect_u}
231 \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t}=
232   +   \left( {\zeta +f} \right)\,v                                   
233   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
234   -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
235   -   \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)   
236   +  g\frac{\rho }{\rho _o}\sigma _1
237   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
238\end{multline}
239\begin{multline} \label{Apdx_A_dyn_vect_v}
240 \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
241   -   \left( {\zeta +f} \right)\,u   
242   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)       
243   -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
244   -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)
245    +  g\frac{\rho }{\rho _o }\sigma _2   
246   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
247\end{multline}
248\end{subequations}
249
250It has the same form as in $z-$coordinate but the vertical scale factor that has appeared inside the time derivative. The form of the vertical physics and forcing terms remain unchanged. The form of the lateral physics is discussed in appendix~\ref{Apdx_B}
251
252% ================================================================
253% Tracer equation
254% ================================================================
255\section{Tracer Equation}
256\label{Apdx_B_tracer}
257
258The tracer equation is obtained using the same calculation as for the
259continuity equation and then regrouping the time derivative terms in the left hand side :
260
261\begin{multline} \label{Apdx_A_tracer}
262 \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t} 
263   = -\frac{1}{e_1 \,e_2 \,e_3 } 
264      \left[ {\frac{\partial }{\partial i}} \left( {e_2 \,e_3 \;Tu} \right) \right .
265          +         \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)                \\
266          + \left. \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] +D^{T} +F^{T} \; \;
267\end{multline}
268
269
270The expression of the advection term is a straight consequence of (A.4), the
271expression of the 3D divergence in $s$-coordinates established above.
272
Note: See TracBrowser for help on using the repository browser.